NUMERICAL ANALYSIS-EXERCISES
 AA 2007-2008

Professor Eleuterio. F. Toro
Laboratory of Applied Mathematics
Department of Civil and Environmental Engineering
University of Trento
Trento, Italy
E-mail: toro@ing.unitn.it
Website: http://www.ing.unitn.it/toro

1 Model linear system with source terms

$$
\partial_{t}\left[\begin{array}{l}
q_{1} \tag{1}\\
q_{2}
\end{array}\right]+\left[\begin{array}{cc}
0 & -a \\
-a & 0
\end{array}\right] \partial_{x}\left[\begin{array}{c}
q_{1} \\
q_{2}
\end{array}\right]=\left[\begin{array}{c}
\frac{1}{2}\left[\left(\beta_{1}+\beta_{2}\right) q_{1}+\left(\beta_{1}-\beta_{2}\right) q_{2}\right. \\
\frac{1}{2}\left[\left(\beta_{1}-\beta_{2}\right) q_{1}+\left(\beta_{1}+\beta_{2}\right) q_{2}\right.
\end{array}\right]
$$

where a is a positive constant, β_{1}, β_{2} are negative constants.
Consider the with initial conditions

$$
\begin{equation*}
q_{1}(x, 0)=q_{1}^{(0)}(x), q_{2}(x, 0)=q_{2}^{(0)}(x) \tag{2}
\end{equation*}
$$

where $q_{1}^{(0)}(x)$ and $q_{2}^{(0)}(x)$ are two prescribed functions of x. The exact solution at a general point (x, t) is

$$
\left.\begin{array}{l}
q_{1}(x, t)=\frac{1}{2}\left[q_{1}^{(0)}\left(x-\lambda_{1} t\right)+q_{2}^{(0)}\left(x-\lambda_{1} t\right)\right] e^{\beta_{1} t}+\frac{1}{2}\left[q_{1}^{(0)}\left(x-\lambda_{2} t\right)-q_{2}^{(0)}\left(x-\lambda_{2} t\right)\right] e^{\beta_{2} t} \tag{3}\\
q_{2}(x, t)=\frac{1}{2}\left[q_{1}^{(0)}\left(x-\lambda_{1} t\right)+q_{2}^{(0)}\left(x-\lambda_{1} t\right)\right] e^{\beta_{1} t}-\frac{1}{2}\left[q_{1}^{(0)}\left(x-\lambda_{2} t\right)-q_{2}^{(0)}\left(x-\lambda_{2} t\right)\right] e^{\beta_{2} t}
\end{array}\right\}
$$

TASKS:

- Verify that (3) is the exact solution of the IVP (1)-(2) for $\lambda_{1}=-a, \lambda_{2}=a$ and for any constants β_{1} and β_{2}.
- Choose the parameters as follows $a=1, \beta_{1}=\beta_{2}=-1$, the computational domain as $[-5,5]$ and the initial conditions as

$$
\begin{equation*}
\left.q_{1}(x, 0)=q_{1}^{(0)}(x)=e^{-x^{2}}, q_{2}(x, 0)=q_{2}^{(0)}(x)=-\frac{1}{2} e^{-x^{2}} .\right\} \tag{4}
\end{equation*}
$$

Apply the ADER2 method with ENO reconstruction, component by component, to solve the above problem numerically using a mesh of 100 cells and a CFL number $C_{c f l}=0.9$. Evolve the solution up to the output time $t_{\text {out }}=2$ and compare the numerical with the exact solution.

- Discuss boundary conditions.
- Vary the CFL number, keeping the remaining parameters unchanged, and observe the effect on the numerical solution.
- Vary the mesh (eg. 200, 400, 800), keeping the remaining parameters unchanged, and observe the effect on the numerical solution.
- Set all slopes to zero in the programm so as to obtain Godunov's method and perform all the computational tasks given above. Discuss your observations.

