Numerical Analysis, Tel. Engineering. 9th February 2009.

Question 1. Consider the linear advection equation

$$
\begin{equation*}
\partial_{t} q(x, t)+\lambda \partial_{x} q(x, t)=0 \tag{1}
\end{equation*}
$$

with $\lambda=1$, along with the initial condition

$$
q(s, 0)=h(s)=\left\{\begin{array}{ccc}
0 & \text { if } & s<-1 \tag{2}\\
1-s^{2} & \text { if } & -1 \leq s \leq 1 \\
0 & \text { if } & s>1
\end{array}\right.
$$

(a) Plot the solution $q(x, t)=h(x-\lambda t)$ of the initial value problem problem (1), (2) at times $t=0,1,2$.
(b) Replot $q(x, t)$ in the three-dimensional $x-t-q$ space.

Question 2. Consider the three-point linear scheme

$$
\begin{equation*}
q_{i}^{n+1}=b_{-1} q_{i-1}^{n}+b_{1} q_{i}^{n}+b_{1} q_{i+1}^{n} \tag{3}
\end{equation*}
$$

for the linear advection equation

$$
\begin{equation*}
\partial_{t} q(x, t)+\lambda \partial_{x} q(x, t)=0 \tag{4}
\end{equation*}
$$

with constant λ. There is a theoretical result that says that (3) is linearly stable if and only if the following two conditions are satisfied: (i) $b_{0}\left(b_{-1}+b_{1}\right) \geq 0$ and (ii) $b_{0}\left(b_{-1}+b_{1}\right)+4 b_{-1} b_{1} \geq 0$.
(a) Apply the above result to analyse the linear stability of the Godunov centred method, for which $b_{-1}=\frac{1}{2} c(1+2 c) ; b_{0}=1-2 c^{2} ; b_{1}=-\frac{1}{2} c(1-2 c)$.
(b) Analise the monotonicity of the scheme for Courant numbers c in the range of linear stability. Comment on your findings.
(c) Use the above theoretical result to show that any monotone three-point linear scheme (3) is linearly stable.

Question 3. Consider the model, abstract, hyperbolic system

$$
\partial_{t}\left[\begin{array}{l}
q_{1} \tag{5}\\
q_{2}
\end{array}\right]+\left[\begin{array}{ll}
0 & a \\
a & 0
\end{array}\right] \partial_{x}\left[\begin{array}{l}
q_{1} \\
q_{2}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0
\end{array}\right],
$$

or in matrix form

$$
\begin{equation*}
\partial_{t} \mathbf{Q}+\mathbf{A} \partial_{x} \mathbf{Q}=\mathbf{0} \tag{6}
\end{equation*}
$$

with the obvious notation for the vector \mathbf{Q} of unknowns and the coefficient matrix \mathbf{A}. Find the eigenstructure of the system, that is:
(a) Find the eigenvalues of the system.
(b) Find the left eigenvectors, with scaling factors α_{1}, α_{2}.
(c) Find the right eigenvectors with scaling factors β_{1}, β_{2}.
(d) Find the correct scaling for $\alpha_{1}, \alpha_{2}, \beta_{1}, \beta_{2}$ such that the left $\mathbf{L}^{(i)}$ and right $\mathbf{R}^{(j)}$ eigenvectors are orthonormal, that is $\mathbf{L}^{(i)} \cdot \mathbf{L}^{(j)}=1$ if $i=j$ and 0 , otherwise.

