## Numerical Analysis. Laurea Magistrale, Telecommunications Engineering.

## AA 2007-2008, 11th January 2009.

Question 1. Consider the boundary value problem (BVP)

$$
\left.\begin{array}{ll}
\mathrm{ODE}: & q^{\prime \prime}(t)=s\left(t, q(t), q^{\prime}(t)\right) \equiv c(t) q^{\prime}+d(t) q+e(t), t \in[0, b],  \tag{1}\\
\mathrm{BCs}: & q(0)=\alpha, q(b)=\beta
\end{array}\right\}
$$

where $c(t), d(t), e(t)$ are known continuous functions of $t$. Discretize the interval $[0, b]$ with $N+$ 1 equidistant points ( $N-1$ internal points) and by approximating derivatives by finite differences formulate the boundary-value problem for finding the solution $q(t)$ at the points $t^{1}, t^{2}, t^{3}, \ldots, t^{N-1}$ in terms of a linear system of algebraic equations of the form $\mathbf{A X}=\mathbf{B}$, specifying the matrix $\mathbf{A}$ and the vectors $\mathbf{X}$ and $\mathbf{B}$. Justify every step of your answer.

Question 2. Consider the homogeneous linear advection equation with constant coefficient

$$
\begin{equation*}
\partial_{t} q+\lambda \partial_{x} q=\beta q, \quad \lambda: \text { Constant , } x \in(-\infty, \infty) \text {, } \tag{2}
\end{equation*}
$$

with initial condition $q(x, 0)=h(x)$.

- (a) Prove that $q(x, t)=h(x-\lambda t) e^{\beta t}$ is a solution the initial-value problem for (2).
- (b) Consider the special itial condition for (2)

$$
q(x, 0)=h(x)=\left\{\begin{array}{ccc}
0 & \text { if } & x<-1,  \tag{3}\\
x^{2}-1 & \text { if } & -1 \leq x \leq 1, \\
0 & \text { if } & x>1 .
\end{array}\right.
$$

For $\lambda=-1, \beta=1$ determine the solution $q(x, \hat{t})$ by drawing a table of values of $q(x, \hat{t})=h(\hat{X})$, with $\hat{X}=x-\lambda \hat{t}$, for appropriate values of $x$ for $\hat{t}=1,2,3$. Use the fact that $e=2 ., e^{2}=, e^{3}=$. Plot the successive profiles.

Question 3. Consider the following linear system with constant coefficients

$$
\partial_{t}\left[\begin{array}{l}
q_{1}  \tag{4}\\
q_{2}
\end{array}\right]+\left[\begin{array}{ll}
u & a \\
a & u
\end{array}\right] \partial_{x}\left[\begin{array}{l}
q_{1} \\
q_{2}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0
\end{array}\right],
$$

or

$$
\begin{equation*}
\partial_{t} \mathbf{Q}+\mathbf{A} \partial_{x} \mathbf{Q}=\mathbf{0}, \tag{5}
\end{equation*}
$$

with the obvious notation. Here $u$ and $a$ are constant real numbers and $a>0$.

- (a) Find the eigenvalues of the system, the right eigenvectors, with scaling factors $\alpha_{1}, \alpha_{2}$ and the left eigenvectors with scaling factors $\gamma_{1}, \gamma_{2}$.
- (b) By taking $\alpha_{1}=1, \alpha_{2}=1$, find $\gamma_{1}$ and $\gamma_{2}$ such that the left and right eigenvectors are orthonormal, that is $\mathbf{L}_{i} . \mathbf{R}_{j}=1$, if $i=j$, and 0 , otherwise.
- (c) With the scaling in (b) above find the matrix $\mathbf{R}$ of right eigenvectors, the inverse matrix $\mathbf{R}^{-1}$ and verify that $\mathbf{L}=\mathbf{R}^{-1}$, where $\mathbf{L}$ is the matrix of left eigenvectors.
- (d) Find the characteristic variables $\mathbf{C}=\mathbf{R}^{-1} \mathbf{Q}$.
- (e) Find the complete solution of the Riemann problem for the model linear system with initial conditions

$$
\begin{align*}
& \left.q_{1}(x, 0)=\left\{\begin{array}{lll}
q_{1, L} & \text { if } & x<0, \\
q_{1, R} & \text { if } & x>0, \\
q_{2}(x, 0) & =\left\{\begin{array}{lll}
q_{2, L} & \text { if } & x<0, \\
q_{2, R} & \text { if } & x>0 .
\end{array}\right\}
\end{array}\right\} . \begin{array}{l}
\end{array}\right\} \tag{6}
\end{align*}
$$

## Question 4.

Consider the elliptic Boundary Value Problem

$$
\begin{align*}
& \partial_{x}^{(2)} q(x, y)+\partial_{y}^{(2)} q(x, y)=0,(x, y) \in[0,1] \times[0,1] \\
& q(x, 0)=q_{B}(x)=x, x \in[0,1] \\
& q(x, b)=q_{T}(x)=x, x \in[0,1]  \tag{7}\\
& q(0, y)=q_{L}(y)=0, y \in[0,1] \\
& q(a, y)=q_{R}(y)=1, y \in[0,1]
\end{align*}
$$

Consider the five-point formula

$$
\begin{equation*}
q_{i, j}=\frac{q_{i-1, j}+q_{i+1, j}+q_{i, j-1}+q_{i, j+1}}{4}, \tag{8}
\end{equation*}
$$

with $\Delta x=\Delta y=1 / 3$.

- (a) Illustrate through a drawing the geometric situation, clearly identifying the vector of unknowns $\mathbf{X}$.
- (b) Assuming guess values $x_{l}^{(0)}=1 / 2$, for $l=1,2,3,4$, apply the Jacobi method for 2 iterations, measuring the norm of the error $\mathbf{E}^{(k+1)}=\left\|\mathbf{X}^{(k+1)}-\mathbf{X}^{(k)}\right\|$ at each iteration $k$. As a norm of a vector $\mathbf{V}=\left[v_{1}, v_{2}, \ldots, v_{m}\right]$ use $\|\mathbf{V}\|=\max _{l}\left(\left|v_{l}\right|\right)$. Put all results on a table (all calculations to be made by hand).

