Numerical Analysis. Laurea Magistrale, Telecommunications Engineering.
 AA 2007-2008, 24th July 2008.

Question 1. Consider the model IVP

$$
\left.\begin{array}{ll}
\text { ODE: } & q^{\prime}(t)=\beta q(t), t \in[0,1], \beta \leq 0, \tag{1}\\
\mathrm{IC:} & q(0)=1
\end{array}\right\}
$$

and the Taylor method of order p to solve it:

$$
\left.\begin{array}{l}
q^{n+1}=q^{n}+h \phi\left(t^{n}, q^{n}, h\right) \tag{2}\\
\phi\left(t^{n}, q^{n}, h\right)=q^{(1)}\left(t^{n}\right)+\frac{1}{2} h^{1} q^{(2)}\left(t^{n}\right)+\ldots+\frac{1}{p!} h^{p-1} q^{(n)}\left(t^{n}\right)
\end{array}\right\}
$$

Find the local truncation error for the case $p=2$.
Question 2. Consider a model for an infinite transmission line given by the PDEs

$$
\left.\begin{array}{rl}
\partial_{t} I(x, t)+\frac{1}{L} \partial_{x} E(x, t) & =-\frac{R}{L} I \tag{3}\\
\partial_{t} E(x, t)+\frac{1}{C} \partial_{x} I(x, t) & =-\frac{G}{C} E
\end{array}\right\}
$$

where the unknowns are I and E. Assume the source terms are identically zero.

- (a) Find the eigenvalues of the system and consider them in increasing order.
- (b) Find the right eigenvectors R_{i} with scaling factors α_{1}, α_{2}.
- (c) Find the left eigenvectors L_{i} with scaling factors γ_{1}, γ_{2}.
- (d) Assuming $\alpha_{1}=1, \alpha_{2}=1$, find the scaling for γ_{1}, γ_{2} such that the left and right eigenvectors are orthonormal, that is $L_{i} \cdot R_{j}=1$ if $i=j$ e $L_{i} \cdot R_{j}=0$ if $i \neq j$.
- (e) Find the characteristic variables.

Question 3. Recall that the finite volume formulation for non-linear systems in one space dimension with source terms

$$
\begin{equation*}
\partial_{t} q+\partial_{x} f(q)=s(q) \tag{4}
\end{equation*}
$$

has the form

$$
\begin{equation*}
q_{i}^{n+1}=q_{i}^{n}-\frac{\Delta t}{\Delta x}\left[f_{i+\frac{1}{2}}-f_{i-\frac{1}{2}}\right]+\Delta t s_{i} \tag{5}
\end{equation*}
$$

Recall also that each term is to be interpreted as follows

$$
\begin{align*}
q_{i}^{n} & =\frac{1}{\Delta x} \int_{x_{i-\frac{1}{2}}}^{x_{i+\frac{1}{2}}} q\left(x, t^{n}\right) d x \tag{6}\\
f_{i+\frac{1}{2}} & =\frac{1}{\Delta t} \int_{0}^{\Delta t} f\left(q\left(x_{i+\frac{1}{2}}, t\right)\right) d t \tag{7}
\end{align*}
$$

and

$$
\begin{equation*}
s_{i}=\frac{1}{\Delta t} \frac{1}{\Delta x} \int_{0}^{\Delta t} \int_{x_{i-\frac{1}{2}}}^{x_{i+\frac{1}{2}}} s\left(q_{i}(x, t)\right) d x d t \tag{8}
\end{equation*}
$$

Consider in particular the model advection-reaction equation

$$
\begin{equation*}
\partial_{t} q+\lambda \partial_{x} q=\beta q, f(q)=\lambda q ; s(q)=\beta q \tag{9}
\end{equation*}
$$

where $\lambda>0$ and $\beta \leq 0$ are two constants Consider a numerical scheme constructed as follows: (i) for the numerical flux use Godunov upwind method, that is, evaluate the flux integral at the interface $x_{i+\frac{1}{2}}$ by assuming a constant integrand in (7) equal to λq_{i}^{n} (for $\lambda>0$); (ii) for the numerical source evaluate the source double integral (8) by assuming a "frozen" value $\frac{1}{2}\left(q_{i-1}^{n}+q_{i}^{n}\right)$ for $q_{i}(x, t)$.

- (a) verify that the resulting numerical scheme for (9) is

$$
\begin{equation*}
q_{i}^{n+1}=q_{i}^{n}-c\left(q_{i}^{n}-q_{i-1}^{n}\right)+\frac{1}{2} r\left(q_{i-1}^{n}+q_{i}^{n}\right) . \tag{10}
\end{equation*}
$$

- (b) write the scheme in the form $q_{i}^{n+1}=\sum_{k=-l}^{k=1} b_{k} q_{i+k}^{n}$ and analyze the monotonicity of the scheme for $\lambda>0$.
- (c) analyze the linear stability of the scheme using the von Neumann method. Discuss your results.

Question 4. Consider the initial-boundary problem

$$
\left.\begin{array}{ll}
\mathrm{PDE}: & \partial_{t} q(x, t)=\alpha \partial_{x}^{(2)} q(x, t), x \in(0, b), t>0, \tag{11}\\
\mathrm{IC}: & q(x, 0)=q^{(0)}(x), x \in(0, b), \\
\mathrm{BCs}: & q(0, t)=q_{0}(t), q(b, t)=q_{b}(t), t \geq 0 .
\end{array}\right\}
$$

Take $b=1, \alpha=1$ and initial condition

$$
q(x, 0)=\left\{\begin{array}{lll}
q_{L}=1 & \text { if } & x<1 / 2 \tag{12}\\
q_{R}=0 & \text { if } & x>1 / 2
\end{array}\right.
$$

As boundary conditions take $q_{0}(t)=1$ and $q_{b}(t)=0$. Discretize the domain by a finite difference mesh with $\mathrm{M}=4$ interior points.

- (a) Apply "by hand" the explicit FTCS scheme with $D=0.4$ for 5 time steps and construct a table of solution values for each time step.
- (b) Construct the implicit FTCS scheme for the same problem and write the resulting linear system in matrix form (do not solve it).

Question 5. Consider the elliptic Boundary Value Problem

$$
\begin{align*}
& \partial_{x}^{(2)} q(x, y)+\partial_{y}^{(2)} q(x, y)=0,(x, y) \in[0,1] \times[0,1] \\
& q(x, 0)=q_{B}(x)=1-x, x \in[0,1] \\
& q(x, b)=q_{T}(x)=1-x, x \in[0,1] \tag{13}\\
& q(0, y)=q_{L}(y)=1, y \in[0,1] \\
& q(a, y)=q_{R}(y)=0, y \in[0,1]
\end{align*}
$$

and the finite difference five-point formula

$$
\begin{equation*}
q_{i, j}=\frac{q_{i-1, j}+q_{i+1, j}+q_{i, j-1}+q_{i, j+1}}{4} \tag{14}
\end{equation*}
$$

with $\Delta x=\Delta y=1 / 3$.

- (a) Illustrate through a drawing the geometric situation (domain, discretization and notation), clearly identifying the vector of unknowns \mathbf{X}.
- (b) Assuming guess values $x_{l}^{(0)}=1 / 4$, for $l=1,2,3,4$, apply the Jacobi method for 3 iterations, measuring the norm of the error $\mathbf{E}^{(k+1)}=\left\|\mathbf{X}^{(k+1)}-\mathbf{X}^{(k)}\right\|$ at each iteration k. As a norm of a vector $\mathbf{V}=\left[v_{1}, v_{2}, \ldots, v_{m}\right]$ use $\|\mathbf{V}\|=\max _{l}\left(\left|v_{l}\right|\right)$. Put all results on a table (all calculations to be made by hand).

