Computational Methods for Mechatronics [140466] — 2015, January 16
\square Name \square MAt. NUMBER \square

Signature \qquad

1

Compute the control for the following optimal control problem

$$
\left\{\begin{array}{l}
\text { Minimize: } \quad \int_{0}^{1} x(t)^{2}+y(t)^{2} \mathrm{~d} t \\
\text { Integral constraint: } \quad \int_{0}^{1} x(t) \mathrm{d} t=3 \\
x^{\prime}(t)=x(t)+y(t) \\
y^{\prime}(t)=u(t) \\
x(0)=0, \quad x(1)=0, \quad-1 \leq u(t) \leq 1
\end{array}\right.
$$

The Boundary Value Problem (BVP):

The optimal control u as a function of states and multiplier (Pontryagin):

Compute the control for the following free time optimal control problem

$$
\left\{\begin{array}{l}
\text { Minimize: } \quad \int_{0}^{T} u(t)^{2} \mathrm{~d} t \\
x^{\prime}(t)=y(t)-x(t)+u(t) \\
y^{\prime}(t)=x(t)-u(t) \\
x(0)=0, \quad x(T)=1, \quad y(0)=0
\end{array}\right.
$$

Suggention: First make a change of variable to eliminate the free time T and transform to problem to a fixed boundary problem.

The transformed (OCP):

The Boundary Value Problem (BVP):

The optimal control u as a function of states and multiplier (Pontryagin):

Study the following constrained minimization problem.

$$
\operatorname{minimize} \quad f(x, y, z)=x^{2}+z^{2}+z+x, \quad z-y+1=0, \quad z \geq 2,
$$

KKT system of first order condition:
$\left\{\begin{aligned} 2 x+1 & =0 \\ \lambda & =0 \\ -\mu-\lambda+2 z+1 & =0 \\ z-y+1 & =0 \\ \mu(z-2) & =0 \\ \mu & \geq 0\end{aligned}\right.$

Solutions of KKT system:

$$
\left\{\begin{array}{l}
x=-1 / 2, y=3, z=2, \lambda=0, \mu=5 \\
x=-1 / 2, y=1 / 2, z=-1 / 2, \lambda=0, \mu=0
\end{array}\right.
$$

Discussion of the stationary point: $x=-1 / 2, y=3, z=2, \lambda=0, \mu=5$.

Solve the following recurrence

$$
\begin{array}{rlrl}
x_{k+1} & =y_{k}-k, & x_{0}=1 \\
y_{k+1} & =x_{k}+k, & & y_{0}=1
\end{array}
$$

\mathcal{Z}-transform:

$$
\begin{aligned}
& \zeta x(\zeta)-\zeta=y(\zeta)-\zeta /(\zeta-1)^{2} \\
& \zeta y(\zeta)-\zeta=x(\zeta)+\zeta /(\zeta-1)^{2}
\end{aligned}
$$

Solution in \mathcal{Z} :

$$
\begin{aligned}
& x(\zeta)=\frac{\zeta\left(\zeta^{2}-2\right)}{(\zeta+1)(\zeta-1)^{2}}=-\frac{\zeta}{2(\zeta-1)^{2}}-\frac{\zeta}{4(\zeta+1)}+\frac{5 \zeta}{4(\zeta-1)}, \\
& y(\zeta)=\frac{\zeta^{3}}{(\zeta+1)(\zeta-1)^{2}}=\frac{\zeta}{2(\zeta-1)^{2}}+\frac{\zeta}{4(\zeta+1)}+\frac{3 \zeta}{4(\zeta-1)},
\end{aligned}
$$

$$
\begin{aligned}
& x_{k}=\frac{5}{4}-\frac{1}{2} k-\frac{1}{4}(-1)^{k}, \\
& y_{k}=\frac{3}{4}+\frac{1}{2} k+\frac{1}{4}(-1)^{k},
\end{aligned}
$$

Given the following system of ODE:

$$
\left\{\begin{array}{l}
x^{\prime \prime}(t)-y(t)=-1 \\
y^{\prime}(t)-x(t)=-t \\
x(0)=0, \quad y(0)=1, \quad x^{\prime}(0)=A
\end{array}\right.
$$

Compute constant A in such a way $x(1)=1$.
Laplace transform:

$$
\left\{\begin{aligned}
s^{2} x(s)-A-y(s) & =-\frac{1}{s} \\
s y(s)-1-x(s) & =-\frac{1}{s^{2}}
\end{aligned}\right.
$$

Solution in s :

$$
\left\{\begin{array}{l}
x(s)=\frac{A s^{3}-1}{s^{2}\left(s^{3}-1\right)}=\frac{1}{3} \frac{A-1}{s-1}+\frac{1}{3} \frac{s(1-A)+A-1}{s^{2}+s+1}+\frac{1}{s^{2}} \\
y(s)=\frac{s^{3}+(A-1) s-1}{s\left(s^{3}-1\right)}=\frac{1}{3} \frac{A-1}{s-1}+\frac{1}{s}+\frac{1}{3} \frac{(1-A) s-2 * A+2}{s^{2}+s+1}
\end{array}\right.
$$

Solution in t :

$$
\left\{\begin{array}{l}
x(t)=t+\frac{A-1}{3}\left(e^{t}+\left(\sqrt{3} \sin \frac{\sqrt{3} t}{2}-\cos \frac{\sqrt{3} t}{2}\right) e^{-t / 2}\right)=t \\
y(t)=1+\frac{A-1}{3}\left(e^{t}-\left(\sqrt{3} \sin \frac{\sqrt{3} t}{2}+\cos \frac{\sqrt{3} t}{2}\right) e^{-t / 2}\right)=1
\end{array}\right.
$$

Constant A

$$
A=1
$$

