Computational Methods for Mechatronics [140466] - 2015, February 13
\square Name \square MAT. NUMBER \square

Signature \qquad

1

Compute the control for the following optimal control problem

$$
\left\{\begin{array}{l}
\text { Minimize: } \quad \int_{0}^{1} x(t)^{2}+u(t)^{2} \mathrm{~d} t \\
\text { Integral constraint: } \quad \int_{0}^{1} t+x(t) \mathrm{d} t=0 \\
x^{\prime}(t)=x(t)+y(t) \\
y^{\prime}(t)=u(t) \\
x(0)=0, \quad x(1)=0, \quad-1 \leq u(t) \leq 1
\end{array}\right.
$$

The Boundary Value Problem (BVP):

The optimal control u as a function of states and multiplier (Pontryagin):

Compute the control for the following free time optimal control problem

$$
\left\{\begin{array}{l}
\text { Minimize: } \quad \int_{0}^{T} u(t)^{2}+x(t)^{2} \mathrm{~d} t \\
x^{\prime}(t)=y(t)+u(t) \\
y^{\prime}(t)=x(t)-u(t) \\
x(0)=0, \quad x(T)=1, \quad y(0)=0
\end{array}\right.
$$

Suggention: First make a change of variable to eliminate the free time T and transform to problem to a fixed boundary problem.

The transformed OCP with fixed boundary:

The Boundary Value Problem (BVP):

The optimal control u as a function of states and multiplier (Pontryagin):

Study the following constrained minimization problem.

$$
\operatorname{minimize} \quad f(x, y, z)=x^{2}+x+y z, \quad z-y+1=0, \quad z \geq 2,
$$

KKT system of first order condition:
$\left\{\begin{aligned} 2 x+1 & =0 \\ z+\lambda & =0 \\ y-\lambda-\mu & =0 \\ z-y+1 & =0 \\ \mu(z-2) & =0 \\ \mu & \geq 0\end{aligned}\right.$

Solutions of KKT system:

$$
\left\{\begin{array}{l}
x=-1 / 2, y=3, z=2, \lambda=-2, \mu=5 \\
x=-1 / 2, y=1 / 2, z=-1 / 2, \lambda=1 / 2, \mu=0
\end{array}\right.
$$

Solve the following recurrence

$$
\begin{array}{ll}
x_{k+1}=x_{k}-k, & x_{0}=1 \\
y_{k+1}=x_{k}+y_{k}+1, & y_{0}=1
\end{array}
$$

\mathcal{Z}-transform:

$$
\begin{aligned}
& \zeta x(\zeta)-\zeta=x(\zeta)-\zeta /(\zeta-1)^{2} \\
& \zeta y(\zeta)-\zeta=x(\zeta)+\zeta /(\zeta-1)^{2}
\end{aligned}
$$

Solution in \mathcal{Z} :
$x(\zeta)=\frac{\zeta^{2}(\zeta-2)}{(\zeta-1)^{3}}=\frac{\zeta}{\zeta-1}-\frac{\zeta}{(\zeta-1)^{3}}$,
$y(\zeta)=\frac{\zeta^{2}\left(\zeta^{2}-\zeta-1\right)}{(\zeta-1)^{4}}=\frac{\zeta}{\zeta-1}+\frac{2 \zeta}{(\zeta-1)^{2}}-\frac{\zeta}{(\zeta-1)^{4}}$,

Solution in k

$$
\begin{aligned}
& x_{k}=1-\frac{1}{2} k(k-1), \\
& y_{k}=1+2 k-\binom{k}{3}=1+\frac{5}{3} k+\frac{k^{2}}{2}-\frac{k^{3}}{6},
\end{aligned}
$$

Given the following system of ODE:

$$
\left\{\begin{array}{l}
x^{\prime \prime}(t)+x(t)=t \\
y^{\prime}(t)-x(t)-y(t)=-t \\
x(0)=0, \quad y(0)=1, \quad x^{\prime}(0)=A
\end{array}\right.
$$

Compute constant A in such a way $x(1)=1$.
Laplace transform:

$$
\left\{\begin{aligned}
s^{2} x(s)-A+x(s) & =\frac{1}{s} \\
s y(s)-1-x(s) & =-\frac{1}{s^{2}}
\end{aligned}\right.
$$

Solution in s :

$$
\left\{\begin{array}{l}
x(s)=\frac{A s^{2}+1}{s^{2}\left(s^{2}+1\right)}=\frac{1}{s^{2}}+\frac{A-1}{s^{2}+1} \\
y(s)=\frac{A+s^{2}}{s^{3}-s^{2}+s-1}=\frac{A+s^{2}}{(s-1)\left(s^{2}+1\right)}=\frac{A+1}{2(s-1)}+\frac{(1-A)(1+s)}{2\left(s^{2}+1\right)}
\end{array}\right.
$$

Solution in t :

$$
\left\{\begin{array}{l}
x(t)=t+(A-1) \sin t=t \\
y(t)=\frac{A+1}{2} e^{t}-\frac{A-1}{2}(\cos t+\sin t)=e^{t}
\end{array}\right.
$$

Constant A

$$
A=1
$$

