Computational Methods for Mechatronics [140466] - 2015, June 8
Surname \square Name \qquad MAT. NUMBER \square

Signature \qquad

1

Compute the control (as a function of states and co-states) for the following optimal control problem

$$
\left\{\begin{array}{l}
\text { Minimize: } \quad \int_{0}^{1} x(t)^{2}+y(t)^{2} \mathrm{~d} t \\
\text { Integral constraint: } \quad \int_{0}^{1} x(t)^{2} \mathrm{~d} t=1 \\
x^{\prime}(t)=y(t) \\
y^{\prime}(t)=x(t)+u(t) \\
x(0)=0, \quad x(1)=0, \quad 0 \leq u(t) \leq 1
\end{array}\right.
$$

The Boundary Value Problem (BVP):

The optimal control $u(t)$:

Compute the control (as a function of states and co-states) for the following free time optimal control problem

$$
\left\{\begin{array}{l}
\text { Minimize: } \quad \int_{0}^{T} u(t)^{2} \mathrm{~d} t \\
x^{\prime}(t)=y(t)+u(t) \\
y^{\prime}(t)=x(t) \\
x(0)=0, \quad x(T)=1, \quad y(0)=0
\end{array}\right.
$$

The transformed (OCP):

The Boundary Value Problem (BVP):

The optimal control $u(t)$:

Study the following constrained minimization problem.

$$
\operatorname{minimize} \quad f(x, y, z)=x y^{2}+z, \quad z+y+x=1, \quad x \leq 3,
$$

KKT system of first order condition:

$$
\left\{\begin{aligned}
y^{2}-\lambda+\mu & =0 \\
2 x y-\lambda & =0 \\
-\lambda+1 & =0 \\
z+y+x-1 & =0 \\
(3-x) \mu & =0
\end{aligned}\right.
$$

Solutions of KKT system:

$$
\left\{\begin{array}{l}
x=1 / 2, y=1, z=-1 / 2, \lambda=1, \mu=0 \\
x=-1 / 2, y=-1, z=5 / 2, \lambda=1, \mu=0 \\
x=3, y=1 / 6, z=-13 / 6, \lambda=1, \mu=35 / 36
\end{array}\right.
$$

Discussion of the stationary point: $x=3, y=1 / 6, z=-13 / 6, \lambda=1, \mu=35 / 36$.

Solve the following recurrence

$$
x_{k+2}=2 x_{k+1}-x_{k}+k, \quad x_{0}=1, \quad x_{1}=0
$$

\mathcal{Z}-transform:

$$
\zeta^{2}(x(\zeta)-1)=2 \zeta(x(\zeta)-1)-x(\zeta)+\zeta /(\zeta-1)^{2}
$$

Solution in \mathcal{Z} :
$x(\zeta)=\zeta \frac{\zeta^{3}-4 \zeta^{2}+5 \zeta-1}{(\zeta-1)^{4}}$

Solution in k
$x_{k}=\frac{1}{6}(k-1)\left(k^{2}-2 k-6\right)$

Given the following system of ODE:

$$
\left\{\begin{array}{l}
x^{\prime \prime}(t)+y^{\prime}(t)=-1 \\
y^{\prime}(t)-x^{\prime}(t)=-2 \\
x(0)=0, \quad y(0)=0, \quad x^{\prime}(0)=A
\end{array}\right.
$$

Compute constant A in such a way $x(1)=1$.
Laplace transform:

$$
\left\{\begin{aligned}
s^{2} x(s)-A+s y(s) & =-1 / s \\
s y(s)-s x(s) & =-2 / s
\end{aligned}\right.
$$

Solution in s :

$$
\left\{\begin{array}{l}
x(s)=\frac{A s+1}{s^{2}(s+1)}=\frac{A-1}{s}+\frac{1-A}{s+1}+\frac{1}{s^{2}} \\
y(s)=\frac{A s-2 s-1}{s^{2}(s+1)}=\frac{A-1}{s}+\frac{1-A}{s+1}-\frac{1}{s^{2}}
\end{array}\right.
$$

Constant A

$$
A=1
$$

Solution in t :

$$
\left\{\begin{array}{l}
x(t)=-1+A+t-\exp (-t)(A-1)=t \\
y(t)=-1+A-t-\exp (-t)(A-1)=-t
\end{array}\right.
$$

