Computational Methods for Mechatronics [140466] — 2015, July 6

\square Name \qquad MAT. NUMBER \square

Signature \qquad

1

Compute the control (as a function of states and co-states) for the following optimal control problem

$$
\left\{\begin{array}{l}
\text { Minimize: } \quad \int_{0}^{1} x(t) y(t) \mathrm{d} t \\
\text { Integral constraint: } \quad \int_{0}^{1} x(t)^{2}+y(t) \mathrm{d} t=1 \\
x^{\prime}(t)=x(t)-y(t) \\
y^{\prime}(t)=x(t)+u(t) \\
x(0)=0, \quad x(1)=0, \quad 0 \leq u(t) \leq 1
\end{array}\right.
$$

The Boundary Value Problem (BVP):

The optimal control $u(t)$:

Compute the control (as a function of states and co-states) for the following free time optimal control problem

$$
\left\{\begin{array}{l}
\text { Minimize: } \quad \int_{0}^{T}\left(x(t)^{2}+1\right) u(t)^{2} \mathrm{~d} t \\
x^{\prime}(t)=x(t)+u(t) \\
y^{\prime}(t)=x(t) \\
x(0)=0, \quad x(T)=1, \quad y(0)=0
\end{array}\right.
$$

The transformed (OCP):

The Boundary Value Problem (BVP):

The optimal control $u(t)$:

Study the following constrained minimization problem.

$$
\operatorname{minimize} \quad f(x, y, z)=x+y^{2}+z, \quad x z+x=1, \quad z+3 \geq 0
$$

KKT system of first order condition:

$$
\left\{\begin{array}{r}
1-(z+1) \lambda=0 \\
2 y=0 \\
1-\lambda x-\mu=0 \\
x z+x-1=0 \\
(3+z) \mu=0
\end{array}\right.
$$

Solutions of KKT system:

$$
\left\{\begin{array}{l}
x=-1 / 2, y=0, z=-3, \lambda=-1 / 2, \mu=3 / 4 \\
x=1, y=0, z=0, \lambda=1, \mu=0 \\
x=-1, y=0, z=-2, \lambda=-1, \mu=0
\end{array}\right.
$$

Solve the following recurrence

$$
x_{k+2}=x_{k+1}+2 x_{k}+k, \quad x_{0}=1, \quad x_{1}=0
$$

\mathcal{Z}-transform:
$\zeta^{2}(x(\zeta)-1)=\zeta x(\zeta)-\zeta+2 x(\zeta)+\frac{\zeta}{(\zeta-1)^{2}}$

Solution in \mathcal{Z} :
$x(\zeta)=\frac{\zeta^{2}\left(\zeta^{2}-3 \zeta+3\right)}{(\zeta-1)^{2}(\zeta+1)(\zeta-2)}$

Solution in k
$x_{k}=\frac{1}{3} 2^{k+1}+\frac{7}{12}(-1)^{k}-\frac{1}{4}-\frac{k}{2}$

Given the following system of ODE:

$$
\left\{\begin{array}{l}
x^{\prime \prime}(t)+y^{\prime}(t)=2 t \\
y^{\prime}(t)+x^{\prime}(t)=2 t+1 \\
x(0)=0, \quad y(0)=0, \quad x^{\prime}(0)=A
\end{array}\right.
$$

Compute constant A in such a way $x(1)=1$.
Laplace transform:

$$
\left\{\begin{aligned}
s^{2} x(s)-A+s y(s) & =\frac{2}{s^{2}} \\
s y(s)+s x(s) & =\frac{s+2}{s^{2}}
\end{aligned}\right.
$$

Solution in s :

$$
\left\{\begin{array}{l}
x(s)=\frac{A s-1}{s^{2}(s-1)}=\frac{1-A}{s}+\frac{A-1}{s-1}+\frac{1}{s^{2}} \\
y(s)=\frac{(1-A) s^{2}+2 s-2}{s^{3}(s-1)}=\frac{A-1}{s}+\frac{1-A}{s-1}+\frac{2}{s^{3}},
\end{array}\right.
$$

Constant A

$$
A=1
$$

Solution in t :

$$
\left\{\begin{array}{l}
x(t)=1+t-A+\exp (-t)(A-1)=t \\
y(t)=t^{2}-1+A-\exp (-t)(A-1)=t^{2}
\end{array}\right.
$$

