Computational Methods for Mechatronics [140466] — 2016, January 13
\square Name \square MAT. NUMBER \square

Signature \qquad

1

Compute the control (as a function of states and co-states) for the following optimal control problem

$$
\left\{\begin{array}{l}
\text { Minimize: } \quad \int_{0}^{1} x(t)^{2}-y(t) \mathrm{d} t \\
\text { Integral constraint: } \quad \int_{0}^{1} x(t) \mathrm{d} t=1 \\
x^{\prime}(t)=x(t)-y(t) \\
y^{\prime}(t)=x(t)+y(t) u(t) \\
x(0)=0, \quad y(1)=0, \quad-1 \leq u(t) \leq 10
\end{array}\right.
$$

The Boundary Value Problem (BVP):

The optimal control $u(t)$:

Compute the control (as a function of states and co-states) for the following free time optimal control problem

$$
\left\{\begin{array}{l}
\text { Minimize: } \quad \int_{0}^{T}\left(x(t)^{2}+1\right) u(t)^{2} \mathrm{~d} t \\
x^{\prime}(t)=y(t)+u(t) \\
y^{\prime}(t)=x(t) \\
x(0)=0, \quad y(0)=0, \quad y(T)=1,
\end{array}\right.
$$

The transformed (OCP):

The Boundary Value Problem (BVP):

The optimal control $u(t)$:

Study the following constrained minimization problem.

$$
\operatorname{minimize} \quad f(x, y, z)=x^{2}-y+z, \quad y-x z=1, \quad z+1 \geq 0
$$

KKT system of first order condition:
\square

Solve the following recurrence

$$
x_{k+2}=x_{k}-k(k-1), \quad x_{0}=1, \quad x_{1}=0
$$

\mathcal{Z}-transform:

Solution in \mathcal{Z} :

Solution in k

Given the following system of ODE:

$$
\left\{\begin{array}{l}
x^{\prime \prime}(t)+y^{\prime}(t)=e^{t}+t e^{t} \\
y^{\prime}(t)+x^{\prime}(t)=1+e^{t}+t e^{t} \\
x(0)=0, \quad y(0)=0, \quad x^{\prime}(0)=A
\end{array}\right.
$$

Compute constant A in such a way $x(1)=1$.
Laplace transform:

Solution in s :

Constant A

Solution in t :

