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First and Second order condition for unconstrained minimization

The problem (1/3)

Given the function: Rn → R:

minimize
x∈Rn

f(x)

the following regularity condition are assumed from now and forward:

Assumption (Regularity conditions)

The functione f ∈ C1(Rn) has Lipschitz continuos gradient, i.e. exists
γ > 0 such that∥∥∇f(x)T −∇f(y)T

∥∥ ≤ γ ‖x− y‖ , ∀x,y ∈ Rn

Constrained Minimization 3 / 92



First and Second order condition for unconstrained minimization

The problem (2/3)

Definition (Global minimum)

Giving a function f : Rn → R a point x∗ ∈ Rn ia a global minimum if

f(x∗) ≤ f(x), ∀x ∈ Rn.

Definition (Local minimum)

Giving a function f : Rn → R a point x∗ ∈ Rn is a local minimum if

f(x∗) ≤ f(x), ∀x ∈ B(x∗; δ).

Obviously a global minimum is also a local minimum. The search of a
global minimum is in general a difficult task.
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First and Second order condition for unconstrained minimization

The problem (3/3)

Definition (Strict global minimum)

Given a function f : Rn → R a point x∗ ∈ Rn is a strict global
minimum if

f(x∗) < f(x), ∀x ∈ Rn \ {x∗}.

Definition (Strict local minimum)

Given a function f : Rn → R a point x∗ ∈ Rn is a strict local minimum
if

f(x∗) < f(x), ∀x ∈ B(x∗; δ) \ {x∗}.

Obviously a strict global minimum is also a strict local minimum.
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First and Second order condition for unconstrained minimization

First order necessary conditions

Lemma (First order necessary conditions)

Given a function f : Rn → R that satisfy the regularity conditions, if a
point x∗ ∈ Rn is local minimum point, then

∇f(x∗)T = 0.

Proof.

Let d e generic direction then for δ small enough

λ−1
(
f(x∗ + λd)− f(x∗)

)
≥ 0, 0 < λ < δ

and thus

lim
λ→0

λ−1
(
f(x∗ + λd)− f(x∗)

)
= ∇f(x∗)d ≥ 0,

cause d is a generic direction it follows ∇f(x∗)T = 0.

Constrained Minimization 6 / 92



First and Second order condition for unconstrained minimization

1 First order necessary condition do not distinguish maxima, minima or
saddle point.

2 To distinguish maxima and minima we need more informations, for
example second derivative of f(x).

3 With second order information it is possibile to build necessary
and/or sufficient condition to discriminate maxima and minima.

4 In general first and second order condition are not sufficient to set
both necessary and sufficient condition for a point x∗ to be a
maximum or minimum point.
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First and Second order condition for unconstrained minimization

Second order necessary conditions

Lemma (Second order necessary conditions)

Given a function f ∈ C2(Rn) if a point x∗ ∈ Rn is a local minimum then
∇f(x∗)T = 0 and ∇2f(x∗) is semi positive definite, i.e.

dT∇2f(x∗)d ≥ 0, ∀d ∈ Rn

Example

This condition is necessary but not sufficient, in fact, consider
f(x) = x 2

1 − x 3
2 ,

∇f(x) =
(
2x1,−3x 2

2

)
, ∇2f(x) =

(
2 0
0 −6x2

)
for the point x∗ = 0 the gradient is ∇f(0) = 0 and ∇2f(0) is semi
positive defined, but 0 is a saddle point not a minimum point.
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First and Second order condition for unconstrained minimization

Proof.

Condition ∇f(x∗)T = 0 follows from the first order necessary conditions.
Consider now a generic direction d and the finite difference:

f(x∗ + λd)− 2f(x∗) + f(x∗ − λd)

λ2
≥ 0

using Taylor series for f(x)

f(x∗ ± λd) = f(x∗)±∇f(x∗)λd+
λ2

2
dT∇2f(x∗)d+ o(λ2)

with the previous inequality

dT∇2f(x∗)d+ 2o(λ2)/λ2 ≥ 0

so that taking limits λ→ 0 from the arbitrariety of d follows that
∇2f(x∗) which must be semi-positive definite.
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First and Second order condition for unconstrained minimization

Second order sufficient conditions

Lemma (Second order sufficient conditions)

Given the function f ∈ C2(Rn) if a point x∗ ∈ Rn satisfy:

1 ∇f(x∗)T = 0;

2 ∇2f(x∗) is definite positive; i.e.

dT∇2f(x∗)d > 0, ∀d ∈ Rn \ {0}

then x∗ ∈ Rn is a strict local minimum.

Remark

Cause ∇2f(x∗) is symmetric we have

λmind
Td ≤ dT∇2f(x∗)d ≤ λmaxd

Td

If ∇2f(x∗) is positive definite then λmin > 0.
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First and Second order condition for unconstrained minimization

Proof.

Consider a generic direction d, and Taylor expansion for f(x)

f(x∗ + d) = f(x∗) +∇f(x∗)d+
1

2
dT∇2f(x∗)d+ o(‖d‖2)

≥ f(x∗) +
1

2
λmin ‖d‖2 + o(‖d‖2)

≥ f(x∗) +
1

2
λmin ‖d‖2

(
1 + o(‖d‖2)/ ‖d‖2

)
choosing d small enough

f(x∗ + d) ≥ f(x∗) +
1

4
λmin ‖d‖2 > f(x∗), d 6= 0, ‖d‖ ≤ δ.

i.e. x∗ is a strict minimum.
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Lagrange multiplier theorem

Constrained minimization
Problem

Let be f ∈ C2(Rn) a function and hk ∈ C2(Rn) constraints functions
with k = 1, 2, . . . ,m.

Problem

Minimize f(x)

With constraints: hk(x) = 0, k = 1, 2, . . . ,m
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Lagrange multiplier theorem

Theorem (of Lagrange multiplier)

Let f ∈ C2(Rn) and h ∈ C2(Rn,Rm) a constraints map. Let x∗ a local
mininum of f(x) which satisfy the constraints (i.e.h(x∗) = 0). If
∇h(x∗) has maximum rank then there exists m scalar λk such that

∇f(x∗)−
m∑
k=1

λk∇hk(x∗) = 0T (A)

moreover for all z ∈ Rn that satisfy ∇h(x∗)z = 0 the following
inequality is true

zT

(
∇2f(x∗)−

m∑
k=1

λk∇2hk(x
∗)

)
z ≥ 0 (B)

in other words the matrix ∇2
x

(
f(x∗)− λ · h(x∗)

)
is semi-positive

definite in the kernel of ∇h(x∗).
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Lagrange multiplier theorem

Proof (1/12)

If x∗ is a local minimum then there exists ε > 0 such that

f(x∗) ≤ f(x), ∀x tale che: x ∈ B ed h(x) = 0

where B = {x | ‖x− x∗‖ ≤ ε}. Consider the function sequence

fk(x) = f(x) + k ‖h(x)‖2 + α ‖x− x∗‖2 , α > 0

and the sequence of local minimum (unconstrained) in B:

fk(xk) = min
x∈B

fk(x)

theorem will be proved using the condition for unconstrained minimum
and using the limit xk → x∗.
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Lagrange multiplier theorem

Proof (2/12)
Step 1: the limit of the sequence xk → x̄ lie on the constraint

Cause the sequence xk is contained in the compact ball B then exist a
sub-sequence converging xkj → x̄ ∈ B. To simplify notation and proof
we assume that xk → x̄ ∈ B. From the definition of xk

fk(xk) ≤ fk(x∗) = f(x∗) + k ‖h(x∗)‖2 + α ‖x∗ − x∗‖2 = f(x∗)

moreover

fk(xk) = f(xk) + k ‖h(xk)‖2 + α ‖xk − x∗‖2 ≤ f(x∗)

per cui avremo

k ‖h(xk)‖2 + α ‖xk − x∗‖2 ≤ f(x∗)−min
x∈B

f(x) = C < +∞

and thus

lim
k→∞

‖h(xk)‖2 = 0

and from continuity ‖h(x̄)‖ = 0
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Lagrange multiplier theorem

Proof (3/12)
Step 2: the limit of sequence xk is x∗

Consider

fk(xk) = f(xk) + k ‖h(xk)‖2 + α ‖xk − x∗‖2 ≤ f(x∗)

that imply

α ‖xk − x∗‖2 ≤ f(x∗)− f(xk)− k ‖h(xk)‖2 ≤ f(x∗)− f(xk)

taking the limit for k →∞ and using norm continuity

lim
k→∞

α ‖xk − x∗‖2 ≤ α ‖x̄− x∗‖2 ≤ f(x∗)− f(x̄)

cause ‖h(x̄)‖ = 0 and that x∗ is a minimum in B that satisfy constraint
it follows

α ‖x̄− x∗‖2 ≤ f(x∗)− f(x̄) ≤ 0

i.e. x̄ = x∗.
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Lagrange multiplier theorem

Proof (4/12)
Step 3: Lagrange multiplier construction

Cause xk are unconstrained local minimum for fk(x) then

∇fk(xk) = ∇f(xk) + k∇‖h(xk)‖2 + α∇‖xk − x∗‖2 = 0

remember

∇‖x‖2 = ∇(x · x) = 2xT ,

∇‖h(x)‖2 = ∇(h(x) · h(x)) = 2h(x)T∇h(x)

which imply (using matrix transposition)

∇f(xk)
T + 2k∇h(xk)

Th(xk) + 2α(xk − x∗) = 0
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Lagrange multiplier theorem

Proof (5/12)
Step 3: Lagrange multiplier construction

Left multiply by ∇h(xk)

∇h(xk)∇f(xk)
T +2k∇h(xk)∇h(xk)

Th(xk)

+2α∇h(xk)(xk − x∗) = 0

cause ∇h(x∗) ∈ Rm×n is of maximum rank for large k by continuity all
∇h(xk) have maximum rank, thus ∇h(xk)∇h(xk)

T ∈ Rm×m are
square nonsingular and

2kh(xk) = −
(
∇h(xk)∇h(xk)

T
)−1∇h(xk)

[
∇f(xk)

T + 2α(xk − x∗)
]

for k →∞

lim
k→∞

2kh(xk) = −
(
∇h(x∗)∇h(x∗)T

)−1∇h(x∗)∇f(x∗)T
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Lagrange multiplier theorem

Proof (6/12)
Step 3: Lagrange multiplier construction

Defining limk→∞ 2kh(xk) = λ where

λ =
(
∇h(x∗)∇h(x∗)T

)−1∇h(x∗)∇f(x∗)T

and substituting in

∇f(xk)
T + 2k∇h(xk)

Th(xk) + 2α(xk − x∗) = 0

and for k →∞

∇f(x∗)T −∇h(x∗)Tλ = 0
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Lagrange multiplier theorem

Proof (7/12)
Passo 4: condizioni necessarie di minimo

Cause xk are unconstrained local minimum for fk(x) then matrices

∇2fk(xk)

are semi-positive definite, i.e.

zT∇2fk(xk)z ≥ 0, ∀z ∈ Rn

moreover

∇2fk(xk) = ∇2f(xk) + k∇2 ‖h(xk)‖2 + 2α∇(xk − x∗)

= ∇2f(xk)
T + k∇2

m∑
i=1

hi(xk)
2 + 2αI
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Lagrange multiplier theorem

Proof (8/12)
Step 4: necessary condition for a minimum

substituting

∇2hi(x)2 = ∇(2hi(x)∇hi(x)T )

= 2∇hi(x)T∇hi(x) + 2hi(x)∇2hi(x)

in the Hessian it follows

∇2fk(xk) = ∇2f(xk) + 2αI

+ 2k

m∑
i=1

∇hi(xk)T∇hi(xk)

+ 2k

m∑
i=1

hi(xk)∇2hi(xk)
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Lagrange multiplier theorem

Proof (9/12)
Step 4: necessary condition for a minimum

Let z ∈ Rn then 0 ≤ zT∇2fk(xk)z, i.e.

0 ≤ zT∇2f(xk)z +

m∑
i=1

(2khi(xk))z
T∇2hi(xk)z

+ 2α ‖z‖2 + 2k ‖∇h(xk)z‖2

Previous inequality is true for all z ∈ Rn and thus for all sequence zk.
Consider a generic sequence zk → z and take the limit for k →∞

0 ≤ zT∇2f(x∗)z + 2α ‖z‖2 + lim
k→∞

2k ‖∇h(xk)z‖2

+

m∑
i=1

lim
k→∞

(2khi(xk))
[
zT∇2hi(x

∗)z
]
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Lagrange multiplier theorem

Proof (10/12)
Step 4: necessary condition for a minimum

from limk→∞(2khi(xk)) = −λi it follows

0 ≤ zT∇2f(x∗)z + 2α ‖z‖2 −
m∑
i=1

λi
[
zT∇2hi(x

∗)z
]

+ lim
k→∞

2k ‖∇h(xk)zk‖2

if ∇h(xk)zk = 0 from α > 0 arbitrarily small

0 ≤ zT∇2f(x∗)z −
m∑
i=1

λi
[
zT∇2hi(x

∗)z
]

which is the relation searched.
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Lagrange multiplier theorem

Proof (11/12)
Step 4: necessary condition for a minimum

Consider zk as the projection of z in the Kernel of ∇h(xk), i.e.

zk = z −∇h(xk)
T
[
∇h(xk)∇h(xk)

T
]−1∇h(xk)z

indeed

∇h(xk)zk = ∇h(xk)z

−∇h(xk)∇h(xk)
T
[
∇h(xk)∇h(xk)

T
]−1∇h(xk)z

= ∇h(xk)z −∇h(xk)z = 0

It now remains to prove that limk→∞ zk = z if z is in the kernel of
∇h(x∗).
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Lagrange multiplier theorem

Proof (12/12)
Step 4: necessary condition for a minimum

Consider the limit

lim
k→∞

zk = z − lim
k→∞

∇h(xk)
T
[
∇h(xk)∇h(xk)

T
]−1∇h(xk)z

= z −∇h(x∗)T
[
∇h(x∗)∇h(x∗)T

]−1∇h(x∗)z

and, thus, if z in in the kernel of ∇h(x∗), i.e. ∇h(x∗)z = 0 it follows

lim
k→∞

zk = z

and this concludes the proof.
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First and second order condition for constrained minimum

First order necessary condition

f ∈ C1(Rn) function to be minimized

h ∈ C1(Rn,Rm) constraints map

h(x∗) = 0 and ∇h(x∗) is of maximum rank

If x∗ is a local minimum of f(x) then there exists m scalars λk such that

∇f(x∗) =

m∑
k=1

λk∇hi(x∗)

i.e. the gradient of the function is in the linear space generated by
gradient of the constraints:

∇f(x∗) ∈ span{∇h1(x∗),∇h2(x∗), . . . ,∇hm(x∗)}
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First and second order condition for constrained minimum

Second order necessary conditions

f ∈ C2(Rn) function to be minimized

h ∈ C2(Rn,Rm) constraints map

h(x∗) = 0 and ∇h(x∗) if of maximum rank

If x∗ is a local minimum of f(x) in addition to satisfy first order
necessary condition for all z ∈ Rn that satisfy ∇h(x∗)z = 0 the
following inequality must be true

zT

(
∇2f(x∗)−

m∑
k=1

λk∇2hk(x
∗)

)
z ≥ 0

in other words the matrix ∇2
x

(
f(x∗)− λ · h(x∗)

)
is semi-positive

definite in the Kernel of ∇h(x∗).
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First and second order condition for constrained minimum

Second order sufficient conditions

f ∈ C2(Rn) function to be minimized

h ∈ C2(Rn,Rm) constraints map

h(x∗) = 0 and ∇h(x∗) if of maximum rank

x∗ satisfy first order necessary conditions

If for all z ∈ Rn \ {0} that satisfy ∇h(x∗)z = 0 satisfy also

zT

(
∇2f(x∗)−

m∑
k=1

λk∇2hk(x
∗)

)
z > 0

Then x∗ is a local minimum. In other words if the matrix
∇2
x

(
f(x∗)− λ · h(x∗)

)
is positive definite in the Kernel of ∇h(x∗) then

x∗ is a local minimum.
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Lagrange multiplier practical usage

Lagrange multiplier practical usage

When you deal with a constrained minimization problem of the form:

minimize: f(x)

with constraints

h(x) = 0

behove define the Lagrangia

L(x,λ) = f(x)− λ · h(x)

such that the minimum/maximum point are stationary points of L(x,λ)

∇xL(x,λ) = ∇xf(x)− λT∇xh(x) = 0

∇λL(x,λ) = h(x) = 0
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Lagrange multiplier practical usage

Lagrange multiplier practical usage

Consider the pair (x,λ) that satisfy

∇xL(x,λ) = 0 ∇λL(x,λ) = 0

and the matrix

∇2
xL(x,λ) = ∇2

xf(x)−
m∑
k=1

λk∇2
xhk(x)

then, necessary and sufficient conditions for a local maximum/minimum
are the following: (next slide)
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Lagrange multiplier practical usage

Lagrange multiplier practical usage

If x is a local minimum point then ∇2
xL(x,λ) is semi-positive

definite in the Kernel of ∇h(x∗), i.e.

zT∇2
xL(x,λ)z ≥ 0, ∀z ∈ Ker{∇h(x∗)}

If x is a local maximum point then ∇2
xL(x,λ) is semi-positive

definite in the Kernel of ∇h(x∗), i.e

zT∇2
xL(x,λ)z ≤ 0, ∀z ∈ Ker{∇h(x∗)}

If ∇2
xL(x,λ) is positive definite in the Kernel of ∇h(x∗), i.e.

zT∇2
xL(x,λ)z > 0, ∀z ∈ Ker{∇h(x∗)} \ {0}

then x is a local minimum point. Similarly if ∇2
xL(x,λ) is positive

definite in the Kernel of ∇h(x∗), i.e.

zT∇2
xL(x,λ)z < 0, ∀z ∈ Ker{∇h(x∗)} \ {0}

then x is a local maximum point.
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Lagrange multiplier practical usage

Example (1/5)

Find minimum and maximum point of the function

f(x, y) = ex
2−y2

with constraint

h(x, y) = x− y2

build the Lagrangian

L(x, y, λ) = ex
2−y2 − λ(x− y2)

the stationary points satisfy

∇xL(x, y, λ) = 2xex
2−y2 − λ = 0

∇yL(x, y, λ) = −2 yex
2−y2 + 2λ y = 0

∇λL(x, y, λ) = −x+ y2 = 0
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Lagrange multiplier practical usage

Example (2/5)

the stationary points are:

x y λ

0 0 0
1
2

1√
2

e−
1
4

1
2 − 1√

2
e−

1
4

and the gradient of the constraints

∇h(x, y) =
(
1,−2y

)
while Hessian is

∇2
(x,y)L =

(
(4x2 + 2)ex

2−y2 −4x y ex
2−y2

−4x yex
2−y2 (4y2 − 2)ex

2−y2 + 2λ

)
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Lagrange multiplier practical usage

Example (3/5)

First point x = y = λ = 0:

∇h(0, 0) =
(
1, 0
)

∇2
(x,y)L(0, 0, 0) =

(
2 0
0 −2

)
the vectors in the nel kernel of ∇h(0, 0) satisfy:

∇h(0, 0)

(
z1
z2

)
= z1 = 0

and thus are of the form zT = [0, α]

(
0 α

)(2 0
0 −2

)(
0
α

)
= −2α2 < 0

and the point is a local maximum.
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Lagrange multiplier practical usage

Example (4/5)

Second point x = 1
2 , y = 1√

2
and λ = e−

1
4

∇h
(

1

2
,

1√
2

)
=
(
1 −

√
2
)

∇2
(x,y)L

(
1

2
,

1√
2
, e−

1
4

)
= e−1/4

(
3 −

√
2

−
√

2 2

)
the vectors in the kernel of ∇h(0, 0) satisfy:

∇h(0, 0)

(
z1
z2

)
= z1 −

√
2 z2 = 0

and thus are of the form zT = [α
√

2, α]

e−1/4
(
α
√

2 α
)( 3 −

√
2

−
√

2 2

)(
α
√

2
α

)
= 4e−

1
2α2 > 0

and are local minimum points.
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Lagrange multiplier practical usage

Example (5/5)

Second point x = 1
2 , y = − 1√

2
and λ = e−

1
4

∇h
(

1

2
,− 1√

2

)
=
(
1
√

2
)

∇2
(x,y)L

(
1

2
,− 1√

2
, e−

1
4

)
= e−1/4

(
3
√

2√
2 2

)
the vector in the kernel of ∇h(0, 0) satisfy:

∇h(0, 0)

(
z1
z2

)
= z1 +

√
2 z2 = 0

and thus are of the form zT = [α
√

2,−α]

e−1/4
(
α
√

2 −α
)( 3

√
2√

2 2

)(
α
√

2
−α

)
= 4e−

1
2α2 > 0

and thus is a local minimum.
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Inequality constraints transformation

Karush-Kuhn-Tucker optimality conditions (1/8)

Add auxiliary variable εk for each inequality to the problem

Minimize f(x)

With constraints hk(x) = 0, k = 1, 2, . . . ,m

gk(x) ≥ 0, k = 1, 2, . . . , p

is thus transformed in the following minimization problem

Minimize F(y) = F(x, ε) = f(x)

With constraints Hk(y) = 0, k = 1, 2, . . . ,m+ p

where

F(y) = F(x, ε) = f(x)

Hk(y) = Hk(x, ε) =

{
hk(x) per k ≤ m
gk−m(x)− 1

2ε
2
k−m per k > m
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Inequality constraints transformation

Karush-Kuhn-Tucker optimality conditions (2/8)

Given the problem

Minimizzare F(y)

Con vincoli Hk(y) = 0, k = 1, 2, . . . ,m+ p

characterization of maximum/minimum points are obtained using
previously developed condition using Lagrange multiplier.

Using peculiar structure of the problem this condition can be rewritten
without the explicit use of the slack variables (the εk)

This conditions are called KKT conditions (Karush-Kuhn-Tucker)
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Inequality constraints transformation

Karush-Kuhn-Tucker optimality conditions (3/8)

First order conditions:
From the Lagrangian

L(x, ε,λ,µ) = f(x)−
m∑
k=1

λkhk(x)−
p∑

k=1

µk

(
gk(x)− 1

2
ε2k

)
null gradient becomes

∇xL(x, ε,λ,µ) = ∇f(x)−
m∑
k=1

λk∇hk(x)−
p∑

k=1

µk∇gk(x)

∇εL(x, ε,λ,µ) =

µ1 . . .

µp


ε1...
εp


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Inequality constraints transformation

Karush-Kuhn-Tucker optimality conditions (4/8)

Observing that 1
2ε

2
k = gk(x) condition become

∇f(x) =

m∑
k=1

λk∇hk(x) +

p∑
k=1

µk∇gk(x)

0 = µkgk(x)

moreover the Hessian is

∇2
xL(x, ε,λ,µ) = ∇2f(x)−

m∑
k=1

λk∇2hk(x)−
p∑

k=1

µk∇2gk(x)
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Inequality constraints transformation

Karush-Kuhn-Tucker optimality conditions (5/8)

Evaluating Hessian respect to x and ε

∇2
εL(x, ε,λ,µ) =

µ1 . . .

µp

 = M

∇x∇εL(x, ε,λ,µ) = 0

and thus

∇2
(x,ε)L(x, ε,λ,µ) =

(
∇2
xL 0
0 M

)
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Inequality constraints transformation

Karush-Kuhn-Tucker optimality conditions (6/8)

Evaluating gradient of constraints respect to x, ε

∂H(x, ε)

∂(x, ε)
=

(
∇h(x) 0
∇g(x) −E

)
where

E =

ε1 . . .

εp


The admissible direction are the vectors (z,w) such that(

∇h(x) 0
∇g(x) −E

)(
z
w

)
=

(
0
0

)
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Inequality constraints transformation

Karush-Kuhn-Tucker optimality conditions (7/8)

Necessary conditions becomes

zT∇2
xLz +

p∑
k=1

µkw
2
k ≥ 0

for all z and w such that

∇h(x)z = 0

∇g(x)z = Ew
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Inequality constraints transformation

Karush-Kuhn-Tucker optimality conditions (8/8)

Active constraints are the constraints for k ∈ A(x) i.e. gk(x) = 0 where
εk = 0 and thus wk can assume any values without modify z. Thus
using z = 0 and choosing (w)i = [δik]

0T
(
∇2
xL
)
0 + µkw

2
k ≥ 0 µk ≥ 0

∇gk(x)z = 0

For inactive constraints i.e. k 6∈ A(x) or gk(x) > 0 the values εk 6= 0
and from first order conditions µk = 0. Thus, wk can assume any values
without modify quadratic form, and

∇gk(x)z = εkwk

can assume any values.
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Karush-Kuhn-Tucker conditions

Constrained minimization
Problem

Let be f ∈ C2(Rn) a function and gk ∈ C2(Rn) (k = 1, 2, . . . , p) and
hk ∈ C2(Rn) (k = 1, 2, . . . ,m) constraints.

Problem

Minimize f(x)

With constraints: gk(x) ≥ 0, k = 1, 2, . . . , p

hk(x) = 0, k = 1, 2, . . . ,m
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Karush-Kuhn-Tucker conditions

First order Karush-Kuhn-Tucker conditions

Theorem (F.John)

Let f ∈ C1(Rn) a function and g ∈ C1(Rn,Rp) with h ∈ C1(Rn,Rm)
some constraints. Necessary condition for x∗ be a local minimum is that
there exists m+ p+ 1 scalars (not all 0) such that the following
condition are satified

λ0∇f(x∗)−
p∑

k=1

µk∇gk(x∗)−
m∑
k=1

λk∇hk(x∗) = 0T

hk(x
∗) = 0, k = 1, 2, . . . ,m;

gk(x
∗) ≥ 0, k = 1, 2, . . . , p;

µkgk(x
∗) = 0, k = 1, 2, . . . , p;

µk ≥ 0, k = 1, 2, . . . , p;
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Karush-Kuhn-Tucker conditions

Definition (Constraint qualifications)

Let be g ∈ C2(Rn,Rp) inequality constraints and h ∈ C2(Rn,Rm)
equality contraints. The point x∗ is qualified if

gk(x
∗) = 0, k ∈ A(x∗);

gk(x
∗) > 0, k /∈ A(x∗);

moreover the vectors

{∇gk(x∗) : k ∈ A(x∗)} ∪ {∇h1(x
∗),∇h2(x

∗), . . . ,∇hm(x∗)}

are linearly independent.

Constrained Minimization 47 / 92



Karush-Kuhn-Tucker conditions

First order Karush-Kuhn-Tucker conditions

Theorem (First order KKT conditions)

Let f ∈ C1(Rn) a function and g ∈ C1(Rn,Rp) with h ∈ C1(Rn,Rm)
constraint maps. If x∗ satisfy constraint qualification then necessary
condition for x∗ be a local minima is that there exists m+ p scalars such
that the following conditions are satisfied

∇xL(x∗,λ∗,µ∗) = 0T

hk(x
∗) = 0, k = 1, 2, . . . ,m;

µ∗kgk(x
∗) = 0, k = 1, 2, . . . , p;

µ∗k ≥ 0, k = 1, 2, . . . , p;

where

L(x,λ,µ) = f(x)−
p∑

k=1

µk gk(x)−
m∑
k=1

λk hk(x)
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Karush-Kuhn-Tucker conditions

Second order Karush-Kuhn-Tucker conditions

Theorem (Second order KKT conditions)

Let f ∈ C1(Rn) a function and g ∈ C1(Rn,Rp) with h ∈ C1(Rn,Rm)
constraint maps. If x∗ satisfy constraint qualification then necessary
condition for x∗ be a local minima is that there exists m+ p scalars that
satisfy first order conditions, moreover

zT∇2
xL(x∗,λ∗,µ∗)z ≥ 0

for all z such that

∇hk(x∗)z = 0, k = 1, 2, . . . ,m

∇gk(x∗)z = 0, se k ∈ A(x∗)

Finally µk > 0 for all k ∈ A(x∗).
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Karush-Kuhn-Tucker conditions

Second order Karush-Kuhn-Tucker conditions

Theorem (Sufficient second order KKT conditions)

Let f ∈ C1(Rn) a function and g ∈ C1(Rn,Rp) with h ∈ C1(Rn,Rm)
constraint maps. If x∗ satisfy constraint qualification then necessary
condition for x∗ be a local minima is that there exists m+ p scalars that
satisfy first order conditions, moreover

zT∇2
xL(x∗,λ∗,µ∗)z > 0

for all z 6= 0 such that

∇hk(x∗)z = 0, k = 1, 2, . . . ,m

∇gk(x∗)z = 0, se k ∈ A(x∗)

Finally µk > 0 for all k ∈ A(x∗).
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Esempio di uso delle condizioni di Karush-Kuhn-Tucker

KKT usage example

Minimize

f(x, y) = x2 − xy

with constraints

g1(x, y) = 1− x2 − y2 ≥ 0

g2(x, y) = 1− (x− 1)2 − y2 ≥ 0
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Esempio di uso delle condizioni di Karush-Kuhn-Tucker

KKT usage example
Solution with constraints Activation/Deactivation (1/10)

Lagrangian

L(x, y, µ1, µ2) = x2 − xy

− µ1(1− x2 − y2)

− µ2(1− (x− 1)2 − y2)

gradient respect to (x, y)

∂L

∂x
= 2x− y + 2xµ1 + 2(x− 1)µ2

∂L

∂y
= −x+ 2y(µ1 + µ2)
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Esempio di uso delle condizioni di Karush-Kuhn-Tucker

KKT usage example
Solution with constraints Activation/Deactivation (2/10)

Search minima in the internal part of the domain (i.e. µ1 = µ2 = 0).
Must solve

0 = 2x− y

0 = −x

solution x = 0, y = 0. Check constraits

g1(0, 0) = 1 > 0

g2(0, 0) = 0 > 0

Then second constraints must be active, thus, solution must be
discarded.
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Esempio di uso delle condizioni di Karush-Kuhn-Tucker

KKT usage example
Solution with constraints Activation/Deactivation (3/10)

Activate first constraint only (i.e. µ2 = 0). Must solve

0 = 2x− y + 2xµ1

0 = −x+ 2yµ1

1 = x2 + y2

found 4 solutions

x y µ1

±1/2
√

2−
√

2 x
(
1 +
√

2
)

(
√

2− 1)/2

±1/2
√

2 +
√

2 x
(
1−
√

2
)
−(
√

2 + 1)/2

Soltion n.3 and n.4 must be discarded cause µ1 < 0.
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Esempio di uso delle condizioni di Karush-Kuhn-Tucker

KKT usage example
Solution with constraints Activation/Deactivation (4/10)

Check first 2 solution for the second constraint

g2(x1, y1) =

√
2−
√

2− 1 = −0.23 . . . < 0

g2(x2, y2) = −
√

2−
√

2− 1 = −1.76 . . . < 0

No one satisfy constraint, solutions must be discarded.
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Esempio di uso delle condizioni di Karush-Kuhn-Tucker

KKT usage example
Solution with constraints Activation/Deactivation (5/10)

Activate second constraint (i.e. µ1 = 0). Must solve

0 = 2x− y + 2(x− 1)µ2

0 = −x+ 2yµ2

1 = (x− 1)2 + y2

found 3 solutions

x y µ2

0 0 0

(5−
√

7)/4 (1 +
√

7)/4
√

7/2− 1

(5 +
√

7)/4 (1−
√

7)/4 −
√

7/2− 1

Solution n.3 must be discarded as µ2 < 0.

Constrained Minimization 56 / 92



Esempio di uso delle condizioni di Karush-Kuhn-Tucker

KKT usage example
Solution with constraints Activation/Deactivation (6/10)

check first 2 solution for second constraint

g2(x1, y1) = 1 > 0

g2(x2, y2) = (
√

7− 3)/2 = −0.177 . . . < 0

only the first satisfy constraint.
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Esempio di uso delle condizioni di Karush-Kuhn-Tucker

KKT usage example
Solution with constraints Activation/Deactivation (7/10)

Activate both contraint. Must solve

0 = 2x− y + 2xµ1 + 2(x− 1)µ2

0 = −x+ 2y(µ1 + µ2)

1 = x2 + y2

1 = (x− 1)2 + y2

found 2 solution

x y µ1 µ2

1/2
√

3/2 −1/2 + 1/
√

3 1/2− 1/(3
√

3)

1/2 −
√

3/2 −1/2− 1/
√

3 1/2 + 1/(3
√

3)
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Esempio di uso delle condizioni di Karush-Kuhn-Tucker

KKT usage example
Solution with constraints Activation/Deactivation (8/10)

The candidates which satisfy first order KKT conditions are:

x y µ1 µ2

0 0 0 (*) 0

1/2
√

3/2 −1/2 + 1/
√

3 1/2− 1/(3
√

3)

1/2 −
√

3/2 −1/2− 1/
√

3 1/2 + 1/(3
√

3)

now check second order conditions.
(*) constraint is active with null multiplier.
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Esempio di uso delle condizioni di Karush-Kuhn-Tucker

KKT usage example
Solution with constraints Activation/Deactivation (9/10)

gradient of the constraints and Hessian

∇g(x, y) =

(
2x 2y

2(x− 1) 2y

)

∇2
(x,y)L(x, y, µ1, µ2) =

(
2(1 + µ1 + µ2) −1

−1 2(µ1 + µ2)

)
For the first point the gradient of the active constraint:

∇g1(0, 0) = 0T

gradient is null, thus constraint is not qualified!. Cannot apply KKT
theorem.
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Esempio di uso delle condizioni di Karush-Kuhn-Tucker

KKT usage example
Solution with constraints Activation/Deactivation (10/10)

For the second point must solve (z1, z2) such that:(
1
√

3

−1
√

3

)(
z1
z2

)
=

(
0
0

)
i.e. z1 = z2 = 0. Thus the point satisfy necessary conditions for a
minimm but not sufficient condsitions.
For the third point must solve (z1, z2) such that:(

1 −
√

3

−1 −
√

3

)(
z1
z2

)
=

(
0
0

)
i.e. z1 = z2 = 0. Thus the point satisfy necessary conditions for a
minimm but not sufficient condsitions.
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Example of constrained minimization problems

Least squares solution of linear equations

Minimize

f(x) = xTx

With constraints

h(x) = Ax− b
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Example of constrained minimization problems

Kantorovich inequality

Minimize

f(x) = (xTAx)(xTA−1x)

With constraints

h(x) = xTx− 1

If A is symmetric ad positive definite

min f(x) =
(λmin + λmax)2

4λminλmax
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Example of constrained minimization problems

Simple circuit optimization
(Chong Zak problem)

Consider the circuit in figure. Voltage generator is 20V while R2 = 10Ω.
Resistor R1 is unknown and must be found to minimize power loss on
R1.

Massimize the power loss on
R1, i.e. minimize

f(R1, i) = −R1 i
2

With constraints

g(R1, i) = R1 ≥ 0

h(R1, i) = 20− (R1 + 10) i = 0

E1 R1

R2
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Example of constrained minimization problems

Massimizzazione di un volume

Let x, y, z width height and depth of a parallelepiped. Find the
dimension which maximize the volume when surface being equal to S.

Minimize

f(x, y, z) = −xyz

With constraints

h(x, y, z) = 2(xy + yz + xz)− S = 0

g1(x, y, z) = x ≥ 0

g2(x, y, z) = y ≥ 0

g3(x, y, z) = z ≥ 0
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Example of constrained minimization problems

links in a chain distributions

Consider a chain composed by n+ 1 links, fixed on the ceiling in (0, 0)
and (L, 0). Let (xk, yk) the points of contacts on the links inside the
chain. Compute the position of the mesh of the chain under gravity.

Minimize the potential energy

f(y) =

n−1∑
k=1

yk

with constraints
y0 = yn = 0,

x0 = 0, xn = L,

(xk − xk−1)2 + (yk − yk−1)2 = d2

d

L
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SPD matrices in a subspace

SPD matrices in a subspace

Verification of KKT conditions needs the verification that a matrix A is
positive definite in the kernel of another matrix B.
That is, we have the problem

Problem (constrained SPD)

Verify if the matrix A ∈ Rn×n is positive definite in the kernel of
B ∈ Rm×n (m < n), namely

xTAx > 0, ∀x 6= 0, such that Bx = 0

or if the matrix A is semi-positive definite in the kernel of B, namely

xTAx ≥ 0, ∀x, such that Bx = 0
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SPD matrices in a subspace

For the solution of the previous problem is necessary the following
theorem.

Theorem (Sylvester)

A symmetric matrix A is positive definite if and only if all of the
determinants of leading principal minors must be positive. In other words
let A and Dk a principal minor

A =


a11 a12 . . . a1n
a21 a22 . . . a2n

...
...

an1 an2 . . . ann

 , Dk =


a11 a12 . . . a1k
a21 a22 . . . a2k

...
...

ak1 ak2 . . . akk

 ,

then

A è SPD ⇔ |Dk| > 0, k = 1, 2, . . . , n
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SPD matrices in a subspace

For semi-SPD matrix it is true

xTAx+ εxTx > 0, ∀x 6= 0

and applying Sylvester theorem for A+ εI it follows that all of the
determinants of leading principal minors must be positive. One argue
that if all of the determinants of leading principal minors are
non-negative then the matrix A is semi-positive definite. This is false
and here is a counter example for the matrix P

P =

1 1 1
1 1 1
1 1 0

 ∣∣(1)∣∣ = 1,

∣∣∣∣(1 1
1 1

)∣∣∣∣ = 0,

∣∣∣∣∣∣
1 1 1

1 1 1
1 1 0

∣∣∣∣∣∣ = 0

ma per la matrice perturbata P + εI∣∣(1 + ε
)∣∣ = 1 + ε,

∣∣∣∣(1 + ε 1
1 1 + ε

)∣∣∣∣ = ε(2 + ε),

∣∣∣∣∣∣
1 + ε 1 1

1 1 + ε 1
1 1 ε

∣∣∣∣∣∣ = ε(2ε+ ε2 − 2) < 0 se ε <
√

3− 1
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SPD matrices in a subspace

The matrix

A =


3 2 1 1
2 3 0 1
1 0 3 2
1 1 1 3


is SPD, in fact

|(3)| = 3 > 0,

∣∣∣∣(3 2
2 3

)∣∣∣∣ = 5 > 0

∣∣∣∣∣∣
3 2 1

2 3 0
1 0 3

∣∣∣∣∣∣ = 12 > 0

∣∣∣∣∣∣∣∣


3 2 1 1
2 3 0 1
1 0 3 2
1 1 1 3


∣∣∣∣∣∣∣∣ = 24 > 0
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SPD matrices in a subspace

Let K ∈ Rn×p a matrix such that

1 BK = 0

2 If x is such that Bx = 0 then x = Kα for an appropriate α ∈ Rp

then

xTAx > 0, ∀x 6= 0, tale che Bx = 0

is equivalent to assert that matrix

KTAK

is positive definite. Analogously to check for semi-SPD.
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SPD matrices in a subspace

Example (1/4)

Consider the matrices

A =


3 0 3 1
0 3 0 0
3 0 3 0
1 0 0 1

 , B =

(
1 1 0 0
0 1 −1 1

)

Search the vectors v such that Bv = 0:

(
1 1 0 0
0 1 −1 1

)
v1
v2
v3
v4

 =

(
0
0

)

and the following linear relations are obtained

v1 + v2 = 0,

v2 − v3 + v4 = 0

Constrained Minimization 72 / 92



SPD matrices in a subspace

Example (2/4)

Searching non trivial solution of the homogeneous linear system

v1 + v2 = 0,

v2 − v3 + v4 = 0

and observing that v2 = −v1 we pose v1 = α and thus v2 = −α.
Substituting in the second equation

−α− v3 + v4 = 0

set v3 = β obtaining v4 = α+ β. Namely the vectors in the Kernel of B
are of the form 

α
−α
β

α+ β


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SPD matrices in a subspace

Example (3/4)

Writing previously relation a matrix-vector product
α
−α
β

α+ β

 =


1 0
−1 0
0 1
1 1

(αβ
)

and, thus

K =


1 0
−1 0
0 1
1 1


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SPD matrices in a subspace

Example (4/4)

Project the matrix A into the Kernel of K

KTAK =

(
1 −1 0 1
0 0 1

)
3 0 3 1
0 3 0 0
3 0 3 0
1 0 0 1




1 0
−1 0
0 1
1 1

 =

(
9 5
5 4

)

Applying the Sylvester’s criterium

|(9)| = 9 > 0,

∣∣∣∣(9 5
5 4

)∣∣∣∣ = 11 > 0,

namely, the matrix A is positive definite in the kernel of B. Observe
that the Sylvester’s criterium for A is not SPD! in general.
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SPD matrices in a subspace

Generale case

How to find the matrice K ∈ Rn×p for a generic matrix B ∈ Rm×n?

A simple way to build K is by using Gauss elimination.

Fro example after row and column elimination matrix B is in the form(
I Q

)
where I ∈ Rm×m and Q ∈ Rm×(n−m). Thus, the first m
components of the generic vector are given from the last components
taken as free parameters.
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SPD matrices in a subspace

Example (1/5)

Consider the matrix

B =


1 0 0 0 3 1 0
0 0 0 0 0 1 1
0 1 −1 0 1 1 −1
1 0 0 0 3 1 0


add a row of labels and start with Gauss elimination:

v1 v2 v3 v4 v5 v6 v7
1 0 0 0 3 1 0
0 0 0 0 0 1 1
0 1 −1 0 1 1 −1
1 0 0 0 3 1 0


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SPD matrices in a subspace

Example (2/5)

Delete 1 from the last row ([4]← [4]− [1])
v1 v2 v3 v4 v5 v6 v7
1 0 0 0 3 1 0
0 0 0 0 0 1 1
0 1 −1 0 1 1 −1
0 0 0 0 0 0 0


exchange second and third row ([2]↔ [3])

v1 v2 v3 v4 v5 v6 v7
1 0 0 0 3 1 0
0 1 −1 0 1 1 −1
0 0 0 0 0 1 1
0 0 0 0 0 0 0


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SPD matrices in a subspace

Example (3/5)

Exchange column 3 with column 6
v1 v2 v6 v4 v5 v3 v7
1 0 1 0 3 0 0
0 1 1 0 1 −1 −1
0 0 1 0 0 0 1
0 0 0 0 0 0 0


Delete 1 in third column from first and second row ([1]← [1]− [3] ed
[2]← [2]− [3] ) 

v1 v2 v6 v4 v5 v3 v7
1 0 0 0 3 0 −1
0 1 0 0 1 −1 −2
0 0 1 0 0 0 1
0 0 0 0 0 0 0


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SPD matrices in a subspace

Example (4/5)

From last matrix get the relations

v1 = 3v5 − v7

v2 = v5 − v3 − 2v7

v6 = v7

the free parameters are v3, v4, v5, v7. Set v3 = α, v4 = β, v5 = γ,
v7 = δ so that general solution is

v1 = 3γ − δ, v2 = γ − α− 2δ, v3 = α,

v4 = β, v5 = γ, v6 = δ, v7 = δ,
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SPD matrices in a subspace

Example (5/5)

The solution

v1 = 3γ − δ, v2 = γ − α− 2δ, v3 = α,

v4 = β, v5 = γ, v6 = δ, v7 = δ,

can be written ad matrix-vector product

v1
v2
v3
v4
v5
v6
v7


=



0 0 3 −1
−1 0 1 −2
1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1
0 0 0 1




α
β
γ
δ



and thus, matrix K is easily determined.
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Summary of main theorems

Here a summary of fundamental theorems for the characterization of
constrained minima are collected.

Definition (Ammissibile point)

A point x∗ is admissible if

hk(x
∗) = 0 k = 1, 2, . . . ,m

gk(x
∗) ≥ 0 k = 1, 2, . . . , p
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Summary of main theorems

Definition (active constraints)

The following set

A(x∗) = {k | gk(x∗) = 0}

is named active constraints set. This set can be split in two subsets

A+(x∗,µ∗) = {k | gk(x∗) = 0, µ∗k > 0}

A0(x∗,µ∗) = {k | gk(x∗) = 0, µ∗k = 0}

A+(x∗,µ∗) are the strongly active constraints e A0(x∗,µ∗) are the
weakly active constraints.

Obviously

A0(x∗,µ∗)
⋂

A+(x∗,µ∗) = ∅ and A0(x∗,µ∗)
⋃

A+(x∗,µ∗) = A(x∗)
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Summary of main theorems Constraints qualification

In the study of optimality condition the constraints and its gradients
cannot be arbitrary. They must satisfy additional analytic/geometric
properties. This properties are named constraints qualification. The
easiest qualification (but also compelling) is linear independence (LI)

Definition (Constraints qualification LI)

Given the inequality constraints g(x) and equality constraints h(x), we
will say than an admissible point x∗ is qualified if the vectors

{∇gk(x∗) : k ∈ A(x∗)} ∪ {∇h1(x∗),∇h2(x∗), . . . ,∇hm(x∗)}

are linearly independent.
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Mangasarian-Fromovitz qualification

This qualification is less stringent of the previous

Definition (Constraints qualification MF)

Given the inequality constraints g(x) and equality constraints h(x), we
will say than an admissible point x∗ is qualified if does not exists a linear
combination

m∑
k∈A(x∗)

αk∇gk(x∗) +

m∑
k=1

βk∇hk(x∗) = 0

with αk ≥ 0 for k ∈ A(x∗) and αk and βk not all zero. That is, there is
no non trivial linear combination for the null vector with αk ≥ 0 for
k ∈ A(x∗).
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Summary of main theorems Constraints qualification

Garth P. McCormick qualification

Definition (Constraints qualification (1 ordine))

Given an admissible point x∗ the constraints are first order qualified if
for all direction d that satisfy

∇hk(x∗)d = 0, k ∈ {1, 2, . . . ,m},

∇gk(x∗)d ≥ 0, k ∈ A(x∗),

exists a curve x ∈ C1(R,Rn) and an ε > 0 such that for 0 < t < ε.

x(0) = x∗, hk(x(t)) = 0, k ∈ {1, 2, . . . ,m},

x′(0) = d, gk(x(t)) ≥ 0, k ∈ {1, 2, . . . , p}.
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Garth P. McCormick qualification

Definition (Constraints qualification (2 ordine))

Given an admissible point x∗ the constraints are first order qualified if
for all direction d that satisfy

∇hk(x∗)d = 0, k ∈ {1, 2, . . . ,m},

∇gk(x∗)d = 0, k ∈ A(x∗),

exists a curve x ∈ C2(R,Rn) and an ε > 0 such that for 0 < t < ε.

x(0) = x∗, hk(x(t)) = 0, k ∈ {1, 2, . . . ,m},

x′(0) = d, gk(x(t)) = 0, k ∈ A(x∗).
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Summary of main theorems Constraints qualification

Theorem (First order KKT condition)

Let f ∈ C1(Rn) and g ∈ C1(Rn,Rp) with h ∈ C1(Rn,Rm) inequality
and equality constraints. If x∗ satisfy constraints qualification then
necessary condition for local minimum is that there exists m+ p scalars
such that

∇xL(x∗,λ∗,µ∗) = 0T

µ∗kgk(x
∗) = 0, k = 1, 2, . . . , p;

µ∗k ≥ 0, k = 1, 2, . . . , p;

where

L(x,λ,µ) = f(x)−
p∑

k=1

µk gk(x)−
m∑
k=1

λk hk(x)
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Summary of main theorems Constraints qualification

Theorem (Second order necessary KKT conditions)

Let f ∈ C2(Rn) and the constraints g ∈ C2(Rn,Rp) and
h ∈ C2(Rn,Rm). If x∗ satisfy constraints qualification, then necessary
condition for x∗ be a local minimum id that there exists m+ p scalars
that satisfy first order conditions and

dT∇2
xL(x∗,λ∗,µ∗)d ≥ 0

for all d such that

∇hk(x∗)d = 0, k = 1, 2, . . . ,m

∇gk(x∗)d = 0, se k ∈ A(x∗)

A more tighten condition:

∇gk(x∗)d = 0, se k ∈ A+(x∗)

∇gk(x∗)d ≥ 0, se k ∈ A0(x∗)
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Summary of main theorems Constraints qualification

Riassunto teoremi fondamentali

Theorem (Second order sufficient conditions by G.P.McCormick)

Let f ∈ C2(Rn) and the constraints g ∈ C2(Rn,Rp) and
h ∈ C2(Rn,Rm). A sufficient condition for x∗ be a local minimum id
that there exists m+ p scalars that satisfy first order conditions and

hj(x
∗) = 0, j = 1, 2, . . . ,m

gk(x
∗) ≥ 0, k = 1, 2, . . . , p

µkgk(x
∗) = 0, k = 1, 2, . . . , p

µk ≥ 0, k = 1, 2, . . . , p

∇xL(x∗,λ∗,µ∗) = 0

(continue...)
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Summary of fundamental theorem

Theorem (Second order sufficient conditions by G.P.McCormick)

(...continue)
moreover for all d 6= 0 such that

∇hk(x∗)d = 0, k = 1, 2, . . . ,m

∇gk(x∗)d = 0, se µk > 0

and

dT∇2
xL(x∗,λ∗,µ∗)d > 0

notice that constraint qualification is not necessary for sufficient
condition
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