Laplace Transform

Laplace Transform
(Computational Methods for Mechatronics [140466])

Enrico Bertolazzi

DIl - Dipartimento di Ingegneria Industriale — Universita di Trento

AA 2014/2015

1/31



@ La trasformata di Laplace

© Laplace Transform properties
@ Exponential order functions

© Some Laplace Transform
@ Polynomial growth Laplace Transform tFu(t)
@ Exponential growth Laplace Transform a®‘u(t)
@ Laplace Transform of derivative and integral of a function

@ Altre proprieta della trasformata di Laplace
@ Asymptotic values

© Laplace transform table

@ Laplace Transform, exercise

B

Laplace Transform 2/31



La trasformata di Laplace

- —_-__ CE
L 749-1827 =3
Pierre-Simon Laplace, 1749-1827 &
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La trasformata di Laplace
Laplace Transform

@ Definition

F(t) = f(s) = L{f(®)} ()
—~ S M
(s) = / " et dt = tm lim /_ F(e=t dt

- e—0+ M—+o0
@ Usefulness: transform
Differential equations = Algebraic equations
@ Logarithm analogy:
a — loga
a-b— loga+logb

i.e. logarithm convert products into additions which are easier
to manipulate. §
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La trasformata di Laplace

Laplace Transform as a tool for ODE solution

orfeenial ___g, | aplace Trasform ——p Asehreic

Analytical techniques Algebraic techniques
(constant variations, ...) (lienar system, partial fraction expansion,...)

nme  4— Laplace Inversion <— feaene

5
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Laplace Transform properties Linearity, Translation, Scale change

Laplace Transform properties

Table 1
Linearity aft)+bg(t) | af(s)+b4(s) | 1
Scale change f(at) = f(f) 2
= a” \a
Translation respect to s e f(t) fA‘(s —a) 3
Translation respect to ¢ flt—a) e_“sf(s) 4
a and b are real number. Moreover a > 0 for point 2 and 4. &
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Laplace Transform properties Linearity and Scale change

+o0o

L{af(t) +bg(t)} (s) = / (af(t) +bg(t))e ™" dt

= a/+<>o f(t)e st dt + b/+00 g(t)e " dt

~

— a f(s)+bg(s)

—+00

L{f(at)}(s) = . flat)e™stdt [t =2/a, a>0]
+o0 2
= [ pen &
0- a

B éf? (2) B
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—+00
—+00

at —S
e f(t)e tdt:/ F(t)el> ot de

et (1)} (s) = /

-~

= f(s—a)

—+00

L{ft—a)}(s) = flt—a)e™™dz |
z t—a=2]




Laplace Transform properties Exponential order functions

When Laplace transform exists? (1/3)

@ Not all function have a Laplace Transform, for example

+oo
L {et2} (s) = / e’ st qt
T +o00
= / =t dt + / eli=2)t dt
- T

for all possible s choose T' > RE (s) so that

—+oco
/ =90t g
T

is not convergent. Thus, the function have not a Laplace
Transform for any s € C.

5
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Laplace Transform properties Exponential order functions

When Laplace transform exists? (2/3)

Let be f(t) continuous with bounds: |f(t)] < MeN fort > T
then the function have a Laplace Transform:

T +o00
L{fHs) = /0 Cfmetare [ foear

In fact,

oo —st ' +eo —st Hoo Nt | —st
/ f(t)e " dt S/T ‘f(t)e ‘dtS/T Me |e }dt

T

+00 +oo
_ / MeNte— RE(s)t dt = M / e(N— RE(s))t dt
T T

and for RE(s) > N hold
+o0o

li (N—RE(s))t dt =0
T—1>r-lr-loo T © &
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Laplace Transform properties Exponential order functions

When Laplace transform exists? (3/3)

Definition (Piecewise continuous function)
f(t) is a piecewise continuous function if for all interval [0, T
@ is discontinuous at most on a finite number of points

o il finitely bounded

Definition (Exponential order function)

f(t) is an exponential order function if is piecewise continuous with
bound:

|f(t)\§MeNt per t>T

From now forward we assume the considered functions are of
exponential order with piecewise continuous derivative up to the

required order. &
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Laplace Transform properties Exponential order functions

Let f(t) of exponential order, then:

-~

lim f(s) =0, seR

§—00

Proof: Assuming s real

o] =| [~ rwetat < [Cisoretar
cm [ eWorg— M
0~ §—
but
. M
sgl—&l—loo s— N 0 &
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Some Laplace Transform Polynomial and exponential growth

Polynomial and exponential growth

@ Heaviside function
0 set<0;
u(t) =
1 set>0.
@ Linear growth
0 set<O0;
ty =tu(t) =

@ Polynomial growth

N N ® 0 set<O:
th = tFu(t) =
th set>0.

t set>0.

" 0 set <O0;
v(t) = a” u(t) =
a set>0. &



Some Laplace Transform Polynomial and exponential growth

Table 2
1 ! 5
S
: I
t Sf +' 7
Y s—blloga 8

Attention, functions on the first column shall be deemed equal to 0

o~ o~

fort <0, ie. f(t) = f(s)oru(t)f(t) — f(s) where u(t) is the
Heaviside function. &
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Some Laplace Transform Heaviside function w(t) Laplace Trasform

@ Heaviside function

0 set<O;
u(t)—{

1 set>0.

e Laplace Transform (assuming RE (s) > 0):

£ {u} (s) =a(s) = / = u(t)e st dt = /0 T sty

+
_ [_1e—st] Tt

B
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Some Laplace Transform Linear growth Laplace Transform t u(t)

@ Linear growth
ty =tu(t)

e Laplace Transform (assuming RE (s) > 0):

t +o0 1 +00
= [—e_‘gt] —|—/ e stdt
S 0— S _

- +oo +o00
Lt }(s) =1, (s) :/ tu(t)e st dt:/ te” st dt

B
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Some Laplace Transform Polynomial growth Laplace Transform ¢*w(t)

@ Polynomial growth

e Laplace Transform (assuming RE (s) > 0):

—~ +o0 +o00
L {ti}(s) =tk (s) :/ thu(t)e st dt:/ the=st dt

0-

+oo
= [—tke_St] + k /+OO tF=le=st qt

S

0- S

k —
=0+ gt’rl(s)

—~ 1
@ Using induction and noticing that ¢ (s) = — it follows
s

- k!
th(s) = ght1 §
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Some Laplace Transform Exponential growth Laplace Transform a” tq

@ Exponential growth
v(t) = ab u(t)

e Laplace Transform (assuming RE (s) > bloga):

+o0o
L / et dt = / e dt
0— _
+oo +o0
/ bt loga —st ¢ — / 6(blog a—s)t dt
0- _

+oo

(blog a—s)t:|

[ bloga—s 0-

s — bloga
B
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Some Laplace Transform Laplace Transform of derivative and integral of a function

First derivative Laplace Transform (1/2)

Theorem (First derivative Laplace Transform)

Let f(t) of exponential order with piecewise continuous first
derivative. The Laplace Transform of f'(t) becomes:

~

L @)} (s) = sf(s) — f(OT)
(assuming f(t) =0 fort <0)

Proof: Let RE(s) >0 and g > 0:

+00 +oo
/ f(testdt = [f(t)e—“];oo +s f)e st dt
8 8

+o0

— —f(B)e ™ + 5 /ﬂ f(te dt
&
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Some Laplace Transform Laplace Transform of derivative and integral of a function

First derivative Laplace Transform (2/2)

and thus,

f(te stdt = [1313%) [/06 fl(t)e st dt +/ﬁ

—+00 “+o00

f'(t)e st dt}

—€

: —sB oo —st
= };E,% [—f(ﬁ)e —i—s/ﬁ f(t)e dt+0}
+oo
= —f(07) +s f(t)e ™" dt
o+

from f(t) =0 for t <0 it follows fi f(t)e stdt =0 and
“+00

PO} ) =—F0Y +s [ e ar

5
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Some Laplace Transform Laplace Transform of derivative and integral of a function

k-th derivative Laplace Transform

Theorem (k-th derivative Laplace Transform)

Let f(t) of exponential order up to k — 1-derivative and k-th
derivative piecewise continuous. Then Laplace Transform of k-th
derivative become:

S{rOm} (s) = s Fs) = > s =D (0%).

(assuming f(t) =0 fort <0)

Proof: Is similar to the proof for first derivative using k-times
integration by part.

5
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Some Laplace Transform Laplace Transform of derivative and integral of a function

Laplace Transform of an integral

Theorem (Laplace Transform of an integral)

Let f(t) piecewise continuous and ¢(t) defined as

o(t) = /0 f(2)de

Laplace transform £ {g(t)} (s) = g(s) become:

v

Proof: Apply derivation rule for the function g(¢) and observe that
g'(t) = f(t) and g(0) = 0.

5
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Altre proprieta della trasformata di Laplace

Initial and final value

Asymptotic values

Theorem (of the initial value)

Let f(t) of exponential order with piecewise continuous first
derivative, then:

F(0Y) = lim sf(s) seR

S—+00

Proof: From theorem 1 with f’(t)

0= lim L{f'(H)}(s)= lim sf(s)— f(07)

s§——+00 s—+00

5
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Altre proprieta della trasformata di Laplace Asymptotic values

Theorem (of the final value)

Let f(t) of exponential order with piecewise continuous first
derivative, if the limit f(+o00) = lim;_, 1 f(t) exists then:

~

f(+oo):li_r>r(1)sf(s) seR

Proof: Using Laplace Transform of f’(t)
tim, £ ()} (s) = Tim_s7(s) ~ F(0°)

s—0t

lim £{f'(t)} (s) lim h f'(t)e stdt = h f/(t) lim e st dt

s—0t s—0t Jo- 0- s—0t

TP dt = f(4oo) — F(07)

0-

Here we use Lebesgue’s dominated convergence theorem.

B
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Altre proprieta della trasformata di Laplace

e Moltiply by t"

d” -

L F 0} (s) = (=1)" 7 F(s)

e Division by t. Let g(t) = tf(t) then from the previous formula
d
L9} (s) = = L1} (5)

that can be written as: %L {@} (s) = —g(s) or better

L{g(t)}(s) _ —/g(s)ds+0:ﬁ(s)

t

Complex constant C' must be chosen such that ﬁ(s) satisfy
initial and final value theorem. Obviously lim;_,y+ ¢(t)/t must
exists and must be finite. &
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Altre proprieta della trasformata di Laplace Periodic function and convolution

Theorem (Periodic function Laplace Transform)
Let f(t+T) = f(t) fort > 0 then

T —st
s} (o = IO

Theorem (Laplace Transform of a convolution)
Let (f * g)(t) defined as:

t

(fxg)(t) = : f(2)g(t —2)dz

then

5
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Table 3




Laplace transform table Laplace Transform of some elementary functions

Table 4
e coswt (s—sa;ﬁ 15
e sin wt (s—a(;w 16
e cosh wt (87;—2(1“)2 17
e sinh wt = aC)L; — 18
e (S_nal)nﬂ 19
e e | ” N
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Laplace Transform, exercise Periodic function Laplace Transform

0 t<0
{n n<t<n+1
0 t<O0
Gg(t):{—i—l 2n<t<2n+1
-1 2n+1<t<2n+2
t<0
{ 2n <t <2n+1
n+2—t 2n+1<t<2n+2

i
T

. T les—1 = et
f(s)=———  4(s) = orT h(s) = 5——

N <+ O
|
)
S
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Laplace Transform, exercise Periodic function Laplace Transform

Q f(t)= |§in(t)|

~ 1 ™ +1 R .
f(s) = Ty e _1° ) g(s) = arctan(s);
h(s) =

(s2+1)(s2+9)

B
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