Connection between Laplace transform and Bode plot

Enrico Bertolazzi

AA 2009/2010

Derivation

Consider the following ODE

$$
\begin{equation*}
x^{\prime \prime}(t)+3 x^{\prime}(t)+2 x(t)=\cos (t), \tag{1}
\end{equation*}
$$

which has the general solution:

$$
x(t)=\underbrace{\left(x(0)+x^{\prime}(0)\right)\left(2 e^{-t}-e^{-2 t}\right)+\frac{2}{5} e^{-2 t}-\frac{1}{2} e^{-t}}_{\text {goes } \rightarrow 0 \text { as } t \rightarrow \infty}+\frac{1}{10} \cos (t)+\frac{3}{10} \sin (t)
$$

so that we can write

$$
x(t) \approx \frac{1}{10} \cos (t)+\frac{3}{10} \sin (t), \quad \text { for } t \text { large }
$$

from the identity $\cos (\alpha-\beta)=\cos \alpha \cos \beta+\sin \alpha \sin \beta$ we can deduce

$$
x(t) \approx \frac{1}{10} \cos (t)+\frac{3}{10} \sin (t)=\frac{1}{\sqrt{10}} \cos (t-\phi) \quad \text { for } t \text { large }
$$

where $\phi=\arctan (3)$. Thus we considering $\sin (t)$ as the input of the ODE (1) and $x(t)$ as the output we can say that asymptotically the input $\sin (t)$ is has reduced the amplitude by a factor $1 / \sqrt{10}$ and shifted backward by the angle ϕ. Considering now a generic frequency $\cos (\omega t)$ as input we have the ODE

$$
\begin{equation*}
x^{\prime \prime}(t)+3 x^{\prime}(t)+2 x(t)=\cos (\omega t) \tag{2}
\end{equation*}
$$

which has the general solution

$$
x(t)=\underbrace{A(\omega) e^{-t}+B(\omega) e^{-2 t}}_{\text {goes } \rightarrow 0 \text { as } t \rightarrow \infty}+\frac{\left(2-\omega^{2}\right) \cos (\omega t)+3 \omega \sin (\omega t)}{\left(4+\omega^{2}\right)\left(1+\omega^{2}\right)}
$$

where

$$
\begin{aligned}
& A(\omega)=\frac{\left(2 \omega^{4}+10 \omega^{2}+8\right) x_{0}+\left(\omega^{4}+5 \omega^{2}+4\right) x_{0}^{\prime}-\left(4+\omega^{2}\right)}{\left(4+\omega^{2}\right)\left(1+\omega^{2}\right)} \\
& B(\omega)=\frac{2\left(\omega^{2}+1\right)-\left(\omega^{4}+5 \omega^{2}+4\right)\left(x_{0}+x_{0}^{\prime}\right)}{\left(4+\omega^{2}\right)\left(1+\omega^{2}\right)}
\end{aligned}
$$

as for the ODE (1) we can write

$$
x(t) \approx \frac{\left(2-\omega^{2}\right) \cos (\omega t)+3 \omega \sin (\omega t)}{\left(4+\omega^{2}\right)\left(1+\omega^{2}\right)}, \quad \text { for } t \text { large }
$$

from the identity $\cos (\alpha-\beta)=\cos \alpha \cos \beta+\sin \alpha \sin \beta$ we can deduce

$$
x(t) \approx \frac{\left(2-\omega^{2}\right) \cos (\omega t)+3 \omega \sin (\omega t)}{\left(4+\omega^{2}\right)\left(1+\omega^{2}\right)}=\frac{\cos (\omega t-\phi)}{\sqrt{\left(4+\omega^{2}\right)\left(1+\omega^{2}\right)}} \quad \text { for } t \text { large }
$$

where $\phi=\arctan \left(3 \omega /\left(2-\omega^{2}\right)\right)$. Thus we considering $\sin (t)$ as the input of the ODE (2) and $x(t)$ as the output we can say that asymptotically the input $\sin (t)$ is has reduced the amplitude by a factor $1 / \sqrt{\left(4+\omega^{2}\right)\left(1+\omega^{2}\right)}$ and shifted backward by the angle ϕ.

Generalization Consider now the ODE

$$
\begin{equation*}
x^{(N)}+\sum_{k=0}^{N-1} a_{k} x^{(k)}(t)=\cos (\omega t), \quad x(0)=x^{\prime}(0)=\cdots=x^{N-1}(0)=0 \tag{3}
\end{equation*}
$$

the response $x(t)$ to the input $\cos (\omega t)$ is in general

$$
x(t)=x_{0}(t)+A \cos (\omega t+\phi),
$$

where $x_{0}(t) \rightarrow 0$ if $t \rightarrow \infty$ if the homogenous ODE $\sum_{k=0}^{N} a_{k} x^{(k)}(t)=0$ is stable. In this case we say that the signal $\cos (\omega t)$ is gained o reduced by a
factor A and shifted by an angle ϕ. If we take the Laplace transform of (3) we have

$$
\left(s^{N}+\sum_{k=0}^{N-1} a_{k} s^{k}\right) x(s)=\frac{s}{s^{2}+\omega^{2}}
$$

and if $s_{0}, s_{1}, \ldots, s_{N-1}$ are the root of the polynomial $s^{N}+\sum_{k=0}^{N-1} a_{k} s^{k}$ we have

$$
\prod_{k=0}^{N-1}\left(s-s^{k}\right) x(s)=\frac{s}{s^{2}+\omega^{2}}
$$

and thus,

$$
\begin{equation*}
x(s)=G(s) \times \frac{s}{s^{2}+\omega^{2}} \tag{4}
\end{equation*}
$$

where

$$
G(s)=\frac{1}{\prod_{k=0}^{N-1}\left(s-s^{k}\right)}
$$

is the transfer function of the ODE. Using simple fraction expansion and for simplicity assuming all the root simple we have

$$
\begin{equation*}
x(s)=\frac{A(\omega) s-B(\omega) \omega}{s^{2}+\omega^{2}}+\sum_{k=0}^{N} \frac{C_{k}}{s-s^{k}} \tag{5}
\end{equation*}
$$

where $A(\omega), B(\omega)$ and C_{k} are computed by equating (4) with (5). Reversing Laplace transform form $x(s)$ we have (remember $\Re\left(s_{k}\right)<0$ because ODE is stable):

$$
x(t)=K(\omega) \cos (\omega t+\phi(\omega))+\underbrace{\sum_{k=0}^{N} C_{k} e^{t s^{k}}}_{\text {goes } \rightarrow 0 \text { as } t \rightarrow \infty}
$$

where

$$
\begin{equation*}
K(\omega)=\sqrt{A(\omega)^{2}+B(\omega)^{2}}, \quad \phi(\omega)=\arctan \left(\frac{B(\omega)}{A(\omega)}\right) . \tag{6}
\end{equation*}
$$

To compute $K(\omega)$ and $\phi(\omega)$ we need to compute $A(\omega)$ and $B(\omega)$. To this purpose from (4) and (5) we have

$$
G(s) \times \frac{s}{s^{2}+\omega^{2}}=\frac{A(\omega) s-B(\omega) \omega}{s^{2}+\omega^{2}}+\sum_{k=0}^{N} \frac{C_{k}}{s-s^{k}}
$$

multiply both side by $s-\imath \omega$ we have

$$
G(s) \times \frac{s}{s+\imath \omega}=\frac{A(\omega) s-B(\omega) \omega}{s+\imath \omega}+(s-\imath \omega) \sum_{k=0}^{N} \frac{C_{k}}{s-s^{k}}
$$

and computing equation in $s=\imath \omega$ we have

$$
G(\imath \omega) \times \frac{1}{2}=\frac{A(\omega) \imath \omega-B(\omega) \omega}{2 \imath \omega}+0 \times \sum_{k=0}^{N} \frac{C_{k}}{s-s^{k}}
$$

and thus

$$
G(\imath \omega)=A(\omega)-\frac{B(\omega)}{\imath}=A(\omega)+\imath B(\omega)
$$

and from (6) we have

$$
\begin{aligned}
K(\omega) & =\sqrt{A(\omega)^{2}+B(\omega)^{2}}=|G(\imath \omega)| \\
\phi(\omega) & =\arctan \left(\frac{B(\omega)}{A(\omega)}\right)=\arctan \left(\frac{\Im(G(\imath \omega))}{\Re(G(\imath \omega))}\right) .
\end{aligned}
$$

