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The matrix exponential

Consider the Taylor series of exponential

ex =
∞∑
k=0

xk

k!
= 1 + x+

x2

2
+
x3

6
+ · · ·+ xp

p!
+ · · ·

given a square matrix A we can define the matrix exponential as follows

eA =
∞∑
k=0

1

k!
Ak = I + A +

1

2
A2 +

1

6
A3 + · · ·+ 1

p!
Ap + · · · (1)

The first question is: when the series (1) is convergent? To respond to the
question we recall the following facts:
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Remark 1 (convergence criterion) here we recall some classical conver-
gence criterion:

Comparison. If
∑∞

k=0 bk is convergent and |ak| ≤ bk for all k ≥ n0 then∑∞
k=0 ak is absolutely convergent.

d’Alembert’s ratio test. Consider the series
∑∞

k=0 ak and the limit

L = lim
k→∞

|ak+1|
|ak|

then

• If the limit L exists and L < 1 the series converges absolutely.

• If the limit L exists and L > 1 the series diverges.

If the limit does not exist of is equal to 1 the series can be convergent
or divergent.

Root test. Consider the series
∑∞

k=0 ak and the limit

L = lim sup
k→∞

k
√
|ak|

then

• If L < 1 the series converges absolutely.

• If L > 1 the series diverges.

If the limit is equal to 1 the series can be convergent or divergent.

Theorem 1 The series (1) is convergent for all square matrix A ∈ Rn×n.
Moreover ∥∥eA

∥∥
F
≤ ne‖A‖F (2)

where

‖A‖F =

√√√√ n∑
i,j=1

A2
i,j

is the Frobenius matrix norm.
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Proof Consider the series

∞∑
k=0

ak where ak =
1

k!
(Ak)ij

i.e. ak is the (i, j) component of the matrix
1

k!
Ak. It is easy to verify that

|Al,m| ≤ ‖A‖F ,
∥∥Ak

∥∥
F
≤ ‖A‖kF

and thus

∞∑
k=0

ak =
∞∑
k=0

1

k!
(Ak)ij ≤

∞∑
k=0

1

k!

∥∥Ak
∥∥
F
≤

∞∑
k=0

1

k!
‖A‖kF = e‖A‖F

in conclusion the series (1) is convergent for each component and inequality
(2) is trivially verified.

1 Computing matrix exponential for diago-

nalizable matrices

Let be A ∈ Rn×n symmetric, then the matrix has a complete set of linear
independent eigenvectors v1, v2, . . . , vn:

Avk = λkvk, k = 1, 2, . . . , n.

Thus, defining the matrix T = [v1,v2, . . . ,vn] whose columns are the eigen-
vectors we have

AT = [Av1,Av2, . . . ,Avn] = [λ1v1, λ2v2, . . . , λnvn] = TΛ

and thus A = TΛT−1 where

Λ =



λ1

λ2

. . .

λn

 .
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Using A = TΛT−1 we can write

eA =
∞∑
k=0

1

k!
Ak =

∞∑
k=0

1

k!
(TΛT−1)k = T

(
∞∑
k=0

1

k!
Λk

)
T−1 = T eΛT−1,

and hence

eA = T


eλ1

eλ2

. . .

eλn

T−1

2 Computing matrix exponential for general

square matrices

2.1 Using Jordan normal form

Let be A ∈ Rn×n then the matrix exponential can be computed starting
from Jordan normal form (or Jordan canonical form):

Theorem 2 (Jordan normal form) Any square matrix A ∈ Rn×n is sim-
ilar to a block diagonal matrix J , i.e. T−1AT = J where

J =



J1

J2

. . .

Jm

 and Jk =



λk 1

λk
. . .

. . . 1

λk


The column of T = [t1,1, t1,2, . . . , tm,nm , tm,nm−1] are generalized eigenvectors,
i.e.

Atk,j =

{
λktk,j if j = 1

λktk,j + tk,j−1 if j > 1
(3)
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Using Jordan normal form A = TJT−1 we can write

eA =
∞∑
k=0

1

k!
Ak =

∞∑
k=0

1

k!
(TΛT−1)k

= T



∞∑
k=0

1

k!
Jk

1

∞∑
k=0

1

k!
J2

. . .
∞∑
k=0

1

k!
Jm


T−1

= T


eJ1

eJ2

. . .

eJm

T−1

Thus, the problem is to find the matrix exponential of a Jordan block

Jλ =



λ 1

λ
. . .

. . . 1

λ

 = λ


1

1

. . .

1

+



0 1

0
. . .

. . . 1

0


= λI + N

(4)
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The matrix N has the property:

N 2 =



0 0 1 0

0
. . . 1

. . . 0

0


and in general N k as ones on the k-th upper diagonal and is the null matrix
if k ≥ n the dimension of the matrix. Using (4) we have

eJλ =
∞∑
k=0

1

k!
Jk
λ =

∞∑
k=0

1

k!
(λI + N )k =

∞∑
k=0

1

k!

k∑
j=0

(
k

j

)
λk−jN j

=
∞∑
k=0

k∑
j=0

1

(k − j)!j!
λk−jN j

=
∞∑
k=0

∞∑
j=0

1

(k − j)!j!
λk−jN j

1k−j

[
1i =

{
1 if i ≥ 0

0 otherwise

]

=
∞∑
j=0

1

j!
N j

∞∑
k=0

1

(k − j)!
λk−j1k−j

=
∞∑
j=0

1

j!
N j

∞∑
k=0

1

k!
λk = eλ

n−1∑
j=0

1

j!
N j

or explicit

eJλ = eλ
(

I +
1

1!
N +

1

2!
N 2 + · · ·+ 1

(n− 1)!
Nn−1

)
,

= eλ



1 1/1! 1/(n− 1)!

1
. . .

. . . 1/1!

1
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2.2 Using Cayley–Hamilton theorem

Theorem 3 (Cayley–Hamilton) Let A a square matrix and ∆(λ) = |A− λI|
its characteristic polynomial then ∆(A) = 0.

Consider a n × n square matrix A and a polynomial p(x) and ∆(x) be the
characteristic polynomial of A. Then write p(x) in the form

p(x) = ∆(x)q(x) + r(x),

where q(x) is found by long division, and the remainder polynomial r(x) is
of degree less than n. Now consider the corresponding matrix polynomial
p(A):

p(A) = q(A)∆(A) + r(A),

But Cayley-Hamilton states that ∆(A) = 0, therefore p(A) = r(A). In
general we can deduce that

1

k!
Ak = rk(A),

where rk(x) is the remainder of long division of xk/k! by ∆(x), i.e. xk/k! =
∆(x)qk(x) + rk(x) and thus the matrix exponential can be formally written
as

eA =
∞∑
k=0

1

k!
Ak =

∞∑
k=0

rk(A),

and thus eA is a polynomial of A of degree less than n, i.e.

eA =
n−1∑
k=0

akA
k,

Consider now an eigenvector v with the corresponding eigenvalue λ, then

eAv =
∞∑
k=0

1

k!
Akv =

∞∑
k=0

1

k!
λkv = eλv
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analogously

n−1∑
k=0

akA
kv =

(
n−1∑
k=0

akλ
k

)
v

and thus if we have n distinct eigenvalues λj

n−1∑
k=0

akλ
k
j = eλj , j = 1, 2, . . . , n (5)

so that (5) is an interpolation problem which can be used to compute the
coefficients ak. In the case of multiple eigenvalues we use the correspond-
ing generalized eigenvectors (see equation (3)). For example consider the
eigenvectors v1 and v2 such that

Av1 = λv1, Av2 = λv2 + v1,

then we have

A2v2 = λAv2 + Av1,

= λ(λv2 + v1) + λv1,

= λ2v2 + 2λv1,

and again

A3v2 = A
(
λ2v2 + 2λv1

)
,

= λ2Av2 + 2λAv1,

= λ2(λv2 + v1) + 2λAv1,

= λ3v2 + 3λ2v1,

and in general

Akv2 = λkv2 + kλk−1v1, (6)
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using (6) in matrix exponential we have

eAv2 =
∞∑
k=0

1

k!
Akv2 =

∞∑
k=0

1

k!

(
λkv2 + kλk−1v1

)
,

=
∞∑
k=0

1

k!
λkv2 +

∞∑
k=0

1

k!
kλk−1v1,

=
∞∑
k=0

1

k!
λkv2 +

∞∑
k=0

1

(k − 1)!
λk−1v1,

= eλv1 + eλv2

(7)

using (6) in a polynomial matrix we have

p(A)v2 =
m∑
k=0

pkA
kv2,

=
m∑
k=0

pk
(
λkv2 + kλk−1v1

)
,

= p(λ)v2 + p′(λ)v1

(8)

from (7) and (8) we have that p(λ) = p′(λ) = eλ for a multiple eigenvalue.
In general it can be proved that if λ is an eigenevalue of multiplicity m we
have

p(λ) = p′(λ) = · · · = p(m−1)(λ) = eλ.

thus using eigenvalues with their multiplicity we have an Hermite interpola-
tion problem with enough conditions to determine uniquely the polynomial.

Example 1 Consider the matrix

A =


2 0 1 1

−4 4 4 −1

2 −1 1 2

0 0 0 2
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we have

∆(λ) = |A− λI| = 24− 44λ+ 30λ2 − 9λ3 + λ4

which can be factorized as

∆(λ) = (λ− 2)3(λ− 3)

The matrix exponential is a polynomial p(A) where p(x) = p0 +p1x+p2x
2 +

p4x
3, to determine p(x) we use interpolation conditions:

p(2) = p0 + 2p1 + 4p2 + 8p4 = e2,

p′(2) = p1 + 4p2 + 12p4 = e2,

p′′(2) = 2p2 + 12p4 = e2,

p(3) = p0 + 3p1 + 9p2 + 27p4 = e2,

which has the solution

p0 = 21 e2 − 8 e3, p1 = −31 e2 + 12 e3,

p2 =
31

2
e2 − 6 e3, p3 = −5

2
e2 + e3,

and evaluating p(A) we have

eA = e2


−3 2 3 −1/2

−4 3 0 0

−2 1 2 0

0 0 0 1

+ e3


2 −1 −1 1

0 0 0 0

2 −1 −1 1

0 0 0 0


2.3 Using numerical integration

Consider the ODE:

x′k = Axk, x(0) = ek = (0, . . . , 0, 1︸︷︷︸
k-position

, 0, . . . , 0)T

then the solution is

xk(t) = etAek
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and collecting the solution for k = 1, 2, . . . , n we have

( x1(t),x2(t), . . . ,xn(t) ) = ( etAe1, e
tAe2, . . . , e

tAen ) ,

= etA ( e1, e2, . . . , en ) ,

= etAI

= etA,

Thus the following matricial ODE

X ′(t) = AX(t), X(0) = I, (9)

has the solution:

X(t) = etAI = etA.

Using this observation we can use a numerical integrator with step ∆t = t/m

X0 = I

Xk+1 = Xk + ∆tΦ(tk,Xk), k = 0, 1, . . . ,m− 1

etA ≈ Xm.

for example using explicit Euler scheme we have

X0 = I

Xk+1 = Xk + ∆tAXk = (I + ∆tA)Xk, k = 0, 1, . . . ,m− 1

etA ≈ Xm = (I + ∆tA)m.

(10)

or using implicit Euler scheme we have

X0 = I

Xk+1 = Xk + ∆tAXk+1, k = 0, 1, . . . ,m− 1

etA ≈ Xm = (I −∆tA)−m.

Remark 2 The computation can be reduced choosing the number of steps
m as a power of two m = 2p is this case the matrix multiplication can be
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reduced from m to p. For example for Euler method (10) we have:

R0 = I + ∆tA

Rk+1 = R2
k, k = 0, 1, . . . , p− 1

etA ≈ Rp.

Remark 3 Choosing ∆t = t i.e m = 1 only one step and using Taylor
expansion as advancing numerical scheme we obtain again the taylor series
approximation of the matrix exponential

2.4 Using Pade approximation and squaring

Consider the ODE (9) and the Crank–Nicholson approximation we have

X0 = I

Xk+1 = Xk +
∆t

2
A (Xk + Xk+1) , k = 0, 1, . . . ,m− 1

etA ≈ Xm =

[(
I − ∆t

2
A

)−1(
I +

∆t

2
A

)]m
.

(11)

by choosing m = 2P equation (11) can be reorganized as

X0 =

(
I − ∆t

2
A

)−1(
I +

∆t

2
A

)
Xk+1 = X2

k , k = 0, 1, . . . , p− 1

etA ≈ Xp.

(12)

Procedure (12) can be generalized by observing

etA = e(tA/m)m =
(
e(tA)/m

)m
.

Thus approximating e(tA)/m with a rational polynomial, i.e.

e(tA)/m ≈ P (tA/m)−1Q(tA/m)
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permits to approximate the exponential as follows

X0 = P (t 2−pA)−1Q(t 2−pA)

Xk+1 = X2
k , k = 0, 1, . . . , p− 1

etA ≈ Xp.

when p = 0 the rational polynomial P (x)/Q(x) approximate ex. The key idea
of the squaring algorithm is to choose p large enough to have ‖t2−pA‖ ≤ C
where C is a small constant (e.g. 1 or 1/2) where the rational polynomial
P (z)/Q(z) is a good approximation of ez for z ∈ C and |z| ≤ C.

To approximate exponential with a rational polynomial we can use Padé
procedure with schematically determine the coefficients of P (x) and Q(x) by
matching the product

Q(x)ex − P (x) = O(xr)

with r the maximum possibile.

Example 2 Let P (x) = 1 + p1x and Q(x) = q0 + q1x then

(q0 + q1x)

(
1 + x+

x2

2
+
x3

6
+O(x4)

)
− (1 + p1x) =

q0 − 1 + x(q0 + q1 − p1) +
x2

2
(q0 + 2q1) +

x3

6
(q0 + 3q1) +O(x4)

and matching up to x3 produce the linear system:

q0 = 1

q0 + q1 − p1 = 0

q0 + 2q1 = 0

q0 + 3q1 = 0

which has the solution q0 = 1, q1 = −1/2, p1 = 1/2 and the rational polyno-
mial is P (x)/Q(x) = (1 + x/2)/(1− x/2).

Using (for example) procedure of example 2 we have the followiong table
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1

1

1

1− z
1

1− z + z2

2

1

1− z + z2

2
− z3

6

1 + z

1

1 + z
2

1− z
2

1 + z
3

1− 2z
3

+ z2

6

1 + z
4

1− 3z
2

+ z2

4
− z3

24

1 + z + z2

2

1

1 + 2z
3

+ z2

6

1− z
3

1 + z
2

+ z2

12

1− z
2

+ z2

12

1 + 2z
5

+ z2

20

1− 3z
5

+ 3z2

20
− z3

60

1 + z + z2

2
+ z3

6

1

1 + 3z
2

+ z2

4
+ z3

24

1− z
4

1 + 3z
5

+ 3z2

20
+ z3

60

1− 2z
5

+ z2

20

1 + 2z
5

+ z2

10
+ z3

120

1− z
2

+ z2

10
− z3

120
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