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The matrix exponential

Consider the Taylor series of exponential
k 22 48 p
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given a square matrix A we can define the matrix exponential as follows
eA:ilAk:I+A+1A2+EA3+...+1AP+... (1)
prd k! 2 6 p!

The first question is: when the series (1) is convergent? To respond to the
question we recall the following facts:



Remark 1 (convergence criterion) here we recall some classical conver-
gence criterion:

Comparison. If Y77 by is convergent and |agy| < by for all & > ng then
> re o @y is absolutely convergent.

d’Alembert’s ratio test. Consider the series )., a; and the limit

L = lim 1]
koo |ay|

then

e [f the limit L exists and L < 1 the series converges absolutely.

e If the limit L exists and L > 1 the series diverges.

If the limit does not exist of is equal to 1 the series can be convergent
or divergent.

Root test. Consider the series ;- aj and the limit

L = limsup +/|ag|

k—o0

then

e If L < 1 the series converges absolutely.

e If L > 1 the series diverges.

If the limit is equal to 1 the series can be convergent or divergent.

Theorem 1 The series (1) is convergent for all square matric A € R"*™.
Moreover

[e?]|, < nel4le (2)

where

1Al =

1s the Frobenius matriz norm.



Proor Consider the series
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i.e. ay is the (i, 7) component of the matrix EA’“. It is easy to verify that

Al < 1A, A% < 1AI%

and thus

> a= Zg(Ak)ij <> il A < Zg A} = elAlr
k=0 k=0 k=0 k=0

in conclusion the series (1) is convergent for each component and inequality
(2) is trivially verified.

1 Computing matrix exponential for diago-
nalizable matrices

Let be A € R™ " symmetric, then the matrix has a complete set of linear
independent eigenvectors vy, v, ..., Uy:

A’uk:)\kvk, k:1,2,...,n.

Thus, defining the matrix T' = [vy, ve, ..., v,| whose columns are the eigen-
vectors we have

AT = [A’Ul, A’UQ, ce ,A’Un] = [)\1’01, )\Q’Ug, ey /\nvn] =TA

and thus A = TAT ! where
A1
A2



Using A = TAT ! we can write
ALY LA TAT =T (Y A 1 Tt
k=0 k! k=0 k! k=0 k! ’

and hence

2 Computing matrix exponential for general
square matrices

2.1 Using Jordan normal form

Let be A € R™"™ then the matrix exponential can be computed starting
from Jordan normal form (or Jordan canonical form):

Theorem 2 (Jordan normal form) Any square matric A € R™" is sim-
ilar to a block diagonal matriz J, i.e. T-*AT = J where

Jl /\k 1
J2 >\k
J = and J, =
1
. Ak
The column of T = [t11,t12,- -, tuns tmnm—1] are generalized eigenvectors,
i.e.
Akt j ifj =1
Aty = L (3)
)\ktjw' + tk,j—l ij > 1



Using Jordan normal form A = T JT ! we can write
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The matrix IN has the property:

00 1 0
0 1

N? =
0
0

and in general N* as ones on the k-th upper diagonal and is the null matrix
if £ > n the dimension of the matrix. Using (4) we have

o0

1 =1 =1 E\ . .
ZHJf:Z%E(AIJrN)k:;HZ(j)/\’“ iNY

k
e
0 j=0

b 1
= Z\kINY
Z (k —5)lj!

k=0

>

k=0

> - 1 o 1 ifi>0
g | e |
>

7=0

>

: 0 otherwise

7=0
1. & 1 .
— NNV Ll P
7! ,; (k—3)! !
1 > ] Uty
_ j kE_ A
§=0 k=0 j=0

or explicit

el = e (I+%N+%N2+---+ﬁN"—l>,
1 1/1! 1/(n—1)!
1
1/1!
1



2.2 Using Cayley—-Hamilton theorem

Theorem 3 (Cayley—Hamilton) Let A a square matriz and A(\) = |A — N\ |
its characteristic polynomial then A(A) = 0.

Consider a n X n square matrix A and a polynomial p(z) and A(x) be the
characteristic polynomial of A. Then write p(z) in the form

p(x) = A(z)q(x) +r(z),

where ¢(x) is found by long division, and the remainder polynomial r(z) is
of degree less than n. Now consider the corresponding matrix polynomial

p(A):
p(A) = q(A)A(A) +r(A),

But Cayley-Hamilton states that A(A) = 0, therefore p(A) = r(A). In
general we can deduce that

where 7(z) is the remainder of long division of x*/k! by A(z), i.e. z*/k! =
A(x)gr(x) + ri(z) and thus the matrix exponential can be formally written
as

IR DT

k=0

and thus e is a polynomial of A of degree less than n, i.e.

Consider now an eigenvector v with the corresponding eigenvalue A, then
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analogously
n—1 n—1
Z apAfv = (Z ak)\k> v
k=0 k=0

and thus if we have n distinct eigenvalues A;

n—1
Zak)\fze’\% j=12....n (5)
k=0

so that (5) is an interpolation problem which can be used to compute the
coefficients a;. In the case of multiple eigenvalues we use the correspond-
ing generalized eigenvectors (see equation (3)). For example consider the
eigenvectors v; and vy such that

Av; = A\, Avy = \vy + vy,
then we have
A?vy = VNAv, + Avy,
= MAvy + vy) + vy,
= Ny + 2\,
and again
Adv, = A ()\2'02 + 2)\'01) ,
= M Av, + 2\ A,
= A2 (v + 1) + 20\ Awy,
= A, + 3N,

and in general

AFvy = Novy + kNl (6)



using (6) in matrix exponential we have
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using (6) in a polynomial matrix we have

p(A)vy = Z J
k=0

= e Moy + kN )
k=0

= p(AN)ve +p'(AN)vy

from (7) and (8) we have that p(\) = p’(\) = e for a multiple eigenvalue.
In general it can be proved that if X is an eigenevalue of multiplicity m we
have

thus using eigenvalues with their multiplicity we have an Hermite interpola-
tion problem with enough conditions to determine uniquely the polynomial.

Example 1 Consider the matrix

2 0O 1 1

-4 4 4 -1
A=

2 -1 1 2

0 0O 0 2



we have
AN) = |A = M| = 24 — 44X\ + 3002 — 9\3 + \*
which can be factorized as
AN =(A=20°(A=3)

The matrix exponential is a polynomial p(A) where p(x) = po+ pi1x + pax? +
pax®, to determine p(z) we use interpolation conditions:

p(2) = po+2p1 + 4ps + 8py = €7,
P(2)= pi+ap+12ps =€
p'(2) = 2py + 12p, = ¢’

p(3) = po + 3p1 + Ip2 + 27py = €7,

which has the solution

po = 21e* —8é3, p1 = —3le? +12¢°,
31 5
p2:?e2—663, p3:—§€2+ 63,

and evaluating p(A) we have

-3 2 3 —1/2 2 -1 -1 1
A ) -4 3 0 0 5 0 O 0 O
e =e +e

-2 1 2 0 2 -1 -1 1

0O 0 0 1 0O 0 0 0

2.3 Using numerical integration

Consider the ODE:

x) = Az, x(0)=e,=(0,...,0, 1 ,0,...,0)"

k-position
then the solution is

a:k(t) = 6tA6k

10



and collecting the solution for £ =1,2,...,n we have

(x1(t), x2(t),...,x.(t)) = (e, ey, ..., 4, ),
= (e ey ....e,),
_ AT
— A

Thus the following matricial ODE
X'(t)=AX(1), X(0) =1, 9)
has the solution:
X (t) = ' = ™,

Using this observation we can use a numerical integrator with step At = ¢/m

Xo=1
Xk+1:Xk+Atq)<tk7Xk), k:O,l,...,m—l
et~ X,

for example using ezplicit Euler scheme we have
Xo=1
X1 = X+ AtAX, = (I + AtA) X, E=0,1,...,m—1 (10)
et~ X, = (I+AtA)™.
or using tmplicit Euler scheme we have
Xo=1
X1 = X+ AtAX 1, k=0,1,....m—1
et~ X, = (I—AtA)™.

Remark 2 The computation can be reduced choosing the number of steps
m as a power of two m = 2P is this case the matrix multiplication can be

11



reduced from m to p. For example for Euler method (10) we have:

Ry =1+ AtA
R, = RZ, k=0,1,...,p—1
e~ R,

Remark 3 Choosing At = t i.e m = 1 only one step and using Taylor
expansion as advancing numerical scheme we obtain again the taylor series
approximation of the matrix exponential

2.4 Using Pade approximation and squaring

Consider the ODE (9) and the Crank—Nicholson approximation we have

XOZI
At
Xk+1:X]€+—A(Xk+X]€+1), k:071,...,m—1
2 (11)
1 m
e~ X, = (I—%A) <I+%A)

by choosing m = 2F equation (11) can be reorganized as

-1
X (1-84) (10 8a)

X = X7, k=0,1,...,p—1
et~ X,
Procedure (12) can be generalized by observing

et = pltA/mm _ (o(t4)/m)™

tA)/m

Thus approximating e with a rational polynomial, i.e.

etA™ o P(tA/m) T Q(tA/m)

12



permits to approximate the exponential as follows

Xy = P(t27PA)'Q(t27"A)

X1 = X7, k=0,1,...,p—1

et~ X,
when p = 0 the rational polynomial P(z)/Q(x) approximate e*. The key idea
of the squaring algorithm is to choose p large enough to have [[{27P Al < C
where C' is a small constant (e.g. 1 or 1/2) where the rational polynomial
P(2)/Q(z) is a good approximation of e* for z € C and |z| < C.

To approximate exponential with a rational polynomial we can use Padé

procedure with schematically determine the coefficients of P(x) and Q(z) by
matching the product

Q(z)e” — P(x) = O(a")
with 7 the maximum possibile.

Example 2 Let P(z) =1+ pyz and Q(x) = gy + ¢1 then

2 2
(0 ue) (1424 5+ 5+ O ) - (14 pia) =
ZE2 x3
g —14+2(q+q —p)+ 7((10 +2q1) + g(q() +3q1) + O(a*)

and matching up to 2% produce the linear system:
(g0 =1
Go+q—p1=0

o +20=0

qo+3q1 =0

which has the solution go = 1, ¢1 = —1/2, p; = 1/2 and the rational polyno-
mial is P(z)/Q(z) = (1 +2/2)/(1 — x/2).

Using (for example) procedure of example 2 we have the followiong table

13
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— Z _ 2z 4 22 _z 4 22 2B
1 4 1 5+20 1 2+m
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