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1 Exercise 1

5s2 — 155 — 11
Fi -1 .
ind £ {<s+ 1><s—2>3}

1.1 Solution
The first thing to do is the partial fraction decomposition
59 —155-11 _ A B C D A
(s+1D(s—2)3 s+1 (5—2)3 (5—-2)2 (s—2)
Multiplying both sides by s + 1 and putting s = —1 then A = —£. Multiply both sides by
(s —2)® and put s = 2 to get B = —7. This method fails to determine C, D. However since A
and B are known, one has
552 —15s — 11  —3 ~7 C D
= : 2
GAD—27 s+1 (s—27 " G=27  (5-2 2)
To determine C, D one can substitute two values for s, say s = 0 and s = 1 from which can
find respectively
11 1 7 C D 21 1
u_ 1t 7. ¢ D 2 - D
S sttt T 5 gtT+C (3)
i.e. 3C — 6D = 10 and 3C' — 3D = 11, from which C' = 4, D = 3, thus
5s? — 155 — 11 -3 ~7 4 3
-1 — r-1 3 3
{(s+1)(s—2)3} £ {s+1 T T (s—z)}‘ “)
So the solution is
1
—ge_t — gtze% + 4te? + ge%. (5)

Remark 1. Let see another method for computing C, D. Multiplying both sides of (2) by s and

letting s — oo one finds 0 = —% + D which gives D = % Then C can be found as above letting
s = 0. This method can be used when there are some repeated linear factors.
O



2 Numerical Methods for Dynamical Systems and Control

2 Exercise 2

2, 9
Findﬁ—l{ S +25+3 }

(s 425+ 2)(s® +2s +5)
2.1 Solution - method 1

The first thing to do is the partial fraction decomposition

2+ 2543 _ As+ B n Cs+ D ©)
(2425 +2)(s2+25+5) s2+25+2 s2+25+5

Multiplying both sides by (s* + 2s + 2)(s* + 2s + 5) one has

s?+2s+3 = (As+ B)(s*+25s+5)+ (Cs+ D)(s* +2s+2)
= (A+0)s*+ (2A+ B+2C+ D)s*+ (bA+2B+2C +2D)s + 5B + 2D

(7)
This leads to the following linear system
A+C=0
2A+B+4+2C+D=1 8)

5A+2B+2C+2D =2
5B +2D =3

1 2
Solving, A =0, B = 3 C=0,D= 3 thus

-1 s> +2s+3 _ % n %
(2425 +2)(s2+25+5) [ $2+2s+2 $2+2s+5
1 1 2 1
= L1 (9)
3 {(s+1)2—|—1}+3 {(s—|—1)2+4}
1 21
= ge_t sin(t) + §§e_t sin(2t)

In facts for ¢ > 0 and Re(s) > —«

w 1
E —at t — — ].O
{e sin(w )} Groftw? s2tAstB (10)
where o = g and w = /B — %2. So, the solution is

%e‘t(sin(t) 1 sin(20)). an




Exercitation 2 3

2.2 Solution - method 2

Let s = 0 and use the initial value theorem (multiply by s and let s — oc) in (6), then

respectively
3 B D

= = A 12
032 0 +C (12)
Let s =1 and s = —1 in (6), then respectively
3 A+B C+D 1 D—-C
= = —=—A+1B ) 13
20 5 + 8 2 tE 4 13

1 2
These four equations lead to a linear system which gives A =0, B = 3 C=0,D= 3 as in
method 1. This illustrates the case of non-repeated quadratic factors.

2.3 Solution - method 3

Since the roots of s? + 2s + 2 = 0 are —1 =+ % and similarly the roots of s> + 2s + 5 = 0 are
—1 + 27 one can write

s2+2s+3 s2+2s+3

P12 12515 G-t itaerl-sritm 0P
which leads to a linear partial fraction decomposition
(s+f—i)+(s+£13+z')+(5—1—10—213)+(3+f+2i)' (15)
Substituting the first root yields
(=14+2)2+2(-1+14)+3 _1-20-1-2+42i+3 1 (16)
(—1+di+1+a)(—1+s+1—2)(—1+3+1+2) 2i(—4)(34) 6i
therefore A = & and B = —&..
Substituting the root —1 + 22 yields
(=1 +28)>+2(—1+23) +3 _1—4i—4-2+4i+3 1 17)
(C142i+1—d)(—1+2+1+i)(—1+2+1+2i) i(31)(49) '
therefore C' = ;- and D = —¢-. The inverse Laplace transform is
e— (=it —(+i)t  —(1-20)t  —(142d)t 1, pit _ it 1, p2it _ o2t
6 6 6 6 3 (T)*ge (2—>
= le*t sin(t) + le*’& sin(2t)
3 3
., . :
= 3¢ (sin(t) + sin(2t))
(18)

This shows that the case of non-repeated quadratic factors can be reduced to non-repeated
linear factors using complex numbers.

O
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3 Exercise 3

Prove that if £L{f(t)} = F(s), then

z{@} :/:OF(U) du

3.1 Proof

Let g(t) = @, then f(t) =t g(¢). Taking the Laplace transform of both sides one has

d dG
LMY= —SLiot)  or  Flo)=-TC (19
Then integrating
G(s) = —/ F(u) du = / F(u) du (20)
and this is the same of .
E{@}:/ F(u) du. (21)
0]
4 Exercise 4
Show that
/OO sin(¢) _ w
o t 2
4.1 Proof
Let f(t) = sin(t) so that F(s) = -'5. Remind that £ {@} = [ F(u) du, then
° sin(t) . * du * du o T
/o .= Slir& 1 :/0 2l arctan(u)| ™ = 5 (22)
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5 Exercise 5

Show that .
/ e dy = ﬁ
0 2
5.1 Proof

Consider g(t) = [;° e~** dz, then taking the Laplace trandform of ¢(t)

L{g(t)} = /0 eSt/O e da dt
= / / e~Ste" dt dx
o Jo
N / / (e gt (23)
= L£e tttl gy
[ efee)

< 1
= / dx.
0o S+

Making the change of variable \ = = that implies d\ = fl/—’g the integral becomes

< 1 1 0 T
= — —— d\ = —=arctan(\)|, = —= 2
/0 s+x2dx \/g/o 1+)\2d)\ \/garcan( )|0 NE 24)
Thus by inverting
1 -1 1/2 1 _t 12 2
- B = . S
e = = =
So finally
g(t) = /OO et dy = T 1/2 \/_t 1/2 (26)
0 27
and substituting ¢t = 1
/ e dg = ﬁ 27
0 2
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6 Exercise 6

Resolve the Cauchy problem
{ x'(t) = Azx(t) + f(t) 28)

where x, xg, f € R" and A € R™*",

6.1 Solution with Laplace Transform

Performing the Laplace transform yields
sX(s) —xo=AX(s) + F(s). (29)

Solving for X (s) gives
(Is— A)X(8) =x¢+ F(s), (30)
where I € R™™", thus

X(s) = (Is—A)l'zg+ (Is—A)'F(s)

(3D
= L{eM}zo + L{M}L{f}.
Applying the inversion of the transform one has
x(t) = eAMlag + [ A=) f(s) ds. (32)

If A(t) is not a constant matrix, the homogeneous system is @' = A(t)x(¢). To solve it one
needs a primitive of A(t) which is fot A(s) ds. Then xp(t) = elo A dsg Adding the particular
solution one has

t
£(t) = el AW dsg 4 ofi AG) ds / F(€)e o AW s ge. (33)
0

One should take care because in general matrices are non commutative and integrals can not
be swapped.

6.2 Solution with ODE techniques

This is the standard method for a first order differential equation. One observes that multi-
plying by e~4* both sides of (28) gives

e M (t) = e M Ax(t) + e A (1) (34)

and from % (e7Ax(t)) = e A £(t) there is the classic formula

e Alx(t) = xo + / t e Q) f£(€) de (35)
0

which is exactly formula (32) obtained via the Laplace transform.
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7 Review of partial fraction decomposition

Review of methods for obtaining partial fraction decomposition. There are four cases.

e A single real root,
P(s) A a(s)
— 6
Ga0QE  s-a Q) e

e Two complex roots (conjugated) (A = a? — 4b < 0),

P(s)  As+B q(s)
(s2+as+b)Q(s) s2+as+b * Q(s) (37)
e Repeated real roots r > 1,
P(S) Ar A'r—l Al Q(S)
= + 4 + (38)
(s—a)Q(s) (s—a) (s—a)! s—a  Q(s)
e Repeated complex roots (r > 1 and A = a? — 4b < 0),
P(s) A+ B, A._1s+ B, Ays+ By N q(s) 39)
(s24+as+b)Q(s) (s2+as+0b)"  (s2+as+b)! s24+as+b  Q(s)

P(s), Q(s), q(s) € R[s] are polynomials, a, b € R are real numbers and »r € N, r > 1 is
an integer. A further hypothesis is that the fractions are coprime, i.e. there are no common
factors between their numerators and denominators. When a combination (s — a)Q(s) ap-
pears, it is understood that )(s) has no factor of s — a. In other words Q(a) # 0. The same
considerations hold for (s* + as + b)Q(s).

To compute the full partial fraction decomposition of a given fraction, first compute the
partial fraction expansion corresponding to each of the denominator roots, then sum the
resulting fractions.

7.1 A simple real root

This is the simplest case, the partial fraction decomposition form for a simple real root a is

P(is) A q(s)
0@ s—a Q) (40)

Multiplying both hand sides and substituting s = a gives

P Pl
=0~ o “)




8 Numerical Methods for Dynamical Systems and Control

7.2 A simple complex root

The partial partial fractions form for a simple complex roots is

P(s)  As+B q(s)
(s2+as+b)Q(s) s2+as+b * Q(s) (42)
Multiplying both sides for s* + as + b and clearing the fractions holds
P(s) = (As+ B)Q(s) + (s* + as + b)q(s) (43)

Now there are two ways to procede, the first is to substitute the two roots z, z of s + as + b
in order to obtain a linear system in the unknown A, B. The second way is to observe that
s? = —as — b and to replace every occurrence of s> (and higher powers, if there are) with

—as — b. In this case (43) reduces to
vz + 0 = a(A, B)z + B(A, B) (44)

where «(A, B), (A, B),v, § are real quantities and (A, B), (A, B) depend linearly on
A, B. Equating the imaginary part of the two sides gives yIm(z) = a(A, B)Im(z), but the
imaginary part of z is non zero, therefore v = «(A, B). With the same argument § = 3(A, B).
Solving that linear system permits to find A, B.

Esempio 2. Expand

s+1 As+ B C
= ) S
(s —1)(s? —25+2) 52—2s+2+s—1 (45)

Coefficient C'is
s+1 2

C:— = - =
2 —=25+2|,_, 1-2+42

2. (46)
1
Now clearing the denominator of (45) leads
s+1=(As+B)(s—1)+C(s*—25+2)=As*+ Bs— As — B+ C(s* =25 +2). (47)
The substitution s* = 2s — 2 simplifies the expression in
s+1=A(2s—2)+Bs—As—B = s+1=s2A+B—-A)—2A—-B. (48)
Equating the powers of s gives the linear system

A+B=1 —2A-B=1 (49)

from which A = —2 and B = 3, thus the required partial fraction decomposition is

s+1 —2s+ 3 2
_ , 50
G- —2542) —2s42 s—1 (50)
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7.3 Repeated real roots

When there are repeated roots, things get more involved. The general expansion for a re-
peated real factor is

PO A Aa A )
G-arQi)  Goar G- T5Ta Q)

Clearing the fractions

P(s) = AQ(s) + Aroi(s = @)Q(s) + -+ + Ai(s —a) 7' Q(s) + (s —a)"q(s)  (52)

(51

substituting s = a one has P(a) = A,Q(a). To compute A,_; one differentiates (52) with
respect to s, i.e

Pls) = AQ(s)
+ AR + (s — )Q(s)]
+ - (53)
+ A(r=1D(s —a)2Q(s) + (s — a) Q' (s)]
+ r(s—a)lq(s) + (s —a)'q(s)
now the substitution s = a gives
P'(a) = A,Q'(a) + A_1Q(a) (54)
from which one can compute A,_; because A, is known. The coefficients A, ,,..., A; are
computed similarly iterating the differentiation process.
Esempio 3. Expand in partial fractions
s2+1 _ As+B n C n D n E (55)
(s —1)3(s2—=25+2) s2—-25+2 (s—1)3 (s—1)2 (s—1)
C can be evaluated multiplying both sides by (s — 1)® and putting s = 1
s2+1 2
= — —— = =2 56
(s2=25+2)|,_, 1-2+42 (56)
Now the differentiation process begins, clearing the denominator:
s?+1 = (As+ B)(s—1)3
+ O(s* —2s+2)
+ D(s—1)(s2—2s+2) 57
+ E(s—1)*(s*—2s5+2).
Letting S = 1 remains again C' = 2, taking the first derivative one has
2s = A(s—1)>+ (As+ B)3(s — 1)?
+ C(25—-2)
4+ D(s> 25 +2) + D(s — 1)(2s — 2) (58)
_'_

2E(s —1)(s* — 25 +2) + E(s — 1)?(2s — 2).
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Letting s = 1 remains 2 = D, thus D = 2. Taking another derivative one has

2 = 3A(s—1)*+ (As+ B)6(s — 1) + 3A(s — 1)?
+ 2Cs (59)
+ D(2s—2)4+ D(2s—2)+2D(s—1)
+ 2E(s*—254+2)+2E(s—1)(2s —2) + 2E(s — 1)(2s — 2) + F2(s — 1)%

Letting s = 1 gives 2 = 2C' + 2F thus F = —1. Now it remains the expansion of the factor of
s? — 2s + 2, which is the case of a pair of complex conjugated roots,

2
1
s _As+B — —24i=(1+i)A+B
(s—1) s=141
(60)
s2+1
= A B —2 —1 = 1 —1 A B
Go1p T T i=(1-19)A+
and the solution is A = 1 and B = —3. So, the desired expansion is
s2+1 5—3 2 2 1
= — . 61
Go1P(2—2542) 2542 (5—1P (=12 (s—1) (61)
7.4 Repeated complex roots
This is the most interesting and difficult case. Consider the irreducible fraction
P

(s2+as+0)"Q(s)

with r > 1, where the quadratic polynomial s? + as + b has complex roots, and where Q(s)
has no factor of s? + as + b. The concept of this argument is to use the auxiliary function

P(s)

(52 +as+1)Q(s) (63)

that admits a partial expansion of the form

P(s)  AWs+B() _ qls,)
(P tas+0Q() S tas+t | Q) (64

where the coefficients A(¢) and B(t) can be computed via the method described for a pair of
complex roots. Then, taking the derivative with respect to ¢ one has
P(s) _At)s+DB(t)  Alt)s+ B(t)  q(s,t) _ 0Oq

(2 Has+1)2Q(s) s24as+t (524 as+t)? * Q(s) a5, 1) ot (65)

Then substituting ¢t = b gives the partial expansion in the case r = 2. For larger r it is enough
to iterate the process of differentiation. For example the case r = 3 yields:
P(s) A(t)s + B(t) A(t)s+ B'(t)  A"(t)s+ B"(t) = qu(s,t)

Fras+00Q06)  (@Prasttp  (Prasttp | Frastd) | Q) ©0




Exercitation 2 11

Esempio 4. Expand in partial fractions

241
: 6
(s —1)(s? —2s+2)3 (67)
The coefficient of s — 1 is easily calculated
s2+1
> = =9 68
(s — 25 +2)3| _, (68)
Now clearing the denominator, one has
S+1=(At)s+B1)(s—1) +qt)(s* —2s+1). (69)
Simplifying terms and substituting s> = 2s — t gives
2s —t+1=A(t)(2s —t) — A(t)s + B(t)s — B(t). (70)
This gives a linear system
2 = A(t) + B(t)
{ i+l = —tA(t) - B(1). 71
Solving gives A(t) = 1 — % and B(t) = 25 = 14 2. It is very useful to simplify the
expressions for A and B in order to avoid messy derivatives Now the derivatives of A(t), B(t)
are A'(t) = = 1 —, A'(t) = ﬁ and B'(t) = = 1)2, B'(t) = 7 1 . Thus the coefficients

are A(2) = —1, A'(2) =2, A"(2) = —4, B(2) = 3, B'(2) = -2, B”(2) = 4. So the desired
expansion is

s+1 2 22(—1s +3) $2(2s — 2) N T(—4s+4) 72)
(s —1)(s2—254+2)3 s—1 (s2—-25+2)3 (s2—25+2)2 (s2—25+2)
and simplifying
s?+1 2 s—3 25 — 2 25 — 2

(s —1)(s2—2s+2)3 Ts—1 (2—25+2)3 (s2—25+2)2 (s2—2s5+2) (73)




