Exercitation 2

Numerical Methods for Dynamical Systems and Control

Marco Frego
PhD student at DIMS

October 5, 2011

1 Exercise 1

Find $\mathcal{L}^{-1}\left\{\frac{5 s^{2}-15 s-11}{(s+1)(s-2)^{3}}\right\}$.

1.1 Solution

The first thing to do is the partial fraction decomposition

$$
\begin{equation*}
\frac{5 s^{2}-15 s-11}{(s+1)(s-2)^{3}}=\frac{A}{s+1}+\frac{B}{(s-2)^{3}}+\frac{C}{(s-2)^{2}}+\frac{D}{(s-2)} . \tag{1}
\end{equation*}
$$

Multiplying both sides by $s+1$ and putting $s=-1$ then $A=-\frac{1}{3}$. Multiply both sides by $(s-2)^{3}$ and put $s=2$ to get $B=-7$. This method fails to determine C, D. However since A and B are known, one has

$$
\begin{equation*}
\frac{5 s^{2}-15 s-11}{(s+1)(s-2)^{3}}=\frac{-\frac{1}{3}}{s+1}+\frac{-7}{(s-2)^{3}}+\frac{C}{(s-2)^{2}}+\frac{D}{(s-2)} . \tag{2}
\end{equation*}
$$

To determine C, D one can substitute two values for s, say $s=0$ and $s=1$ from which can find respectively

$$
\begin{equation*}
\frac{11}{8}=-\frac{1}{3}+\frac{7}{8}+\frac{C}{4}-\frac{D}{2} \quad \frac{21}{2}=-\frac{1}{6}+7+C-D \tag{3}
\end{equation*}
$$

i.e. $3 C-6 D=10$ and $3 C-3 D=11$, from which $C=4, D=\frac{1}{3}$, thus

$$
\begin{equation*}
\mathcal{L}^{-1}\left\{\frac{5 s^{2}-15 s-11}{(s+1)(s-2)^{3}}\right\}=\mathcal{L}^{-1}\left\{\frac{-\frac{1}{3}}{s+1}+\frac{-7}{(s-2)^{3}}+\frac{4}{(s-2)^{2}}+\frac{\frac{1}{3}}{(s-2)}\right\} . \tag{4}
\end{equation*}
$$

So the solution is

$$
\begin{equation*}
-\frac{1}{3} e^{-t}-\frac{7}{2} t^{2} e^{2 t}+4 t e^{2 t}+\frac{1}{3} e^{2 t} . \tag{5}
\end{equation*}
$$

Remark 1. Let see another method for computing C, D. Multiplying both sides of (2) by s and letting $s \rightarrow \infty$ one finds $0=-\frac{1}{3}+D$ which gives $D=\frac{1}{3}$. Then C can be found as above letting $s=0$. This method can be used when there are some repeated linear factors.

2 Exercise 2

Find $\mathcal{L}^{-1}\left\{\frac{s^{2}+2 s+3}{\left(s^{2}+2 s+2\right)\left(s^{2}+2 s+5\right)}\right\}$.

2.1 Solution - method 1

The first thing to do is the partial fraction decomposition

$$
\begin{equation*}
\frac{s^{2}+2 s+3}{\left(s^{2}+2 s+2\right)\left(s^{2}+2 s+5\right)}=\frac{A s+B}{s^{2}+2 s+2}+\frac{C s+D}{s^{2}+2 s+5} \tag{6}
\end{equation*}
$$

Multiplying both sides by $\left(s^{2}+2 s+2\right)\left(s^{2}+2 s+5\right)$ one has

$$
\begin{align*}
s^{2}+2 s+3 & =(A s+B)\left(s^{2}+2 s+5\right)+(C s+D)\left(s^{2}+2 s+2\right) \\
& =(A+C) s^{3}+(2 A+B+2 C+D) s^{2}+(5 A+2 B+2 C+2 D) s+5 B+2 D \tag{7}
\end{align*}
$$

This leads to the following linear system

$$
\left\{\begin{array}{l}
A+C=0 \tag{8}\\
2 A+B+2 C+D=1 \\
5 A+2 B+2 C+2 D=2 \\
5 B+2 D=3
\end{array}\right.
$$

Solving, $A=0, B=\frac{1}{3}, C=0, D=\frac{2}{3}$, thus

$$
\begin{align*}
\mathcal{L}^{-1}\left\{\frac{s^{2}+2 s+3}{\left(s^{2}+2 s+2\right)\left(s^{2}+2 s+5\right)}\right\} & =\mathcal{L}^{-1}\left\{\frac{\frac{1}{3}}{s^{2}+2 s+2}+\frac{\frac{2}{3}}{s^{2}+2 s+5}\right\} \\
& =\frac{1}{3} \mathcal{L}^{-1}\left\{\frac{1}{(s+1)^{2}+1}\right\}+\frac{2}{3} \mathcal{L}^{-1}\left\{\frac{1}{(s+1)^{2}+4}\right\} \tag{9}\\
& =\frac{1}{3} e^{-t} \sin (t)+\frac{2}{3} \frac{1}{2} e^{-t} \sin (2 t)
\end{align*}
$$

In facts for $t>0$ and $\operatorname{Re}(s)>-\alpha$

$$
\begin{equation*}
\mathcal{L}\left\{e^{-\alpha t} \sin (\omega t)\right\}=\frac{\omega}{(s+\alpha)^{2}+\omega^{2}}=\frac{1}{s^{2}+A s+B} \tag{10}
\end{equation*}
$$

where $\alpha=\frac{A}{2}$ and $\omega=\sqrt{B-\frac{A^{2}}{4}}$. So, the solution is

$$
\begin{equation*}
\frac{1}{3} e^{-t}(\sin (t)+\sin (2 t)) . \tag{11}
\end{equation*}
$$

2.2 Solution-method 2

Let $s=0$ and use the initial value theorem (multiply by s and let $s \rightarrow \infty$) in (6), then respectively

$$
\begin{equation*}
\frac{3}{10}=\frac{B}{2}+\frac{D}{5} \quad 0=A+C \tag{12}
\end{equation*}
$$

Let $s=1$ and $s=-1$ in (6), then respectively

$$
\begin{equation*}
\frac{3}{20}=\frac{A+B}{5}+\frac{C+D}{8} \quad \frac{1}{2}=-A+B+\frac{D-C}{4} . \tag{13}
\end{equation*}
$$

These four equations lead to a linear system which gives $A=0, B=\frac{1}{3}, C=0, D=\frac{2}{3}$ as in method 1 . This illustrates the case of non-repeated quadratic factors.

2.3 Solution - method 3

Since the roots of $s^{2}+2 s+2=0$ are $-1 \pm \boldsymbol{i}$ and similarly the roots of $s^{2}+2 s+5=0$ are $-1 \pm 2 \boldsymbol{i}$ one can write

$$
\begin{equation*}
\frac{s^{2}+2 s+3}{\left(s^{2}+2 s+2\right)\left(s^{2}+2 s+5\right)}=\frac{s^{2}+2 s+3}{(s+1-\boldsymbol{i})(s+1+\boldsymbol{i})(s+1-2 \boldsymbol{i})(s+1+2 \boldsymbol{i})} \tag{14}
\end{equation*}
$$

which leads to a linear partial fraction decomposition

$$
\begin{equation*}
\frac{A}{(s+1-\boldsymbol{i})}+\frac{B}{(s+1+\boldsymbol{i})}+\frac{C}{(s+1-2 \boldsymbol{i})}+\frac{D}{(s+1+2 \boldsymbol{i})} . \tag{15}
\end{equation*}
$$

Substituting the first root yields

$$
\begin{equation*}
\frac{(-1+\boldsymbol{i})^{2}+2(-1+\boldsymbol{i})+3}{(-1+\boldsymbol{i}+1+\boldsymbol{i})(-1+\boldsymbol{i}+1-2 \boldsymbol{i})(-1+\boldsymbol{i}+1+2 \boldsymbol{i})}=\frac{1-2 \boldsymbol{i}-1-2+2 \boldsymbol{i}+3}{2 \boldsymbol{i}(-\boldsymbol{i})(3 \boldsymbol{i})}=\frac{1}{6 \boldsymbol{i}} \tag{16}
\end{equation*}
$$

therefore $A=\frac{1}{6 i}$ and $B=-\frac{1}{6 i}$.
Substituting the root $-1+2 i$ yields

$$
\begin{equation*}
\frac{(-1+2 \boldsymbol{i})^{2}+2(-1+2 \boldsymbol{i})+3}{(-1+2 \boldsymbol{i}+1-\boldsymbol{i})(-1+2 \boldsymbol{i}+1+\boldsymbol{i})(-1+2 \boldsymbol{i}+1+2 \boldsymbol{i})}=\frac{1-4 \boldsymbol{i}-4-2+4 \boldsymbol{i}+3}{\boldsymbol{i}(3 \boldsymbol{i})(4 \boldsymbol{i})}=\frac{1}{6 \boldsymbol{i}} \tag{17}
\end{equation*}
$$

therefore $C=\frac{1}{6 i}$ and $D=-\frac{1}{6 i}$. The inverse Laplace transform is

$$
\begin{align*}
\frac{e^{-(1-\boldsymbol{i}) t}}{6 \boldsymbol{i}}-\frac{e^{-(1+\boldsymbol{i}) t}}{6 \boldsymbol{i}}+\frac{e^{-(1-2 \boldsymbol{i}) t}}{6 \boldsymbol{i}}-\frac{e^{-(1+2 \boldsymbol{i}) t}}{6 \boldsymbol{i}} & =\frac{1}{3} e^{-t}\left(\frac{e^{i t}-e^{-\boldsymbol{i} \boldsymbol{t}}}{2 \boldsymbol{i}}\right)+\frac{1}{3} e^{-t}\left(\frac{e^{2 i t}-e^{-2 i t}}{2 \boldsymbol{i}}\right) \\
& =\frac{1}{3} e^{-t} \sin (t)+\frac{1}{3} e^{-t} \sin (2 t) \\
& =\frac{1}{3} e^{-t}(\sin (t)+\sin (2 t)) \tag{18}
\end{align*}
$$

This shows that the case of non-repeated quadratic factors can be reduced to non-repeated linear factors using complex numbers.

3 Exercise 3

Prove that if $\mathcal{L}\{f(t)\}=F(s)$, then

$$
\mathcal{L}\left\{\frac{f(t)}{t}\right\}=\int_{s}^{\infty} F(u) d u
$$

3.1 Proof

Let $g(t)=\frac{f(t)}{t}$, then $f(t)=t g(t)$. Taking the Laplace transform of both sides one has

$$
\begin{equation*}
\mathcal{L}\{f(t)\}=-\frac{d}{d s} \mathcal{L}\{g(t)\} \quad \text { or } \quad F(s)=-\frac{d G(s)}{d s} . \tag{19}
\end{equation*}
$$

Then integrating

$$
\begin{equation*}
G(s)=-\int_{-\infty}^{s} F(u) d u=\int_{s}^{\infty} F(u) d u \tag{20}
\end{equation*}
$$

and this is the same of

$$
\begin{equation*}
\mathcal{L}\left\{\frac{f(t)}{t}\right\}=\int_{s}^{\infty} F(u) d u \tag{21}
\end{equation*}
$$

4 Exercise 4

Show that

$$
\int_{0}^{\infty} \frac{\sin (t)}{t}=\frac{\pi}{2}
$$

4.1 Proof

Let $f(t)=\sin (t)$ so that $F(s)=\frac{1}{s^{2}+1}$. Remind that $\mathcal{L}\left\{\frac{f(t)}{t}\right\}=\int_{s}^{\infty} F(u) d u$, then

$$
\begin{equation*}
\int_{0}^{\infty} \frac{\sin (t)}{t}=\lim _{s \rightarrow 0^{+}} \int_{s}^{\infty} \frac{d u}{u^{2}+1}=\int_{0}^{\infty} \frac{d u}{u^{2}+1}=\left.\arctan (u)\right|_{o} ^{\infty}=\frac{\pi}{2} \tag{22}
\end{equation*}
$$

5 Exercise 5

Show that

$$
\int_{0}^{\infty} e^{-x^{2}} d x=\frac{\sqrt{\pi}}{2}
$$

5.1 Proof

Consider $g(t)=\int_{0}^{\infty} e^{-t x^{2}} d x$, then taking the Laplace trandform of $g(t)$

$$
\begin{align*}
\mathcal{L}\{g(t)\} & =\int_{0}^{\infty} e^{-s t} \int_{0}^{\infty} e^{-t x^{2}} d x d t \\
& =\int_{0}^{\infty} \int_{0}^{\infty} e^{-s t} e^{-t x^{2}} d t d x \\
& =\int_{0}^{\infty} \int_{0}^{\infty} e^{-\left(s+x^{2}\right) t} d t d x \tag{23}\\
& =\int_{0}^{\infty} \mathcal{L}\left\{e^{-\left(s+x^{2}\right) t}\right\} d x \\
& =\int_{0}^{\infty} \frac{1}{s+x^{2}} d x .
\end{align*}
$$

Making the change of variable $\lambda=\frac{x}{\sqrt{s}}$ that implies $d \lambda=\frac{d x}{\sqrt{s}}$ the integral becomes

$$
\begin{equation*}
\int_{0}^{\infty} \frac{1}{s+x^{2}} d x=\frac{1}{\sqrt{s}} \int_{0}^{\infty} \frac{1}{1+\lambda^{2}} d \lambda=\left.\frac{1}{\sqrt{s}} \arctan (\lambda)\right|_{0} ^{\infty}=\frac{\pi}{2 \sqrt{s}} \tag{24}
\end{equation*}
$$

Thus by inverting

$$
\begin{equation*}
\mathcal{L}^{-1}\left\{\frac{1}{\sqrt{s}}\right\}=\mathcal{L}^{-1}\left\{s^{-1 / 2}\right\}=\frac{t^{-1 / 2}}{\Gamma(1 / 2)}=\frac{t^{-1 / 2}}{\sqrt{\pi}} \tag{25}
\end{equation*}
$$

So finally

$$
\begin{equation*}
g(t)=\int_{0}^{\infty} e^{-t x^{2}} d x=\frac{\pi t^{-1 / 2}}{2 \sqrt{\pi}}=\frac{1}{2} \sqrt{\pi} t^{-1 / 2} \tag{26}
\end{equation*}
$$

and substituting $t=1$

$$
\begin{equation*}
\int_{0}^{\infty} e^{-x^{2}} d x=\frac{\sqrt{\pi}}{2} \tag{27}
\end{equation*}
$$

6 Exercise 6

Resolve the Cauchy problem

$$
\left\{\begin{array}{l}
\boldsymbol{x}^{\prime}(t)=\boldsymbol{A} \boldsymbol{x}(t)+\boldsymbol{f}(t) \tag{28}\\
\boldsymbol{x}(0)=\boldsymbol{x}_{\mathbf{0}}
\end{array}\right.
$$

where $\boldsymbol{x}, \boldsymbol{x}_{\mathbf{0}}, \boldsymbol{f} \in \mathbb{R}^{n}$ and $\boldsymbol{A} \in \mathbb{R}^{n \times n}$.

6.1 Solution with Laplace Transform

Performing the Laplace transform yields

$$
\begin{equation*}
s \boldsymbol{X}(s)-\boldsymbol{x}_{0}=\boldsymbol{A} \boldsymbol{X}(s)+\boldsymbol{F}(s) . \tag{29}
\end{equation*}
$$

Solving for $\boldsymbol{X}(s)$ gives

$$
\begin{equation*}
(\boldsymbol{I} s-\boldsymbol{A}) \boldsymbol{X}(s)=\boldsymbol{x}_{\mathbf{0}}+\boldsymbol{F}(s) \tag{30}
\end{equation*}
$$

where $\boldsymbol{I} \in \mathbb{R}^{n \times n}$, thus

$$
\begin{align*}
\boldsymbol{X}(s) & =(\boldsymbol{I} s-\boldsymbol{A})^{-1} \boldsymbol{x}_{\mathbf{0}}+(\boldsymbol{I} s-\boldsymbol{A})^{-1} \boldsymbol{F}(s) \\
& =\mathcal{L}\left\{e^{\boldsymbol{A} t}\right\} \boldsymbol{x}_{\mathbf{0}}+\mathcal{L}\left\{e^{\boldsymbol{A} t}\right\} \mathcal{L}\{\boldsymbol{f}\} . \tag{31}
\end{align*}
$$

Applying the inversion of the transform one has

$$
\begin{equation*}
\boldsymbol{x}(t)=e^{\boldsymbol{A} t} \boldsymbol{x}_{\mathbf{0}}+\int_{0}^{t} e^{\boldsymbol{A}(t-s)} \boldsymbol{f}(s) d s \tag{32}
\end{equation*}
$$

If $\boldsymbol{A}(t)$ is not a constant matrix, the homogeneous system is $\boldsymbol{x}^{\prime}=\boldsymbol{A}(t) \boldsymbol{x}(t)$. To solve it one needs a primitive of $\boldsymbol{A}(t)$ which is $\int_{0}^{t} \boldsymbol{A}(s) d s$. Then $x_{h}(t)=e^{\int_{0}^{t} \boldsymbol{A}(s) d s} \boldsymbol{x}_{0}$. Adding the particular solution one has

$$
\begin{equation*}
x(t)=e^{\int_{0}^{t} \boldsymbol{A}(s) d s} \boldsymbol{x}_{\mathbf{0}}+e^{\int_{0}^{t} \boldsymbol{A}(s) d s} \int_{0}^{t} \boldsymbol{f}(\xi) e^{-\int_{0}^{t} \boldsymbol{A}(s) d s} d \xi . \tag{33}
\end{equation*}
$$

One should take care because in general matrices are non commutative and integrals can not be swapped.

6.2 Solution with ODE techniques

This is the standard method for a first order differential equation. One observes that multiplying by $e^{-\boldsymbol{A t}}$ both sides of (28) gives

$$
\begin{equation*}
e^{-\boldsymbol{A} t} \boldsymbol{x}^{\prime}(t)=e^{-\boldsymbol{A} t} \boldsymbol{A} \boldsymbol{x}(t)+e^{-\boldsymbol{A} t} \boldsymbol{f}(t) \tag{34}
\end{equation*}
$$

and from $\frac{d}{d t}\left(e^{-\boldsymbol{A} t} \boldsymbol{x}(t)\right)=e^{-\boldsymbol{A} t} \boldsymbol{f}(t)$ there is the classic formula

$$
\begin{equation*}
e^{-\boldsymbol{A} t} \boldsymbol{x}(t)=\boldsymbol{x}_{\mathbf{0}}+\int_{0}^{t} e^{-\boldsymbol{A}(\xi)} \boldsymbol{f}(\xi) d \xi \tag{35}
\end{equation*}
$$

which is exactly formula (32) obtained via the Laplace transform.

7 Review of partial fraction decomposition

Review of methods for obtaining partial fraction decomposition. There are four cases.

- A single real root,

$$
\begin{equation*}
\frac{P(s)}{(s-a) Q(s)}=\frac{A}{s-a}+\frac{q(s)}{Q(s)} \tag{36}
\end{equation*}
$$

- Two complex roots (conjugated) ($\Delta=a^{2}-4 b<0$),

$$
\begin{equation*}
\frac{P(s)}{\left(s^{2}+a s+b\right) Q(s)}=\frac{A s+B}{s^{2}+a s+b}+\frac{q(s)}{Q(s)} \tag{37}
\end{equation*}
$$

- Repeated real roots $r>1$,

$$
\begin{equation*}
\frac{P(s)}{(s-a)^{r} Q(s)}=\frac{A_{r}}{(s-a)^{r}}+\frac{A_{r-1}}{(s-a)^{r-1}}+\cdots+\frac{A_{1}}{s-a}+\frac{q(s)}{Q(s)} \tag{38}
\end{equation*}
$$

- Repeated complex roots ($r>1$ and $\Delta=a^{2}-4 b<0$),

$$
\begin{equation*}
\frac{P(s)}{\left(s^{2}+a s+b\right)^{r} Q(s)}=\frac{A_{r} s+B_{r}}{\left(s^{2}+a s+b\right)^{r}}+\frac{A_{r-1} s+B_{r-1}}{\left(s^{2}+a s+b\right)^{r-1}}+\cdots+\frac{A_{1} s+B_{1}}{s^{2}+a s+b}+\frac{q(s)}{Q(s)} \tag{39}
\end{equation*}
$$

$P(s), Q(s), q(s) \in \mathbb{R}[s]$ are polynomials, $a, b \in \mathbb{R}$ are real numbers and $r \in \mathbb{N}, r>1$ is an integer. A further hypothesis is that the fractions are coprime, i.e. there are no common factors between their numerators and denominators. When a combination $(s-a) Q(s)$ appears, it is understood that $Q(s)$ has no factor of $s-a$. In other words $Q(a) \neq 0$. The same considerations hold for $\left(s^{2}+a s+b\right) Q(s)$.

To compute the full partial fraction decomposition of a given fraction, first compute the partial fraction expansion corresponding to each of the denominator roots, then sum the resulting fractions.

7.1 A simple real root

This is the simplest case, the partial fraction decomposition form for a simple real root a is

$$
\begin{equation*}
\frac{P(s)}{(s-a) Q(s)}=\frac{A}{s-a}+\frac{q(s)}{Q(s)} . \tag{40}
\end{equation*}
$$

Multiplying both hand sides and substituting $s=a$ gives

$$
\begin{equation*}
A=\left.\frac{P(s)}{Q(s)}\right|_{s=a}=\frac{P(a)}{Q(a)} \tag{41}
\end{equation*}
$$

7.2 A simple complex root

The partial partial fractions form for a simple complex roots is

$$
\begin{equation*}
\frac{P(s)}{\left(s^{2}+a s+b\right) Q(s)}=\frac{A s+B}{s^{2}+a s+b}+\frac{q(s)}{Q(s)} . \tag{42}
\end{equation*}
$$

Multiplying both sides for $s^{2}+a s+b$ and clearing the fractions holds

$$
\begin{equation*}
P(s)=(A s+B) Q(s)+\left(s^{2}+a s+b\right) q(s) \tag{43}
\end{equation*}
$$

Now there are two ways to procede, the first is to substitute the two roots z, \bar{z} of $s^{2}+a s+b$ in order to obtain a linear system in the unknown A, B. The second way is to observe that $s^{2}=-a s-b$ and to replace every occurrence of s^{2} (and higher powers, if there are) with $-a s-b$. In this case (43) reduces to

$$
\begin{equation*}
\gamma z+\delta=\alpha(A, B) z+\beta(A, B) \tag{44}
\end{equation*}
$$

where $\alpha(A, B), \beta(A, B), \gamma, \delta$ are real quantities and $\alpha(A, B), \beta(A, B)$ depend linearly on A, B. Equating the imaginary part of the two sides gives $\gamma \operatorname{Im}(z)=\alpha(A, B) \operatorname{Im}(z)$, but the imaginary part of z is non zero, therefore $\gamma=\alpha(A, B)$. With the same argument $\delta=\beta(A, B)$. Solving that linear system permits to find A, B.

Esempio 2. Expand

$$
\begin{equation*}
\frac{s+1}{(s-1)\left(s^{2}-2 s+2\right)}=\frac{A s+B}{s^{2}-2 s+2}+\frac{C}{s-1} . \tag{45}
\end{equation*}
$$

Coefficient C is

$$
\begin{equation*}
C=\left.\frac{s+1}{s^{2}-2 s+2}\right|_{s=1}=\frac{2}{1-2+2}=2 . \tag{46}
\end{equation*}
$$

Now clearing the denominator of (45) leads

$$
\begin{equation*}
s+1=(A s+B)(s-1)+C\left(s^{2}-2 s+2\right)=A s^{2}+B s-A s-B+C\left(s^{2}-2 s+2\right) . \tag{47}
\end{equation*}
$$

The substitution $s^{2}=2 s-2$ simplifies the expression in

$$
\begin{equation*}
s+1=A(2 s-2)+B s-A s-B \quad \Rightarrow \quad s+1=s(2 A+B-A)-2 A-B \tag{48}
\end{equation*}
$$

Equating the powers of s gives the linear system

$$
\begin{equation*}
A+B=1 \quad-2 A-B=1 \tag{49}
\end{equation*}
$$

from which $A=-2$ and $B=3$, thus the required partial fraction decomposition is

$$
\begin{equation*}
\frac{s+1}{(s-1)\left(s^{2}-2 s+2\right)}=\frac{-2 s+3}{s^{2}-2 s+2}+\frac{2}{s-1} . \tag{50}
\end{equation*}
$$

7.3 Repeated real roots

When there are repeated roots, things get more involved. The general expansion for a repeated real factor is

$$
\begin{equation*}
\frac{P(s)}{(s-a)^{r} Q(s)}=\frac{A_{r}}{(s-a)^{r}}+\frac{A_{r-1}}{(s-a)^{r-1}}+\cdots+\frac{A_{1}}{s-a}+\frac{q(s)}{Q(s)} . \tag{51}
\end{equation*}
$$

Clearing the fractions

$$
\begin{equation*}
P(s)=A_{r} Q(s)+A_{r-1}(s-a) Q(s)+\cdots+A_{1}(s-a)^{r-1} Q(s)+(s-a)^{r} q(s) \tag{52}
\end{equation*}
$$

substituting $s=a$ one has $P(a)=A_{r} Q(a)$. To compute A_{r-1} one differentiates (52) with respect to s, i.e

$$
\begin{align*}
P^{\prime}(s) & =A_{r} Q^{\prime}(s) \\
& +A_{r-1}\left[Q(s)+(s-a) Q^{\prime}(s)\right] \\
& +\cdots \tag{53}\\
& +A_{1}\left[(r-1)(s-a)^{r-2} Q(s)+(s-a)^{r-1} Q^{\prime}(s)\right] \\
& +r(s-a)^{r-1} q(s)+(s-a)^{r} q^{\prime}(s)
\end{align*}
$$

now the substitution $s=a$ gives

$$
\begin{equation*}
P^{\prime}(a)=A_{r} Q^{\prime}(a)+A_{r-1} Q(a) \tag{54}
\end{equation*}
$$

from which one can compute A_{r-1} because A_{r} is known. The coefficients A_{r-2}, \ldots, A_{1} are computed similarly iterating the differentiation process.

Esempio 3. Expand in partial fractions

$$
\begin{equation*}
\frac{s^{2}+1}{(s-1)^{3}\left(s^{2}-2 s+2\right)}=\frac{A s+B}{s^{2}-2 s+2}+\frac{C}{(s-1)^{3}}+\frac{D}{(s-1)^{2}}+\frac{E}{(s-1)} \tag{55}
\end{equation*}
$$

C can be evaluated multiplying both sides by $(s-1)^{3}$ and putting $s=1$

$$
\begin{equation*}
C=\left.\frac{s^{2}+1}{\left(s^{2}-2 s+2\right)}\right|_{s=1}=\frac{2}{1-2+2}=2 . \tag{56}
\end{equation*}
$$

Now the differentiation process begins, clearing the denominator:

$$
\begin{align*}
s^{2}+1 & =(A s+B)(s-1)^{3} \\
& +C\left(s^{2}-2 s+2\right) \\
& +D(s-1)\left(s^{2}-2 s+2\right) \tag{57}\\
& +E(s-1)^{2}\left(s^{2}-2 s+2\right)
\end{align*}
$$

Letting $S=1$ remains again $C=2$, taking the first derivative one has

$$
\begin{align*}
2 s & =A(s-1)^{3}+(A s+B) 3(s-1)^{2} \\
& +C(2 s-2) \tag{58}\\
& +D\left(s^{2}-2 s+2\right)+D(s-1)(2 s-2) \\
& +2 E(s-1)\left(s^{2}-2 s+2\right)+E(s-1)^{2}(2 s-2)
\end{align*}
$$

Letting $s=1$ remains $2=D$, thus $D=2$. Taking another derivative one has

$$
\begin{align*}
2 & =3 A(s-1)^{2}+(A s+B) 6(s-1)+3 A(s-1)^{2} \\
& +2 C s \\
& +D(2 s-2)+D(2 s-2)+2 D(s-1) \tag{59}\\
& +2 E\left(s^{2}-2 s+2\right)+2 E(s-1)(2 s-2)+2 E(s-1)(2 s-2)+E 2(s-1)^{2} .
\end{align*}
$$

Letting $s=1$ gives $2=2 C+2 E$ thus $E=-1$. Now it remains the expansion of the factor of $s^{2}-2 s+2$, which is the case of a pair of complex conjugated roots,

$$
\begin{align*}
& \frac{s^{2}+1}{(s-1)^{3}}=A s+\left.B\right|_{s=1+\boldsymbol{i}} \Rightarrow-2+\boldsymbol{i}=(1+\boldsymbol{i}) A+B \tag{60}\\
& \frac{s^{2}+1}{(s-1)^{3}}=A s+\left.B\right|_{s=1-\boldsymbol{i}} \Rightarrow-2-\boldsymbol{i}=(1-\boldsymbol{i}) A+B
\end{align*}
$$

and the solution is $A=1$ and $B=-3$. So, the desired expansion is

$$
\begin{equation*}
\frac{s^{2}+1}{(s-1)^{3}\left(s^{2}-2 s+2\right)}=\frac{s-3}{s^{2}-2 s+2}+\frac{2}{(s-1)^{3}}+\frac{2}{(s-1)^{2}}-\frac{1}{(s-1)} . \tag{61}
\end{equation*}
$$

7.4 Repeated complex roots

This is the most interesting and difficult case. Consider the irreducible fraction

$$
\begin{equation*}
\frac{P(s)}{\left(s^{2}+a s+b\right)^{r} Q(s)} \tag{62}
\end{equation*}
$$

with $r>1$, where the quadratic polynomial $s^{2}+a s+b$ has complex roots, and where $Q(s)$ has no factor of $s^{2}+a s+b$. The concept of this argument is to use the auxiliary function

$$
\begin{equation*}
\frac{P(s)}{\left(s^{2}+a s+t\right) Q(s)} \tag{63}
\end{equation*}
$$

that admits a partial expansion of the form

$$
\begin{equation*}
\frac{P(s)}{\left(s^{2}+a s+t\right) Q(s)}=\frac{A(t) s+B(t)}{s^{2}+a s+t}+\frac{q(s, t)}{Q(s)} \tag{64}
\end{equation*}
$$

where the coefficients $A(t)$ and $B(t)$ can be computed via the method described for a pair of complex roots. Then, taking the derivative with respect to t one has

$$
\begin{equation*}
-\frac{P(s)}{\left(s^{2}+a s+t\right)^{2} Q(s)}=\frac{A^{\prime}(t) s+B^{\prime}(t)}{s^{2}+a s+t}-\frac{A(t) s+B(t)}{\left(s^{2}+a s+t\right)^{2}}+\frac{q_{t}(s, t)}{Q(s)} \quad q_{t}(s, t)=\frac{\partial q}{\partial t} \tag{65}
\end{equation*}
$$

Then substituting $t=b$ gives the partial expansion in the case $r=2$. For larger r it is enough to iterate the process of differentiation. For example the case $r=3$ yields:

$$
\begin{equation*}
2 \frac{P(s)}{\left(s^{2}+a s+t\right)^{3} Q(s)}=2 \frac{A(t) s+B(t)}{\left(s^{2}+a s+t\right)^{3}}-2 \frac{A^{\prime}(t) s+B^{\prime}(t)}{\left(s^{2}+a s+t\right)^{2}}+\frac{A^{\prime \prime}(t) s+B^{\prime \prime}(t)}{\left(s^{2}+a s+t\right)}+\frac{q_{t t}(s, t)}{Q(s)} . \tag{66}
\end{equation*}
$$

Esempio 4. Expand in partial fractions

$$
\begin{equation*}
\frac{s^{2}+1}{(s-1)\left(s^{2}-2 s+2\right)^{3}} . \tag{67}
\end{equation*}
$$

The coefficient of $s-1$ is easily calculated

$$
\begin{equation*}
\left.\frac{s^{2}+1}{\left(s^{2}-2 s+2\right)^{3}}\right|_{s=1}=2 \tag{68}
\end{equation*}
$$

Now clearing the denominator, one has

$$
\begin{equation*}
s^{2}+1=(A(t) s+B(t))(s-1)+q(t)\left(s^{2}-2 s+t\right) \tag{69}
\end{equation*}
$$

Simplifying terms and substituting $s^{2}=2 s-t$ gives

$$
\begin{equation*}
2 s-t+1=A(t)(2 s-t)-A(t) s+B(t) s-B(t) \tag{70}
\end{equation*}
$$

This gives a linear system

$$
\left\{\begin{array}{cl}
2 & =A(t)+B(t) \tag{71}\\
-t+1 & =-t A(t)-B(t) .
\end{array}\right.
$$

Solving gives $A(t)=1-\frac{2}{t-1}$ and $B(t)=\frac{t+1}{t-1}=1+\frac{2}{t-1}$. It is very useful to simplify the expressions for A and B in order to avoid messy derivatives. Now the derivatives of $A(t), B(t)$ are $A^{\prime}(t)=\frac{2}{(t-1)^{2}}, A^{\prime \prime}(t)=-\frac{4}{(t-1)^{3}}$ and $B^{\prime}(t)=-\frac{2}{(t-1)^{2}}, B^{\prime \prime}(t)=\frac{4}{(t-1)^{3}}$. Thus the coefficients are $A(2)=-1, A^{\prime}(2)=2, A^{\prime \prime}(2)=-4, B(2)=3, B^{\prime}(2)=-2, B^{\prime \prime}(2)=4$. So the desired expansion is

$$
\begin{equation*}
\frac{s^{2}+1}{(s-1)\left(s^{2}-2 s+2\right)^{3}}=\frac{2}{s-1}+\frac{\frac{1}{2} 2(-1 s+3)}{\left(s^{2}-2 s+2\right)^{3}}-\frac{\frac{1}{2} 2(2 s-2)}{\left(s^{2}-2 s+2\right)^{2}}+\frac{\frac{1}{2}(-4 s+4)}{\left(s^{2}-2 s+2\right)} \tag{72}
\end{equation*}
$$

and simplifying

$$
\begin{equation*}
\frac{s^{2}+1}{(s-1)\left(s^{2}-2 s+2\right)^{3}}=\frac{2}{s-1}-\frac{s-3}{\left(s^{2}-2 s+2\right)^{3}}-\frac{2 s-2}{\left(s^{2}-2 s+2\right)^{2}}-\frac{2 s-2}{\left(s^{2}-2 s+2\right)} . \tag{73}
\end{equation*}
$$

