Exercitation 5

Numerical Methods for Dynamical Systems and Control

Marco Frego
PhD student at DIMS

November 11, 2011

1 Exercise 1

Solve this system of differential equations.

$$
\begin{aligned}
y^{\prime \prime}(t)+y^{\prime}(t) & =e^{t} \\
x^{\prime \prime}(t)-y^{\prime}(t) & =t
\end{aligned}
$$

with initial conditions $x(0)=1, x^{\prime}(0)=0, y(0)=-1$ and $y^{\prime}(0)=1$.

1.1 Solution with ODE techniques

Consider the first equation which is independent of $x(t)$. The solution of a second order linear differential equation with constant coefficient is the sum of the homogeneous equation $y_{h}(t)$ plus the particular solution $y_{p}(t)$. The characteristic polynomial associated to the homogeneous equation is $\lambda^{2}+\lambda=0$, thus its solutions are $\lambda=0,-1$. Hence the homogeneous equation has the form

$$
y_{h}(t)=c_{1}+c_{2} e^{-t}
$$

for real constants c_{1}, c_{2}. The particular solution has the form $y_{p}(t)=\alpha e^{t}$ for a real constant α. The general solution in therefore

$$
y(t)=c_{1}+c_{2} e^{-t}+\alpha e^{t}
$$

Calculating $y^{\prime \prime}(t)+y^{\prime}(t)=e^{t}$ and equating the coefficients, gives $\alpha=\frac{1}{2}$. The substitution of the initial conditions, leads to the linear system for the coefficients c_{1}, c_{2}. They are $c_{1}=-1$ and $c_{2}=-\frac{1}{2}$. So the solution of the first differential equation is

$$
y(t)=-1+\frac{1}{2}\left(e^{t}-e^{-t}\right) .
$$

The second equation of the system involves $x^{\prime \prime}(t)$, using the knowledge of $y(t)$ one can substitute in the equation the derivative of $y(t)$ and integrate twice to obtain $x(t)$.

$$
x^{\prime \prime}(t)-y^{\prime}(t)-t=x^{\prime \prime}(t)-\frac{1}{2} e^{t}-\frac{1}{2} e^{-t}-t
$$

Isolating $x^{\prime \prime}(t)$ one has

$$
x^{\prime \prime}(t)=t+\frac{1}{2} e^{t}+\frac{1}{2} e^{-t} \quad \Rightarrow \quad x^{\prime}(t)=\int_{0}^{t} z+\frac{1}{2} e^{z}+\frac{1}{2} e^{-z} d z+c
$$

solving the integral, leads

$$
x^{\prime}(t)=\frac{t^{2}}{2}+\frac{1}{2} e^{t}-\frac{1}{2} e^{-t}+c \Rightarrow x^{\prime}(0)=c=0
$$

thus $c=0$ and performing another step of integration

$$
x(t)=\int_{0}^{t} \frac{x^{2}}{2}+\frac{1}{2} e^{x}-\frac{1}{2} e^{-x} d x+c=\frac{t^{3}}{6}+\frac{1}{2} e^{t}+\frac{1}{2} e^{-t}+c .
$$

Imposing the initial conditions one finds $c=0$, thus the solution is

$$
x(t)=\frac{t^{3}}{6}+\frac{1}{2} e^{t}+\frac{1}{2} e^{-t} .
$$

1.2 Solution with Laplace transform

The transformed system is

$$
\begin{aligned}
& s^{2} Y-s y(0)-y^{\prime}(0)+s Y-y(0)=\frac{1}{s-1} \\
& s^{2} X-s x(0)-x^{\prime}(0)-s Y+y(0)=\frac{1}{s^{2}}
\end{aligned}
$$

substituting the ICS and collecting terms it becomes

$$
\begin{aligned}
& s^{2} Y-s+s Y=\frac{1}{s-1} \\
& s^{2} X-s-s Y-1=\frac{1}{s^{2}}
\end{aligned}
$$

From the first equation, one can solve for Y

$$
Y\left(s^{2}+s\right)=\frac{1}{s-1}-s \Rightarrow Y=\frac{1}{s(s+1)(s-1)}-\frac{s}{s(s+1)}
$$

the reduction to partial fractions is easily done via substitution because there are distinct poles with no multiplicity.

$$
Y=-\frac{1}{s}+\frac{\frac{1}{2}}{s+1}+\frac{\frac{1}{2}}{s-1}-\frac{1}{s+1}=-\frac{1}{s}-\frac{\frac{1}{2}}{s+1}+\frac{\frac{1}{2}}{s-1}
$$

and the antitransform is

$$
y(t)=-1+\frac{1}{2}\left(e^{t}-e^{-t}\right) .
$$

Now using the knowledge of the transform of Y from the second equation of the system one gets

$$
s^{2} X=\frac{1}{s^{2}}+s+1+s\left(-\frac{1}{s}-\frac{\frac{1}{2}}{s+1}+\frac{\frac{1}{2}}{s-1}\right)
$$

from which

$$
X=\frac{1}{s^{4}}+\frac{1}{s}-\frac{\frac{1}{2}}{s(s+1)}+\frac{\frac{1}{2}}{s(s-1)}
$$

and taking the least common multiple ${ }^{1}$

$$
\begin{aligned}
X & =\frac{s^{2}-1+s^{3}\left(s^{2}-1\right)-\frac{1}{2} s^{3}(s-1)+\frac{1}{2} s^{3}(s+1)}{s^{4}(s+1)(s-1)} \\
& =\frac{s^{2}-1+s^{5}-s^{3}-\frac{1}{2} s^{4}+\frac{1}{2} s^{3}+\frac{1}{2} s^{4}+\frac{1}{2} s^{3}}{s^{4}(s+1)(s-1)} \\
& =\frac{s^{5}+s^{2}-1}{s^{4}(s+1)(s-1)} \\
& =\frac{A}{s^{4}}+\frac{B}{s^{3}}+\frac{C}{s^{2}}+\frac{D}{s}+\frac{E}{s+1}+\frac{F}{s-1} .
\end{aligned}
$$

Coefficients A, E, F are easy to determine just by substitution:

$$
A=\frac{-1}{-1}=1 \quad E=\frac{-1+1-1}{1(-2)}=\frac{1}{2} \quad F=\frac{1}{2} .
$$

Multiplying both sides by s and letting $s \rightarrow \infty$ gives $1=D+E+F \Rightarrow 1=D+1$ therefore $D=0$. Now the shortest way of get B and C is to impose the passage for two arbitrary points, e.g. $s= \pm 2$ and solve the associated linear system.

$$
\lim _{s \rightarrow 2} X=\frac{32+4-1}{48}=\frac{1}{16}+\frac{B}{8}+\frac{C}{4}+\frac{\frac{1}{2}}{3}+\frac{1}{2} \Rightarrow \frac{35}{48}=\frac{3+6 B+12 C+8+24}{48}
$$

thus there is the first relation $B=-2 C$. The second limit yields

$$
\lim _{s \rightarrow-2} X=\frac{-32+4-1}{48}=\frac{1}{16}-\frac{B}{8}+\frac{C}{4}+\frac{\frac{1}{2}}{-1}+\frac{\frac{1}{2}}{3} \Rightarrow \frac{-29}{48}=\frac{8+24 C-24-8}{48}
$$

[^0]thus $C=B=0$. The required expansion in partial fraction is
$$
X=\frac{1}{s^{4}}+\frac{\frac{1}{2}}{s+1}+\frac{\frac{1}{2}}{s-1}
$$
and the inverse Laplace transform is
$$
x(t)=\frac{t^{3}}{6}+\frac{1}{2} e^{t}+\frac{1}{2} e^{-t} .
$$

2 Exercise 2

Solve Fibonacci's recurrence

$$
f_{n+2}=f_{n+1}+f_{n}
$$

with initial conditions $f_{0}=f_{1}=1$.

2.1 Solution with Z-transform

Applying the Z-transform to both sides of the equation one has

$$
z^{2} F-f_{0} z^{2}-f_{1} z=z F-f_{0} z+F
$$

collecting terms

$$
F=\frac{f_{0} z^{2}+\left(f_{1}-f_{0}\right) z}{z^{2}-z-1}
$$

and substituting the initial values

$$
\begin{equation*}
F=\frac{z^{2}}{z^{2}-z-1} \tag{1}
\end{equation*}
$$

The roots of $z^{2}-z-1$ are $z_{1,2}=\frac{1 \pm \sqrt{5}}{2}$, thus the expansion is

$$
\frac{F}{z}=\frac{z}{z^{2}-z-1}=\frac{A}{z-z_{1}}+\frac{B}{z-z_{2}}
$$

By the method of substitution one has

$$
A=\frac{\frac{1+\sqrt{5}}{2}}{\frac{1+\sqrt{5}}{2}-\frac{1-\sqrt{5}}{2}}=\frac{\frac{1+\sqrt{5}}{2}}{\sqrt{5}}=\frac{\sqrt{5}+5}{10}
$$

The coefficient B is equal to the conjugate ${ }^{2}$ of A, that is $B=\frac{\sqrt{5}+5}{10}$. Hence the Fibonacci's recurrence is

$$
\begin{aligned}
f_{n} & =A z_{1}^{n}+B z_{2}^{n} \\
& =\frac{5+\sqrt{5}}{10}\left(\frac{1+\sqrt{5}}{2}\right)^{n}+\frac{5-\sqrt{5}}{10}\left(\frac{1-\sqrt{5}}{2}\right)^{n} \\
& =\frac{1}{\sqrt{5}}\left(\frac{1+\sqrt{5}}{2}\right)^{n+1}-\frac{1}{\sqrt{5}}\left(\frac{1-\sqrt{5}}{2}\right)^{n+1}
\end{aligned}
$$

the first elements are the famous $1,1,2,3,5,8,13,21 \ldots$.

2.2 Solution with complex analysis

Equation (1) can be inverted to time domain via the complex integral inversion formula for the Z-transform.

$$
f_{n}=\oint_{C} F(z) z^{n-1} d z=\oint_{C} \frac{z^{2} \cdot z^{n-1}}{z^{2}-z-1} d z=\operatorname{Res}\left(z_{1}\right)+\operatorname{Res}\left(z_{2}\right)
$$

The residues are respectively

$$
\begin{aligned}
& \operatorname{Res}\left(z_{1}\right)=\lim _{z \rightarrow z_{1}}\left(z-z_{1}\right) \frac{z^{2} \cdot z^{n-1}}{z^{2}-z-1}=\lim _{z \rightarrow z_{1}} \frac{z^{n+1}}{z-z_{2}}=\frac{1}{\sqrt{5}}\left(\frac{1+\sqrt{5}}{2}\right)^{n+1} \\
& \operatorname{Res}\left(z_{2}\right)=\lim _{z \rightarrow z_{2}}\left(z-z_{2}\right) \frac{z^{2} \cdot z^{n-1}}{z^{2}-z-1}=\lim _{z \rightarrow z_{2}} \frac{z^{n+1}}{z-z_{1}}=-\frac{1}{\sqrt{5}}\left(\frac{1-\sqrt{5}}{2}\right)^{n+1}
\end{aligned}
$$

3 Exercise 3

Solve the following system of recurrences.

$$
\begin{aligned}
& x_{k+2}=k+y_{k} \\
& y_{k+1}=2 y_{k}
\end{aligned}
$$

with $x_{0}=0, x_{1}=1, y_{0}=1$.

[^1]
3.1 Solution with Z-transform

The transformed system is

$$
\begin{aligned}
z^{2} X-z & =\frac{z}{(z-1)^{2}}+Y \\
z Y-z & =2 Y
\end{aligned}
$$

thus from the second equation one has $Y=\frac{z}{z-2}$ and the reverse transform yields $y_{k}=2^{k}$. The substitution of the second equation in the first gives

$$
z^{2} X-z=\frac{z}{(z-1)^{2}}+\frac{z}{z-2}
$$

and collecting terms

$$
\begin{equation*}
X=\frac{1}{z}+\frac{z}{z(z-1)^{2}}+\frac{z}{z(z-2)} \tag{2}
\end{equation*}
$$

If one takes the least common multiple has

$$
\begin{equation*}
X=\frac{(z-1)^{2}(z-2)+z-2+(z-1)^{2}}{z(z-1)^{2}(z-2)}=\frac{z^{3}-3 z^{2}+4 z-3}{z(z-1)^{2}(z-2)} . \tag{3}
\end{equation*}
$$

The reduction in partial fractions is

$$
X=\frac{z^{3}-3 z^{2}+4 z-3}{z(z-1)^{2}(z-2)}=\frac{A z}{z}+\frac{E z}{z^{2}}+\frac{B z}{z-1}+\frac{C z}{(z-1)^{2}}+\frac{D z}{z-2} .
$$

With the usual trick one considers the expression X / z,

$$
\frac{X}{z}=\frac{z^{3}-3 z^{2}+4 z-3}{z^{2}(z-1)^{2}(z-2)}=\frac{A}{z}+\frac{E}{z^{2}}+\frac{B}{z-1}+\frac{C}{(z-1)^{2}}+\frac{D}{z-2} .
$$

The coefficients E, C, D can be calculated via substitution:

$$
E=\frac{-3}{-2}=\frac{3}{2} \quad C=\frac{1-3+4-3}{1(-1)}=1 \quad D=\frac{8-12+8-3}{4}=\frac{1}{4},
$$

the remaining two can be calculated using the limit $z \rightarrow \infty$ and a direct substitution of an arbitrary point (e.g. $z=-1$).

$$
\lim _{z \rightarrow \infty} \frac{X z}{z}=\lim _{z \rightarrow \infty} \frac{z^{3}-3 z^{2}+4 z-3}{z(z-1)^{2}(z-2)}=A+B+D=0
$$

thus there is a first relation $A+B=-\frac{1}{4}$. The limit for $z \rightarrow-1$ gives the second one:

$$
\lim _{z \rightarrow-1} \frac{X}{z}=\lim _{z \rightarrow-1} \frac{z^{3}-3 z^{2}+4 z-3}{z^{2}(z-1)^{2}(z-2)}=-A-\frac{B}{2}+\frac{C}{4}-\frac{D}{3}+E=\frac{-1-3-4-3}{4(-3)}
$$

that is, using the first relation $\left(A=-B-\frac{1}{4}\right)$,

$$
\frac{11}{12}=B+\frac{1}{4}-\frac{B}{2}+\frac{1}{4}-\frac{1}{12}+\frac{3}{2} \quad \Rightarrow \quad B=-2, A=\frac{7}{4}
$$

In conclusion, the partial fraction decomposition of (3) is

$$
X=\frac{7}{4}+\frac{3}{2 z}+\frac{-2 z}{z-1}+\frac{z}{(z-1)^{2}}+\frac{z}{4(z-2)} .
$$

Applying the inverse Z-transform one obtains the required solution

$$
x_{k}=\frac{7}{4} \delta_{0}+\frac{3}{2} \delta_{1}-2+k+\frac{2^{k}}{4} .
$$

3.2 Solution with complex analysis

Suppose to restart from equation (3) and use the theory of residues, let call

$$
F(z)=\frac{z^{3}-3 z^{2}+4 z-3}{z(z-1)^{2}(z-2)} \Rightarrow f_{k}=\oint_{C} F(z) z^{k-1} d z=\sum \text { Res }
$$

and the residues are respectively in $0,1,2$:

$$
\begin{aligned}
& \operatorname{Res}(F, 0)=\lim _{z \rightarrow 0} z F(z) z^{k-1}=0 \\
& \operatorname{Res}(F, 2)=\lim _{z \rightarrow 2}(z-2) F(z) z^{k-1}=\frac{2^{k}}{4} .
\end{aligned}
$$

In $z=1$ there is a double pole,

$$
\operatorname{Res}(F, 1)=\frac{1}{1!} \lim _{z \rightarrow 2} \frac{d}{d z}\left((z-1)^{2} F(z) z^{k-1}\right)
$$

this residue gives

$$
\begin{aligned}
\operatorname{Res}(F, 1)= & \lim _{z \rightarrow 1} \frac{\left[(k+2) z^{k+1}-3(k+1) z^{k}+4 k z^{k-1}-3(k-1) z^{k-2}\right]\left(z^{2}-2 z\right)}{\left(z^{2}-2 z\right)^{2}} \\
& \lim _{z \rightarrow 1} \frac{-\left[z^{k+2}-3 z^{k+1}+4 z^{k}-3 z^{k-1}\right](2 z-2)}{\left(z^{2}-2 z\right)^{2}} \\
= & -\frac{[(k+2)-3(k+1)+4 k-3(k-1)]-0}{(-1)^{2}} \\
= & k-2 .
\end{aligned}
$$

So, for $k \geq 2$

$$
x_{k}=\frac{2^{k}}{4}+k-2 .
$$

In order to avoid some more calculation, one could also start from (2) to decompose in partial fraction.

4 Exercise 4

Solve the following system of recurrences.

$$
\begin{aligned}
& x_{k+1}+2 y_{k+1}=x_{k} \\
& x_{k+1}-2 y_{k+1}=y_{k}
\end{aligned}
$$

with $x_{0}=y_{0}=1$.

4.1 Solution with Z-transform

The transformed system becomes

$$
\begin{aligned}
& z X-z+2 z Y-2 z=X \\
& z X-z-2 z Y+2 z=Y
\end{aligned}
$$

Now the addition of the two equations, and the subtraction of the second from the first give

$$
\begin{array}{clrl}
2 z X-2 z=X+Y & & X=\frac{2 z}{2 z-1}+\frac{Y}{2 z-1} \\
& \Rightarrow & Y(4 z+1)=4 z+\frac{2 z}{2 z-1}+\frac{Y}{2 z-1}
\end{array}
$$

Solving the second one for Y yields

$$
Y\left(4 z+1-\frac{1}{2 z-1}\right)=\frac{4 z(2 z-1)+2 z}{2 z-1} \Rightarrow Y\left(\frac{8 z^{2}-4 z+2 z-1-1}{2 z-1}\right)=\frac{8 z^{2}-4 z+2 z}{2 z-1}
$$

thus

$$
Y=\frac{8 z^{2}-2 z}{8 z^{2}-2 z-2}=\frac{z\left(z-\frac{1}{4}\right)}{z^{2}-\frac{1}{4} z-\frac{1}{4}}=\frac{A z}{z-z_{1}}+\frac{B z}{z-z_{2}}
$$

where z_{1}, z_{2} are the roots of $z^{2}-\frac{1}{4} z-\frac{1}{4}=0$, i.e.

$$
z_{1,2}=\frac{\frac{1}{4} \pm \sqrt{\frac{1}{16}+1}}{2}=\frac{\frac{1}{4} \pm \frac{\sqrt{17}}{4}}{2}=\frac{1}{8} \pm \frac{\sqrt{17}}{8} .
$$

Coefficients A, B can be calculated by substitution, giving

$$
A=\frac{\frac{1}{8}+\frac{\sqrt{17}}{8}-\frac{1}{4}}{\frac{1}{8}+\frac{\sqrt{17}}{8}-\left(\frac{1}{8}-\frac{\sqrt{17}}{8}\right)}=\left(\frac{\sqrt{17}}{8}-\frac{1}{8}\right)\left(\frac{8}{2 \sqrt{17}}\right)=\frac{1}{2}-\frac{1}{2 \sqrt{17}} \frac{\sqrt{17}}{\sqrt{17}}=\frac{1}{2}-\frac{\sqrt{17}}{34}
$$

hence $B=\frac{1}{2}+\frac{\sqrt{17}}{34}$. Therefore the solution is

$$
\begin{equation*}
y_{k}=A z_{1}^{k}+B z_{2}^{k}=\frac{1}{2}\left(z_{1}^{k}+z_{2}^{k}\right)-\frac{\sqrt{17}}{34}\left(z_{1}^{k}-z_{2}^{k}\right) \tag{4}
\end{equation*}
$$

The same calculation done with the trick of multiplying by z and letting $z \rightarrow \infty$ joined with the substitution of $z=0$ in the expression of Y / z gives

$$
\begin{aligned}
& \lim _{z \rightarrow \infty} \frac{z\left(z-\frac{1}{4}\right)}{z^{2}-\frac{1}{4} z-\frac{1}{4}}=\frac{A z}{z-z_{1}}+\frac{B z}{z-z_{2}} \Rightarrow \quad 1=A+B \\
& \lim _{z \rightarrow 0} \frac{\left(z-\frac{1}{4}\right)}{z^{2}-\frac{1}{4} z-\frac{1}{4}}=\frac{A}{z-z_{1}}+\frac{B}{z-z_{2}} \Rightarrow 1=\frac{A}{-z_{1}}+\frac{B}{-z_{2}} .
\end{aligned}
$$

Solving the system gives the same solution but this way seems more involved than the direct substitution. The last method is with the complex residues,

$$
\begin{gathered}
F(z)=\frac{z\left(z-\frac{1}{4}\right)}{z^{2}-\frac{1}{4} z-\frac{1}{4}} \Rightarrow f_{k}=\oint_{C} F(z) z^{k-1} d z=\sum \text { Res, } \\
\operatorname{Res}\left(F, z_{1}\right)=\lim _{z \rightarrow z_{1}}\left(z-z_{1}\right) F(z) z^{k-1}=\frac{z_{1}^{k}\left(z_{1}-\frac{1}{4}\right)}{z_{1}-z_{2}} \\
\operatorname{Res}\left(F, z_{2}\right)=\lim _{z \rightarrow z_{2}}\left(z-z_{2}\right) F(z) z^{k-1}=\frac{z_{2}^{k}\left(z_{2}-\frac{1}{4}\right)}{z_{2}-z_{1}} .
\end{gathered}
$$

This method gives directly the reverse Z-transform and does not involve calculation until the last passage, so

$$
y_{k}=\frac{z_{1}^{k}\left(z_{1}-\frac{1}{4}\right)}{z_{1}-z_{2}}+\frac{z_{2}^{k}\left(z_{2}-\frac{1}{4}\right)}{z_{2}-z_{1}}
$$

doing the simplification gives the (4). Passing to the equation for X, one has

$$
\begin{aligned}
X & =\frac{z}{z-\frac{1}{2}}+\frac{A z}{2\left(z-z_{1}\right)\left(z-\frac{1}{2}\right)}+\frac{B z}{2\left(z-z_{2}\right)\left(z-\frac{1}{2}\right)} \\
& =\frac{z}{z-\frac{1}{2}}+\frac{A}{2} \frac{1}{z_{1}-\frac{1}{2}} \frac{z}{z-z_{1}}+\frac{A}{2} \frac{1}{\frac{1}{2}-z_{1}} \frac{z}{z-\frac{1}{2}}+\frac{B}{2} \frac{1}{z_{2}-\frac{1}{2}} \frac{z}{z-z_{2}}+\frac{B}{2} \frac{1}{\frac{1}{2}-z_{2}} \frac{z}{z-\frac{1}{2}}
\end{aligned}
$$

Here it is enough to compute one coefficient, the others are easily related. So the first coefficient is

$$
\begin{aligned}
\frac{A}{2} \frac{1}{z_{1}-\frac{1}{2}} & =\left(\frac{1}{4}-\frac{\sqrt{17}}{2 \cdot 34}\right)\left(\frac{1}{\frac{1}{8}+\frac{\sqrt{17}}{8}-\frac{1}{2}}\right) \\
& =\left(\frac{1}{4}-\frac{\sqrt{17}}{2 \cdot 34}\right)\left(\frac{1}{-\frac{3}{8}+\frac{\sqrt{17}}{8}}\right) \\
& =\left(\frac{1}{4}-\frac{\sqrt{17}}{2 \cdot 34}\right) \frac{8}{-3+\sqrt{17}}=\frac{1}{17} \frac{34-2 \sqrt{17}}{-3+\sqrt{17}} \\
& =\frac{2}{17} \frac{17-\sqrt{17}}{-3+\sqrt{17}} \frac{-3-\sqrt{17}}{-3-\sqrt{17}} \\
& =\frac{2}{17} \frac{-51+3 \sqrt{17}-17 \sqrt{17}+17}{9-17}=\frac{2}{17} \frac{-34-14 \sqrt{17}}{-8} \\
& =\frac{1}{2}+\frac{7}{34} \sqrt{17} .
\end{aligned}
$$

Therefore the remaining coefficient are the conjugate in $\mathbb{Q}(\sqrt{17})$ and/or with opposite sign:

$$
\begin{aligned}
& \frac{B}{2} \frac{1}{z_{2}-\frac{1}{2}}=\frac{1}{2}-\frac{7}{34} \sqrt{17} \\
& \frac{A}{2} \frac{1}{\frac{1}{2}-z_{1}}=-\frac{1}{2}-\frac{7}{34} \sqrt{17} \\
& \frac{B}{2} \frac{1}{\frac{1}{2}-z_{2}}=-\frac{1}{2}+\frac{7}{34} \sqrt{17}
\end{aligned}
$$

Performing the inverse Z-transform one has

$$
\begin{aligned}
x_{k}= & \left(\frac{1}{2}\right)^{k}+\left(\frac{1}{2}+\frac{7}{34} \sqrt{17}\right) z_{1}^{k}+\left(-\frac{1}{2}-\frac{7}{34} \sqrt{17}\right)\left(\frac{1}{2}\right)^{k} \\
& +\left(\frac{1}{2}-\frac{7}{34} \sqrt{17}\right) z_{2}^{k}+\left(-\frac{1}{2}+\frac{7}{34} \sqrt{17}\right)\left(\frac{1}{2}\right)^{k} .
\end{aligned}
$$

If one collects terms obtains

$$
x_{k}=\left(\frac{1}{2}+\frac{7}{34} \sqrt{17}\right) z_{1}^{k}+\left(\frac{1}{2}-\frac{7}{34} \sqrt{17}\right) z_{2}^{k} .
$$

It is easy to check that $x_{0}=1$ as required.

[^0]: ${ }^{1}$ If one looks carefully at the Laplace transform tables, finds directly the antitransform of $\frac{\alpha}{s(s+\alpha)}$ which is $1-e^{-\alpha t}$. Performing the 1 cm is interesting because of the pole of fourth order in 0 in the partial fraction decomposition.

[^1]: ${ }^{2}$ conjugate over $\mathbb{Q}(\sqrt{5})$ which is the quadratic estension of \mathbb{Q}

