Exercitation 5

Numerical Methods for Dynamical Systems and Control

Marco Frego PhD student at DIMS

November 11, 2011

1 Exercise 1

Solve this system of differential equations.

$$y''(t) + y'(t) = e^t$$

 $x''(t) - y'(t) = t$

with initial conditions x(0) = 1, x'(0) = 0, y(0) = -1 and y'(0) = 1.

1.1 Solution with ODE techniques

Consider the first equation which is independent of x(t). The solution of a second order linear differential equation with constant coefficient is the sum of the homogeneous equation $y_h(t)$ plus the particular solution $y_p(t)$. The characteristic polynomial associated to the homogeneous equation is $\lambda^2 + \lambda = 0$, thus its solutions are $\lambda = 0, -1$. Hence the homogeneous equation has the form

$$y_h(t) = c_1 + c_2 e^{-t}$$

for real constants c_1 , c_2 . The particular solution has the form $y_p(t) = \alpha e^t$ for a real constant α . The general solution in therefore

$$y(t) = c_1 + c_2 e^{-t} + \alpha e^t.$$

Calculating $y''(t) + y'(t) = e^t$ and equating the coefficients, gives $\alpha = \frac{1}{2}$. The substitution of the initial conditions, leads to the linear system for the coefficients c_1 , c_2 . They are $c_1 = -1$ and $c_2 = -\frac{1}{2}$. So the solution of the first differential equation is

$$y(t) = -1 + \frac{1}{2}(e^t - e^{-t})$$
.

The second equation of the system involves x''(t), using the knowledge of y(t) one can substitute in the equation the derivative of y(t) and integrate twice to obtain x(t).

$$x''(t) - y'(t) - t = x''(t) - \frac{1}{2}e^t - \frac{1}{2}e^{-t} - t$$

Isolating x''(t) one has

$$x''(t) = t + \frac{1}{2}e^t + \frac{1}{2}e^{-t} \quad \Rightarrow \quad x'(t) = \int_0^t z + \frac{1}{2}e^z + \frac{1}{2}e^{-z} dz + c$$

solving the integral, leads

$$x'(t) = \frac{t^2}{2} + \frac{1}{2}e^t - \frac{1}{2}e^{-t} + c \Rightarrow x'(0) = c = 0$$

thus c = 0 and performing another step of integration

$$x(t) = \int_0^t \frac{x^2}{2} + \frac{1}{2}e^x - \frac{1}{2}e^{-x} dx + c = \frac{t^3}{6} + \frac{1}{2}e^t + \frac{1}{2}e^{-t} + c$$

Imposing the initial conditions one finds c = 0, thus the solution is

$$x(t) = \frac{t^3}{6} + \frac{1}{2}e^t + \frac{1}{2}e^{-t}$$

1.2 Solution with Laplace transform

The transformed system is

$$s^{2}Y - sy(0) - y'(0) + sY - y(0) = \frac{1}{s - 1}$$
$$s^{2}X - sx(0) - x'(0) - sY + y(0) = \frac{1}{s^{2}}$$

substituting the ICS and collecting terms it becomes

$$s^{2}Y - s + sY = \frac{1}{s-1}$$
$$s^{2}X - s - sY - 1 = \frac{1}{s^{2}}$$

From the first equation, one can solve for Y

$$Y(s^{2}+s) = \frac{1}{s-1} - s \Rightarrow Y = \frac{1}{s(s+1)(s-1)} - \frac{s}{s(s+1)(s-1)}$$

the reduction to partial fractions is easily done via substitution because there are distinct poles with no multiplicity.

$$Y = -\frac{1}{s} + \frac{\frac{1}{2}}{s+1} + \frac{\frac{1}{2}}{s-1} - \frac{1}{s+1} = -\frac{1}{s} - \frac{\frac{1}{2}}{s+1} + \frac{\frac{1}{2}}{s-1}$$

and the antitransform is

$$y(t) = -1 + \frac{1}{2}(e^t - e^{-t})$$
.

Now using the knowledge of the transform of Y from the second equation of the system one gets

$$s^{2}X = \frac{1}{s^{2}} + s + 1 + s\left(-\frac{1}{s} - \frac{\frac{1}{2}}{s+1} + \frac{\frac{1}{2}}{s-1}\right)$$

from which

$$X = \frac{1}{s^4} + \frac{1}{s} - \frac{\frac{1}{2}}{s(s+1)} + \frac{\frac{1}{2}}{s(s-1)}$$

and taking the least common multiple¹

$$\begin{split} X &= \frac{s^2 - 1 + s^3(s^2 - 1) - \frac{1}{2}s^3(s - 1) + \frac{1}{2}s^3(s + 1)}{s^4(s + 1)(s - 1)} \\ &= \frac{s^2 - 1 + s^5 - s^3 - \frac{1}{2}s^4 + \frac{1}{2}s^3 + \frac{1}{2}s^4 + \frac{1}{2}s^3}{s^4(s + 1)(s - 1)} \\ &= \frac{s^5 + s^2 - 1}{s^4(s + 1)(s - 1)} \\ &= \frac{A}{s^4} + \frac{B}{s^3} + \frac{C}{s^2} + \frac{D}{s} + \frac{E}{s + 1} + \frac{F}{s - 1}. \end{split}$$

Coefficients A, E, F are easy to determine just by substitution:

$$A = \frac{-1}{-1} = 1$$
 $E = \frac{-1+1-1}{1(-2)} = \frac{1}{2}$ $F = \frac{1}{2}$.

Multiplying both sides by s and letting $s \to \infty$ gives $1 = D + E + F \Rightarrow 1 = D + 1$ therefore D = 0. Now the shortest way of get B and C is to impose the passage for two arbitrary points, e.g. $s = \pm 2$ and solve the associated linear system.

$$\lim_{s \to 2} X = \frac{32 + 4 - 1}{48} = \frac{1}{16} + \frac{B}{8} + \frac{C}{4} + \frac{1}{2} + \frac{1}{2} \Rightarrow \frac{35}{48} = \frac{3 + 6B + 12C + 8 + 24}{48}$$

thus there is the first relation B = -2C. The second limit yields

$$\lim_{s \to -2} X = \frac{-32 + 4 - 1}{48} = \frac{1}{16} - \frac{B}{8} + \frac{C}{4} + \frac{\frac{1}{2}}{-1} + \frac{\frac{1}{2}}{3} \Rightarrow \frac{-29}{48} = \frac{8 + 24C - 24 - 8}{48}$$

¹If one looks carefully at the Laplace transform tables, finds directly the antitransform of $\frac{\alpha}{s(s+\alpha)}$ which is $1 - e^{-\alpha t}$. Performing the lcm is interesting because of the pole of fourth order in 0 in the partial fraction decomposition.

thus C = B = 0. The required expansion in partial fraction is

$$X = \frac{1}{s^4} + \frac{\frac{1}{2}}{s+1} + \frac{\frac{1}{2}}{s-1}$$

and the inverse Laplace transform is

$$x(t) = \frac{t^3}{6} + \frac{1}{2}e^t + \frac{1}{2}e^{-t}$$

^	-	•	0
2	Exe	rcise	2

Solve Fibonacci's recurrence

$$f_{n+2} = f_{n+1} + f_n$$

with initial conditions $f_0 = f_1 = 1$.

2.1 Solution with Z-transform

Applying the Z-transform to both sides of the equation one has

$$z^2F - f_0 z^2 - f_1 z = zF - f_0 z + F$$

collecting terms

$$F = \frac{f_0 z^2 + (f_1 - f_0)z}{z^2 - z - 1}$$

and substituting the initial values

$$F = \frac{z^2}{z^2 - z - 1}.$$
 (1)

The roots of $z^2 - z - 1$ are $z_{1,2} = \frac{1 \pm \sqrt{5}}{2}$, thus the expansion is

$$\frac{F}{z} = \frac{z}{z^2 - z - 1} = \frac{A}{z - z_1} + \frac{B}{z - z_2}.$$

By the method of substitution one has

$$A = \frac{\frac{1+\sqrt{5}}{2}}{\frac{1+\sqrt{5}}{2} - \frac{1-\sqrt{5}}{2}} = \frac{\frac{1+\sqrt{5}}{2}}{\sqrt{5}} = \frac{\sqrt{5}+5}{10}.$$

The coefficient *B* is equal to the conjugate² of *A*, that is $B = \frac{\sqrt{5}+5}{10}$. Hence the Fibonacci's recurrence is

$$f_n = Az_1^n + Bz_2^n$$

= $\frac{5 + \sqrt{5}}{10} \left(\frac{1 + \sqrt{5}}{2}\right)^n + \frac{5 - \sqrt{5}}{10} \left(\frac{1 - \sqrt{5}}{2}\right)^n$
= $\frac{1}{\sqrt{5}} \left(\frac{1 + \sqrt{5}}{2}\right)^{n+1} - \frac{1}{\sqrt{5}} \left(\frac{1 - \sqrt{5}}{2}\right)^{n+1}$

the first elements are the famous 1, 1, 2, 3, 5, 8, 13, 21

2.2 Solution with complex analysis

Equation (1) can be inverted to time domain via the complex integral inversion formula for the Z-transform.

$$f_n = \oint_C F(z) z^{n-1} dz = \oint_C \frac{z^2 \cdot z^{n-1}}{z^2 - z - 1} dz = \operatorname{Res}(z_1) + \operatorname{Res}(z_2)$$

The residues are respectively

$$\operatorname{Res}(z_1) = \lim_{z \to z_1} (z - z_1) \frac{z^2 \cdot z^{n-1}}{z^2 - z - 1} = \lim_{z \to z_1} \frac{z^{n+1}}{z - z_2} = \frac{1}{\sqrt{5}} \left(\frac{1 + \sqrt{5}}{2}\right)^{n+1}$$
$$\operatorname{Res}(z_2) = \lim_{z \to z_2} (z - z_2) \frac{z^2 \cdot z^{n-1}}{z^2 - z - 1} = \lim_{z \to z_2} \frac{z^{n+1}}{z - z_1} = -\frac{1}{\sqrt{5}} \left(\frac{1 - \sqrt{5}}{2}\right)^{n+1}$$

3 Exercise 3

Solve the following system of recurrences.

$$x_{k+2} = k + y_k$$
$$y_{k+1} = 2y_k$$

with $x_0 = 0, x_1 = 1, y_0 = 1$.

²conjugate over $\mathbb{Q}(\sqrt{5})$ which is the quadratic estension of \mathbb{Q}

3.1 Solution with Z-transform

The transformed system is

$$z^{2}X - z = \frac{z}{(z-1)^{2}} + Y$$
$$zY - z = 2Y$$

thus from the second equation one has $Y = \frac{z}{z-2}$ and the reverse transform yields $y_k = 2^k$. The substitution of the second equation in the first gives

$$z^{2}X - z = \frac{z}{(z-1)^{2}} + \frac{z}{z-2}$$

and collecting terms

$$X = \frac{1}{z} + \frac{z}{z(z-1)^2} + \frac{z}{z(z-2)}.$$
(2)

If one takes the least common multiple has

$$X = \frac{(z-1)^2(z-2) + z - 2 + (z-1)^2}{z(z-1)^2(z-2)} = \frac{z^3 - 3z^2 + 4z - 3}{z(z-1)^2(z-2)}.$$
(3)

The reduction in partial fractions is

$$X = \frac{z^3 - 3z^2 + 4z - 3}{z(z-1)^2(z-2)} = \frac{Az}{z} + \frac{Ez}{z^2} + \frac{Bz}{z-1} + \frac{Cz}{(z-1)^2} + \frac{Dz}{z-2}.$$

With the usual trick one considers the expression X/z,

$$\frac{X}{z} = \frac{z^3 - 3z^2 + 4z - 3}{z^2(z-1)^2(z-2)} = \frac{A}{z} + \frac{E}{z^2} + \frac{B}{z-1} + \frac{C}{(z-1)^2} + \frac{D}{z-2}$$

The coefficients E, C, D can be calculated via substitution:

$$E = \frac{-3}{-2} = \frac{3}{2} \qquad C = \frac{1 - 3 + 4 - 3}{1(-1)} = 1 \qquad D = \frac{8 - 12 + 8 - 3}{4} = \frac{1}{4} ,$$

the remaining two can be calculated using the limit $z \to \infty$ and a direct substitution of an arbitrary point (e.g. z = -1).

$$\lim_{z \to \infty} \frac{Xz}{z} = \lim_{z \to \infty} \frac{z^3 - 3z^2 + 4z - 3}{z(z-1)^2(z-2)} = A + B + D = 0,$$

thus there is a first relation $A + B = -\frac{1}{4}$. The limit for $z \to -1$ gives the second one:

$$\lim_{z \to -1} \frac{X}{z} = \lim_{z \to -1} \frac{z^3 - 3z^2 + 4z - 3}{z^2(z-1)^2(z-2)} = -A - \frac{B}{2} + \frac{C}{4} - \frac{D}{3} + E = \frac{-1 - 3 - 4 - 3}{4(-3)}$$

that is, using the first relation ($A = -B - \frac{1}{4}$),

$$\frac{11}{12} = B + \frac{1}{4} - \frac{B}{2} + \frac{1}{4} - \frac{1}{12} + \frac{3}{2} \qquad \Rightarrow \qquad B = -2, \ A = \frac{7}{4}$$

In conclusion, the partial fraction decomposition of (3) is

$$X = \frac{7}{4} + \frac{3}{2z} + \frac{-2z}{z-1} + \frac{z}{(z-1)^2} + \frac{z}{4(z-2)}$$

Applying the inverse Z-transform one obtains the required solution

$$x_k = \frac{7}{4}\delta_0 + \frac{3}{2}\delta_1 - 2 + k + \frac{2^k}{4} \, .$$

3.2 Solution with complex analysis

Suppose to restart from equation (3) and use the theory of residues, let call

$$F(z) = \frac{z^3 - 3z^2 + 4z - 3}{z(z-1)^2(z-2)} \quad \Rightarrow \quad f_k = \oint_C F(z) z^{k-1} \, dz = \sum \text{ Res}$$

and the residues are respectively in 0, 1, 2:

$$\operatorname{Res}(F,0) = \lim_{z \to 0} zF(z)z^{k-1} = 0$$
$$\operatorname{Res}(F,2) = \lim_{z \to 2} (z-2)F(z)z^{k-1} = \frac{2^k}{4}.$$

In z = 1 there is a double pole,

$$\operatorname{Res}(F,1) = \frac{1}{1!} \lim_{z \to 2} \frac{d}{dz} \left((z-1)^2 F(z) z^{k-1} \right)$$

this residue gives

$$\begin{aligned} \operatorname{Res}(F,1) &= \lim_{z \to 1} \frac{\left[(k+2)z^{k+1} - 3(k+1)z^k + 4kz^{k-1} - 3(k-1)z^{k-2} \right] (z^2 - 2z)}{(z^2 - 2z)^2} \\ &\lim_{z \to 1} \frac{-[z^{k+2} - 3z^{k+1} + 4z^k - 3z^{k-1}](2z-2)}{(z^2 - 2z)^2} \\ &= -\frac{\left[(k+2) - 3(k+1) + 4k - 3(k-1) \right] - 0}{(-1)^2} \\ &= k-2. \end{aligned}$$

So, for $k \geq 2$

$$x_k = \frac{2^k}{4} + k - 2.$$

In order to avoid some more calculation, one could also start from (2) to decompose in partial fraction.

4 Exercise 4

Solve the following system of recurrences.

$$x_{k+1} + 2y_{k+1} = x_k$$
$$x_{k+1} - 2y_{k+1} = y_k$$

with $x_0 = y_0 = 1$.

4.1 Solution with Z-transform

The transformed system becomes

$$zX - z + 2zY - 2z = X$$
$$zX - z - 2zY + 2z = Y$$

Now the addition of the two equations, and the subtraction of the second from the first give

$$2zX - 2z = X + Y \qquad X = \frac{2z}{2z - 1} + \frac{Y}{2z - 1}$$

$$\Rightarrow \qquad 4zY - 4z = X - Y \qquad Y(4z + 1) = 4z + \frac{2z}{2z - 1} + \frac{Y}{2z - 1}$$

Solving the second one for Y yields

$$Y\left(4z+1-\frac{1}{2z-1}\right) = \frac{4z(2z-1)+2z}{2z-1} \Rightarrow Y\left(\frac{8z^2-4z+2z-1-1}{2z-1}\right) = \frac{8z^2-4z+2z}{2z-1},$$

thus

$$Y = \frac{8z^2 - 2z}{8z^2 - 2z - 2} = \frac{z\left(z - \frac{1}{4}\right)}{z^2 - \frac{1}{4}z - \frac{1}{4}} = \frac{Az}{z - z_1} + \frac{Bz}{z - z_2}$$

where z_1, z_2 are the roots of $z^2 - \frac{1}{4}z - \frac{1}{4} = 0$, i.e.

$$z_{1,2} = \frac{\frac{1}{4} \pm \sqrt{\frac{1}{16} + 1}}{2} = \frac{\frac{1}{4} \pm \frac{\sqrt{17}}{4}}{2} = \frac{1}{8} \pm \frac{\sqrt{17}}{8}$$

Coefficients A, B can be calculated by substitution, giving

$$A = \frac{\frac{1}{8} + \frac{\sqrt{17}}{8} - \frac{1}{4}}{\frac{1}{8} + \frac{\sqrt{17}}{8} - \left(\frac{1}{8} - \frac{\sqrt{17}}{8}\right)} = \left(\frac{\sqrt{17}}{8} - \frac{1}{8}\right) \left(\frac{8}{2\sqrt{17}}\right) = \frac{1}{2} - \frac{1}{2\sqrt{17}} \frac{\sqrt{17}}{\sqrt{17}} = \frac{1}{2} - \frac{\sqrt{17}}{34} ,$$

hence $B = \frac{1}{2} + \frac{\sqrt{17}}{34}$. Therefore the solution is

$$y_k = Az_1^k + Bz_2^k = \frac{1}{2} \left(z_1^k + z_2^k \right) - \frac{\sqrt{17}}{34} \left(z_1^k - z_2^k \right) \right].$$
(4)

The same calculation done with the trick of multiplying by z and letting $z \to \infty$ joined with the substitution of z = 0 in the expression of Y/z gives

$$\lim_{z \to \infty} \frac{z\left(z - \frac{1}{4}\right)}{z^2 - \frac{1}{4}z - \frac{1}{4}} = \frac{Az}{z - z_1} + \frac{Bz}{z - z_2} \Rightarrow \qquad 1 = A + B$$
$$\lim_{z \to 0} \frac{\left(z - \frac{1}{4}\right)}{z^2 - \frac{1}{4}z - \frac{1}{4}} = \frac{A}{z - z_1} + \frac{B}{z - z_2} \Rightarrow 1 = \frac{A}{-z_1} + \frac{B}{-z_2}.$$

Solving the system gives the same solution but this way seems more involved than the direct substitution. The last method is with the complex residues,

$$F(z) = \frac{z\left(z - \frac{1}{4}\right)}{z^2 - \frac{1}{4}z - \frac{1}{4}} \quad \Rightarrow \quad f_k = \oint_C F(z)z^{k-1} \, dz = \sum \text{ Res},$$
$$\operatorname{Res}(F, z_1) = \lim_{z \to z_1} (z - z_1)F(z)z^{k-1} = \frac{z_1^k(z_1 - \frac{1}{4})}{z_1 - z_2},$$
$$\operatorname{Res}(F, z_2) = \lim_{z \to z_2} (z - z_2)F(z)z^{k-1} = \frac{z_2^k(z_2 - \frac{1}{4})}{z_2 - z_1}.$$

This method gives directly the reverse Z-transform and does not involve calculation until the last passage, so

$$y_k = \frac{z_1^k(z_1 - \frac{1}{4})}{z_1 - z_2} + \frac{z_2^k(z_2 - \frac{1}{4})}{z_2 - z_1},$$

doing the simplification gives the (4). Passing to the equation for X, one has

$$X = \frac{z}{z - \frac{1}{2}} + \frac{Az}{2(z - z_1)(z - \frac{1}{2})} + \frac{Bz}{2(z - z_2)(z - \frac{1}{2})}$$
$$= \frac{z}{z - \frac{1}{2}} + \frac{A}{2}\frac{1}{z_1 - \frac{1}{2}}\frac{z}{z - z_1} + \frac{A}{2}\frac{1}{\frac{1}{2} - z_1}\frac{z}{z - \frac{1}{2}} + \frac{B}{2}\frac{1}{z_2 - \frac{1}{2}}\frac{z}{z - z_2} + \frac{B}{2}\frac{1}{\frac{1}{2} - z_2}\frac{z}{z - \frac{1}{2}}$$

Here it is enough to compute one coefficient, the others are easily related. So the first coefficient is

$$\begin{aligned} \frac{A}{2} \frac{1}{z_1 - \frac{1}{2}} &= \left(\frac{1}{4} - \frac{\sqrt{17}}{2 \cdot 34}\right) \left(\frac{1}{\frac{1}{8} + \frac{\sqrt{17}}{8} - \frac{1}{2}}\right) \\ &= \left(\frac{1}{4} - \frac{\sqrt{17}}{2 \cdot 34}\right) \left(\frac{1}{-\frac{3}{8} + \frac{\sqrt{17}}{8}}\right) \\ &= \left(\frac{1}{4} - \frac{\sqrt{17}}{2 \cdot 34}\right) \frac{8}{-3 + \sqrt{17}} = \frac{1}{17} \frac{34 - 2\sqrt{17}}{-3 + \sqrt{17}} \\ &= \frac{2}{17} \frac{17 - \sqrt{17}}{-3 + \sqrt{17}} \frac{-3 - \sqrt{17}}{-3 - \sqrt{17}} \\ &= \frac{2}{17} \frac{-51 + 3\sqrt{17} - 17\sqrt{17} + 17}{9 - 17} = \frac{2}{17} \frac{-34 - 14\sqrt{17}}{-8} \\ &= \frac{1}{2} + \frac{7}{34}\sqrt{17}. \end{aligned}$$

Therefore the remaining coefficient are the conjugate in $\mathbb{Q}(\sqrt{17})$ and/or with opposite sign:

$$\frac{B}{2}\frac{1}{z_2 - \frac{1}{2}} = \frac{1}{2} - \frac{7}{34}\sqrt{17}$$
$$\frac{A}{2}\frac{1}{\frac{1}{2} - z_1} = -\frac{1}{2} - \frac{7}{34}\sqrt{17}$$
$$\frac{B}{2}\frac{1}{\frac{1}{2} - z_2} = -\frac{1}{2} + \frac{7}{34}\sqrt{17}$$

Performing the inverse Z-transform one has

$$x_{k} = \left(\frac{1}{2}\right)^{k} + \left(\frac{1}{2} + \frac{7}{34}\sqrt{17}\right)z_{1}^{k} + \left(-\frac{1}{2} - \frac{7}{34}\sqrt{17}\right)\left(\frac{1}{2}\right)^{k} + \left(\frac{1}{2} - \frac{7}{34}\sqrt{17}\right)z_{2}^{k} + \left(-\frac{1}{2} + \frac{7}{34}\sqrt{17}\right)\left(\frac{1}{2}\right)^{k}.$$

If one collects terms obtains

$$x_k = \left(\frac{1}{2} + \frac{7}{34}\sqrt{17}\right)z_1^k + \left(\frac{1}{2} - \frac{7}{34}\sqrt{17}\right)z_2^k$$

It is easy to check that $x_0 = 1$ as required.