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1 Exercise 1

Solve this system of differential equations.

y′′(t) + y′(t) = et

x′′(t)− y′(t) = t

with initial conditions x(0) = 1, x′(0) = 0, y(0) = −1 and y′(0) = 1.

1.1 Solution with ODE techniques

Consider the first equation which is independent of x(t). The solution of a second order lin-
ear differential equation with constant coefficient is the sum of the homogeneous equation
yℎ(t) plus the particular solution yp(t). The characteristic polynomial associated to the homo-
geneous equation is �2 + � = 0, thus its solutions are � = 0,−1. Hence the homogeneous
equation has the form

yℎ(t) = c1 + c2e
−t

for real constants c1, c2. The particular solution has the form yp(t) = �et for a real constant
�. The general solution in therefore

y(t) = c1 + c2e
−t + �et.

Calculating y′′(t) + y′(t) = et and equating the coefficients, gives � = 1
2
. The substitution of

the initial conditions, leads to the linear system for the coefficients c1, c2. They are c1 = −1
and c2 = −1

2
. So the solution of the first differential equation is

y(t) = −1 + 1

2
(et − e−t) .
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The second equation of the system involves x′′(t), using the knowledge of y(t) one can sub-
stitute in the equation the derivative of y(t) and integrate twice to obtain x(t).

x′′(t)− y′(t)− t = x′′(t)− 1

2
et − 1

2
e−t − t

Isolating x′′(t) one has

x′′(t) = t+
1

2
et +

1

2
e−t ⇒ x′(t) =

∫ t

0

z +
1

2
ez +

1

2
e−z dz + c

solving the integral, leads

x′(t) =
t2

2
+

1

2
et − 1

2
e−t + c⇒ x′(0) = c = 0

thus c = 0 and performing another step of integration

x(t) =

∫ t

0

x2

2
+

1

2
ex − 1

2
e−x dx+ c =

t3

6
+

1

2
et +

1

2
e−t + c.

Imposing the initial conditions one finds c = 0, thus the solution is

x(t) =
t3

6
+

1

2
et +

1

2
e−t .

1.2 Solution with Laplace transform

The transformed system is

s2Y − sy(0)− y′(0) + sY − y(0) =
1

s− 1

s2X − sx(0)− x′(0)− sY + y(0) =
1

s2

substituting the ICS and collecting terms it becomes

s2Y − s+ sY =
1

s− 1

s2X − s− sY − 1 =
1

s2

From the first equation, one can solve for Y

Y (s2 + s) =
1

s− 1
− s⇒ Y =

1

s(s+ 1)(s− 1)
− s

s(s+ 1)

the reduction to partial fractions is easily done via substitution because there are distinct
poles with no multiplicity.

Y = −1

s
+

1
2

s+ 1
+

1
2

s− 1
− 1

s+ 1
= −1

s
−

1
2

s+ 1
+

1
2

s− 1
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and the antitransform is

y(t) = −1 + 1

2
(et − e−t) .

Now using the knowledge of the transform of Y from the second equation of the system one
gets

s2X =
1

s2
+ s+ 1 + s

(
−1

s
−

1
2

s+ 1
+

1
2

s− 1

)
from which

X =
1

s4
+

1

s
−

1
2

s(s+ 1)
+

1
2

s(s− 1)

and taking the least common multiple1

X =
s2 − 1 + s3(s2 − 1)− 1

2
s3(s− 1) + 1

2
s3(s+ 1)

s4(s+ 1)(s− 1)

=
s2 − 1 + s5 − s3 − 1

2
s4 + 1

2
s3 + 1

2
s4 + 1

2
s3

s4(s+ 1)(s− 1)

=
s5 + s2 − 1

s4(s+ 1)(s− 1)

=
A

s4
+
B

s3
+
C

s2
+
D

s
+

E

s+ 1
+

F

s− 1
.

Coefficients A,E, F are easy to determine just by substitution:

A =
−1
−1

= 1 E =
−1 + 1− 1

1(−2)
=

1

2
F =

1

2
.

Multiplying both sides by s and letting s → ∞ gives 1 = D + E + F ⇒ 1 = D + 1 therefore
D = 0. Now the shortest way of get B and C is to impose the passage for two arbitrary
points, e.g. s = ±2 and solve the associated linear system.

lim
s→2

X =
32 + 4− 1

48
=

1

16
+
B

8
+
C

4
+

1
2

3
+

1

2
⇒ 35

48
=

3 + 6B + 12C + 8 + 24

48

thus there is the first relation B = −2C. The second limit yields

lim
s→−2

X =
−32 + 4− 1

48
=

1

16
− B

8
+
C

4
+

1
2

−1
+

1
2

3
⇒ −29

48
=

8 + 24C − 24− 8

48

1If one looks carefully at the Laplace transform tables, finds directly the antitransform of �
s(s+�) which is

1 − e−�t. Performing the lcm is interesting because of the pole of fourth order in 0 in the partial fraction
decomposition.
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thus C = B = 0. The required expansion in partial fraction is

X =
1

s4
+

1
2

s+ 1
+

1
2

s− 1

and the inverse Laplace transform is

x(t) =
t3

6
+

1

2
et +

1

2
e−t .

□

2 Exercise 2

Solve Fibonacci’s recurrence

fn+2 = fn+1 + fn

with initial conditions f0 = f1 = 1.

2.1 Solution with Z-transform

Applying the Z-transform to both sides of the equation one has

z2F − f0z2 − f1z = zF − f0z + F

collecting terms

F =
f0z

2 + (f1 − f0)z
z2 − z − 1

and substituting the initial values

F =
z2

z2 − z − 1
. (1)

The roots of z2 − z − 1 are z1,2 =
1±
√
5

2
, thus the expansion is

F

z
=

z

z2 − z − 1
=

A

z − z1
+

B

z − z2
.

By the method of substitution one has

A =
1+
√
5

2

1+
√
5

2
− 1−

√
5

2

=
1+
√
5

2√
5

=

√
5 + 5

10
.
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The coefficient B is equal to the conjugate2 of A, that is B =
√
5+5
10

. Hence the Fibonacci’s
recurrence is

fn = Azn1 +Bzn2

=
5 +
√
5

10

(
1 +
√
5

2

)n

+
5−
√
5

10

(
1−
√
5

2

)n

=
1√
5

(
1 +
√
5

2

)n+1

− 1√
5

(
1−
√
5

2

)n+1

the first elements are the famous 1, 1, 2, 3, 5, 8, 13, 21 . . . .

2.2 Solution with complex analysis

Equation (1) can be inverted to time domain via the complex integral inversion formula for
the Z-transform.

fn =

∮
C

F (z)zn−1 dz =

∮
C

z2 ⋅ zn−1

z2 − z − 1
dz = Res(z1) + Res(z2)

The residues are respectively

Res(z1) = lim
z→z1

(z − z1)
z2 ⋅ zn−1

z2 − z − 1
= lim

z→z1

zn+1

z − z2
=

1√
5

(
1 +
√
5

2

)n+1

Res(z2) = lim
z→z2

(z − z2)
z2 ⋅ zn−1

z2 − z − 1
= lim

z→z2

zn+1

z − z1
= − 1√

5

(
1−
√
5

2

)n+1

□

3 Exercise 3

Solve the following system of recurrences.

xk+2 = k + yk

yk+1 = 2yk

with x0 = 0, x1 = 1, y0 = 1.

2conjugate over ℚ(
√
5) which is the quadratic estension of ℚ
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3.1 Solution with Z-transform

The transformed system is

z2X − z =
z

(z − 1)2
+ Y

zY − z = 2Y

thus from the second equation one has Y = z
z−2 and the reverse transform yields yk = 2k .

The substitution of the second equation in the first gives

z2X − z = z

(z − 1)2
+

z

z − 2

and collecting terms

X =
1

z
+

z

z(z − 1)2
+

z

z(z − 2)
. (2)

If one takes the least common multiple has

X =
(z − 1)2(z − 2) + z − 2 + (z − 1)2

z(z − 1)2(z − 2)
=
z3 − 3z2 + 4z − 3

z(z − 1)2(z − 2)
. (3)

The reduction in partial fractions is

X =
z3 − 3z2 + 4z − 3

z(z − 1)2(z − 2)
=
Az

z
+
Ez

z2
+

Bz

z − 1
+

Cz

(z − 1)2
+

Dz

z − 2
.

With the usual trick one considers the expression X/z,

X

z
=
z3 − 3z2 + 4z − 3

z2(z − 1)2(z − 2)
=
A

z
+
E

z2
+

B

z − 1
+

C

(z − 1)2
+

D

z − 2
.

The coefficients E,C,D can be calculated via substitution:

E =
−3
−2

=
3

2
C =

1− 3 + 4− 3

1(−1)
= 1 D =

8− 12 + 8− 3

4
=

1

4
,

the remaining two can be calculated using the limit z → ∞ and a direct substitution of an
arbitrary point (e.g. z = −1).

lim
z→∞

Xz

z
= lim

z→∞

z3 − 3z2 + 4z − 3

z(z − 1)2(z − 2)
= A+B +D = 0,

thus there is a first relation A+B = −1
4
. The limit for z → −1 gives the second one:

lim
z→−1

X

z
= lim

z→−1

z3 − 3z2 + 4z − 3

z2(z − 1)2(z − 2)
= −A− B

2
+
C

4
− D

3
+ E =

−1− 3− 4− 3

4(−3)
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that is, using the first relation (A = −B − 1
4
),

11

12
= B +

1

4
− B

2
+

1

4
− 1

12
+

3

2
⇒ B = −2, A =

7

4

In conclusion, the partial fraction decomposition of (3) is

X =
7

4
+

3

2z
+
−2z
z − 1

+
z

(z − 1)2
+

z

4(z − 2)
.

Applying the inverse Z-transform one obtains the required solution

xk =
7

4
�0 +

3

2
�1 − 2 + k +

2k

4
.

3.2 Solution with complex analysis

Suppose to restart from equation (3) and use the theory of residues, let call

F (z) =
z3 − 3z2 + 4z − 3

z(z − 1)2(z − 2)
⇒ fk =

∮
C

F (z)zk−1 dz =
∑

Res

and the residues are respectively in 0, 1, 2:

Res(F, 0) = lim
z→0

zF (z)zk−1 = 0

Res(F, 2) = lim
z→2

(z − 2)F (z)zk−1 =
2k

4
.

In z = 1 there is a double pole,

Res(F, 1) =
1

1!
lim
z→2

d

dz

(
(z − 1)2F (z)zk−1

)
this residue gives

Res(F, 1) = lim
z→1

[(k + 2)zk+1 − 3(k + 1)zk + 4kzk−1 − 3(k − 1)zk−2](z2 − 2z)

(z2 − 2z)2

lim
z→1

−[zk+2 − 3zk+1 + 4zk − 3zk−1](2z − 2)

(z2 − 2z)2

= − [(k + 2)− 3(k + 1) + 4k − 3(k − 1)]− 0

(−1)2

= k − 2.

So, for k ≥ 2

xk =
2k

4
+ k − 2.
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In order to avoid some more calculation, one could also start from (2) to decompose in partial
fraction.

□

4 Exercise 4

Solve the following system of recurrences.

xk+1 + 2yk+1 = xk

xk+1 − 2yk+1 = yk

with x0 = y0 = 1.

4.1 Solution with Z-transform

The transformed system becomes

zX − z + 2zY − 2z = X

zX − z − 2zY + 2z = Y

Now the addition of the two equations, and the subtraction of the second from the first give

2zX − 2z = X + Y X =
2z

2z − 1
+

Y

2z − 1
⇒

4zY − 4z = X − Y Y (4z + 1) = 4z +
2z

2z − 1
+

Y

2z − 1

Solving the second one for Y yields

Y

(
4z + 1− 1

2z − 1

)
=

4z(2z − 1) + 2z

2z − 1
⇒ Y

(
8z2 − 4z + 2z − 1− 1

2z − 1

)
=

8z2 − 4z + 2z

2z − 1
,

thus

Y =
8z2 − 2z

8z2 − 2z − 2
=

z
(
z − 1

4

)
z2 − 1

4
z − 1

4

=
Az

z − z1
+

Bz

z − z2

where z1, z2 are the roots of z2 − 1
4
z − 1

4
= 0, i.e.

z1,2 =

1
4
±
√

1
16

+ 1

2
=

1
4
±
√
17
4

2
=

1

8
±
√
17

8
.
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Coefficients A,B can be calculated by substitution, giving

A =
1
8
+
√
17
8
− 1

4

1
8
+
√
17
8
−
(

1
8
−
√
17
8

) =

(√
17

8
− 1

8

)(
8

2
√
17

)
=

1

2
− 1

2
√
17

√
17√
17

=
1

2
−
√
17

34
,

hence B = 1
2
+
√
17
34

. Therefore the solution is

yk = Azk1 +Bzk2 =
1

2

(
zk1 + zk2

)
−
√
17

34

(
zk1 − zk2

)
. (4)

The same calculation done with the trick of multiplying by z and letting z → ∞ joined with
the substitution of z = 0 in the expression of Y/z gives

lim
z→∞

z
(
z − 1

4

)
z2 − 1

4
z − 1

4

=
Az

z − z1
+

Bz

z − z2
⇒ 1 = A+B

lim
z→0

(
z − 1

4

)
z2 − 1

4
z − 1

4

=
A

z − z1
+

B

z − z2
⇒ 1 =

A

−z1
+

B

−z2
.

Solving the system gives the same solution but this way seems more involved than the direct
substitution. The last method is with the complex residues,

F (z) =
z
(
z − 1

4

)
z2 − 1

4
z − 1

4

⇒ fk =

∮
C

F (z)zk−1 dz =
∑

Res,

Res(F, z1) = lim
z→z1

(z − z1)F (z)zk−1 =
zk1 (z1 − 1

4
)

z1 − z2
,

Res(F, z2) = lim
z→z2

(z − z2)F (z)zk−1 =
zk2 (z2 − 1

4
)

z2 − z1
.

This method gives directly the reverse Z-transform and does not involve calculation until the
last passage, so

yk =
zk1 (z1 − 1

4
)

z1 − z2
+
zk2 (z2 − 1

4
)

z2 − z1
,

doing the simplification gives the (4). Passing to the equation for X, one has

X =
z

z − 1
2

+
Az

2(z − z1)(z − 1
2
)
+

Bz

2(z − z2)(z − 1
2
)

=
z

z − 1
2

+
A

2

1

z1 − 1
2

z

z − z1
+
A

2

1
1
2
− z1

z

z − 1
2

+
B

2

1

z2 − 1
2

z

z − z2
+
B

2

1
1
2
− z2

z

z − 1
2
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Here it is enough to compute one coefficient, the others are easily related. So the first coeffi-
cient is

A

2

1

z1 − 1
2

=

(
1

4
−
√
17

2 ⋅ 34

)(
1

1
8
+
√
17
8
− 1

2

)

=

(
1

4
−
√
17

2 ⋅ 34

)(
1

−3
8
+
√
17
8

)

=

(
1

4
−
√
17

2 ⋅ 34

)
8

−3 +
√
17

=
1

17

34− 2
√
17

−3 +
√
17

=
2

17

17−
√
17

−3 +
√
17

−3−
√
17

−3−
√
17

=
2

17

−51 + 3
√
17− 17

√
17 + 17

9− 17
=

2

17

−34− 14
√
17

−8

=
1

2
+

7

34

√
17.

Therefore the remaining coefficient are the conjugate in ℚ(
√
17) and/or with opposite sign:

B

2

1

z2 − 1
2

=
1

2
− 7

34

√
17

A

2

1
1
2
− z1

= −1

2
− 7

34

√
17

B

2

1
1
2
− z2

= −1

2
+

7

34

√
17

Performing the inverse Z-transform one has

xk =

(
1

2

)k

+

(
1

2
+

7

34

√
17

)
zk1 +

(
−1

2
− 7

34

√
17

)(
1

2

)k

+

(
1

2
− 7

34

√
17

)
zk2 +

(
−1

2
+

7

34

√
17

)(
1

2

)k

.

If one collects terms obtains

xk =

(
1

2
+

7

34

√
17

)
zk1 +

(
1

2
− 7

34

√
17

)
zk2 .

It is easy to check that x0 = 1 as required.

□


