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1 Exercise 1

Find maxima and minima of the function f : R2 → R, the monkey saddle, restricted to the
domain Ω (in black in the next picture, in orange on the surface below).

f(x, y) = x3 − 3xy2
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Description of Ω. The border of the domain is
made up of straight lines and circle arcs, it is a
subset of the square [−2, 2]× [−2, 2].
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1.1 Solution with calculus

The first thing to do is to find stationary points solving the Jacobian equal to zero.

∇f =

(
3x2 − 3y2

−6y

)T
= 0 ⇐⇒ x = y = 0.

The nature of point O = (0, 0) can be discovered by the study of the Hessian matrix,

∇2f(0, 0) =

(
6x −6y
0 −6

) ∣∣∣∣∣
x=y=0

=

(
0 0
0 −6

)
.

It turns out that ∇2f is negative semidefinite in O, so this test is inconclusive. However,
because the search of maxima and minima is performed on a compact set and f is continuous,
it is enough to compare the value of f in O with the maxima and minima of f on the border
of the domain. One has that f(O) = 0.
The parametrization of path α is yα(x) = +

√
4− x2 for x ∈ [0, 2], so on the surface it becomes

f(x, yα(x)) = 4x3 − 12x.

At the extrema holds f(A1) = f(0, 2) = 0 and f(A3) = f(2, 0) = 8, on the arc the stationary
points are obtained when the gradient is zero, i.e.

∂

∂x
f(x, yα(x)) =

∂

∂x
(4x3 − 12x) = 12x2 − 12 = 0 ⇐⇒ x = ±1.

The solution x = −1 is not in the domain, so it has to be discarded. For x = 1 the stationary
point is A2 = (1,

√
3), the value of f there is f(1,

√
3) = −8.

The parametrization of path β is yβ(x) = x− 2 for x ∈ [0, 2], so on the surface it becomes

f(x, yβ(x)) = −2x3 + 12x2 − 12x.
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At the extrema holds f(B1) = f(0,−2) = 0 and f(B2) = f(2, 0) = 8, on the segment the
stationary points are obtained when the gradient is zero, i.e.

∂

∂x
f(x, yβ(x)) =

∂

∂x
(−2x3 + 12x2 − 12x) = −6x2 + 24x− 12 = 0 ⇐⇒ x = 2±

√
2.

The solution x = 2 +
√

2 is not in the domain, so it has to be discarded. For x = 2 −
√

2 the
stationary point is B3 = (2−

√
2,−
√

2), the value of f there is

f(B3) = f(2−
√

2,−
√

2) = (2−
√

2)3 − 12 + 6
√

2 = 8(1−
√

2) ≈ −3.313.

The parametrization of path γ is yγ(x) =
√

4− (x+ 2)2 − 2 for x ∈ [−2, 0], so on the surface
it becomes

f(x, yγ(x)) = 4x3 + 12x2 − 12x+ 12x
√

4− (x+ 2)2.

At the extrema holds f(C1) = f(0,−2) = 0 and f(C3) = f(−2, 0) = −8, on the segment the
stationary points are obtained when the gradient is zero, i.e.

∂

∂x
f(x, yγ(x)) =

∂

∂x
(4x3 + 12x2 − 12x+ 12x

√
4− (x+ 2)2)

=
12[(x2 + 2x− 1)

√
4− (x+ 2)2 − 2x2 − 6x]√

4− (x+ 2)2
.

The elimination of the radical in the numerator permits to solve
∂

∂x
f(x, yγ(x)) = 0. This is

not an easy task. Consider

∂

∂x
f(x, yγ(x)) = 0 ⇐⇒ x6 + 8x5 + 22x4 + 28x3 + 21x2 + 4x = 0

The analysis of this equation is not trivial. One solution is x = 0 which gives the point C1

treated before as an extrem, so the division of the sextic by x yields

∂

∂x
f(x, yγ(x)) = 0 ⇐⇒ x5 + 8x4 + 22x3 + 28x2 + 21x+ 4 = 0.

The study of this quintic polynomial is not the point of the exercise and requires some ad-
vanced results of algebra, it is enough to say that it has only one real root in the interval
[−2, 0]. This root can be easily found after factoring the quintic in

x5 + 8x4 + 22x3 + 28x2 + 21x+ 4 = (x2 + 4x+ 1)(x3 + 4x2 + 5x+ 4).

The required solution is one of the roots of the quadratic factor x2 + 4x + 1, namely x =
−2 +

√
3 ≈ −0.27. Hence the stationary point inside γ is C2 = (−2 +

√
3,−1), the function

evaluated there gives f(C2) = −20 + 12
√

3 ≈ 0.785.
The parametrization of path δ is xδ(y) = −2 for y ∈ [0, 2], so on the surface it becomes

f(xδ(y), y) = (−2)3 + 6y2 = 6y2 − 8.
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At the extrema holds f(D1) = f(−2, 0) = −8 and f(D2) = f(−2, 2) = 16, on the segment the
stationary points are obtained when the gradient is zero, i.e.

∂

∂y
f(x(y), y) =

∂

∂y
(6y2 − 8) = 12y = 0 ⇐⇒ y = 0.

The solution y = 0 gives the point (already considered) D1 = (−2, 0) = C3.
The parametrization of path ε is yε(x) = 2 for x ∈ [−2, 0], so on the surface it becomes

f(x, yε(x)) = x3 − 12x.

At the extrema holds f(E1) = f(D2) = f(−2, 2) = 16 and f(E2) = f(A1) = f(0, 2) = 0, on
the segment the stationary points are obtained when the gradient is zero, i.e.

∂

∂x
f(x, y(x)) =

∂

∂x
(x3 − 12x) = 3x2 − 12 = 0 ⇐⇒ x = ±2.

The solution x = 2 is outside ε so there is just the case x = −2 which is again an extremum
and coincides with E1.
To get the maximum and minimum of f in the domain Ω it is enough to compare the values
of f over the critical points discovered so far. Having a look to the picture is straightforward
to say that f reaches its maximum 16 in D2 = E1 = (−2, 2), and has minimum −8 in C3 =
D1 = (−2, 0) and in A2 = (1,

√
3).
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2 Exercise 2

Solve the following constrained optimization.

f(x, y, z) = x2 + y2 + z2

with constraints

h1(x, y, z) = xy + yz + xz − 1 = 0 h2(x, y, z) = x− y = 0.

2.1 Solution with Lagrange multipliers

First compute the Lagrangian,

L(x, y, z, λ, µ) = f(x, y, z)− λh1(x, y, z)− µh1(x, y, z)

= x2 + y2 + z2 − λ(xy + yz + xz − 1)− µ(x− y)

Then there is to solve the gradient of L equal to zero, i.e.

∇L(x, y, z, λ, µ) =



∂L
∂x

∂L
∂y

∂L
∂z

∂L
∂λ

∂L
∂µ



T

=



2x− λ(y + z)− µ

2y − λ(x+ z) + µ

2z − λ(y + x)

xy + yz + xz − 1

x− y



T

= 0

This is a non linear system, from the last equation one has x = y, that should be substituted

in the other equations. Equation
∂L
∂λ

yields

∂L
∂λ

= x2 + 2xz − 1 = 0 =⇒ z =
1− x2

2x
x 6= 0.

Putting this expression for z in
∂L
∂z

returns

∂L
∂z

= 2
1− x2

2x
− λ2x = 0 =⇒ λ =

1− x2
2x2

.
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The knowledge of x = y, z = 1−x2
2x

and λ = 1−x2
2x2

in the first and second equation of the
gradient of L gives

∂L
∂x

= 2x− (1− x2)
2x2

(
x+

1− x2
2x

)
− µ = 0

∂L
∂y

= 2x− (1− x2)
2x2

(
x+

1− x2
2x

)
+ µ = 0.

Eliminating µ for example summing the two equation gives

∂L
∂x

+
∂L
∂y

= 4x− (1− x2)
x2

(
x+

1− x2
2x

)
= 0

Therefore simplifying the expression

∂L
∂x

+
∂L
∂y

= 4x− (1− x2
x2

(
x2 + 1

2x

)
= 4x+

x

2
− 1

2x3

=
8x4 − 1

2x3

=
9x4 − 1

2x3

=
(3x2 − 1)(3x2 + 1)

2x3

The four roots of this equation are±
√
3
3

and±i
√
3
3

. The complex solution have to be discarded.
By backward substitution one can obtain the solution of the nonlinear system, in particular

∂L
∂x

= 0 =⇒ µ = 2x− (1− x2)
2x2

(
x+

1− x2
2x

)
= 2x− 1− x4

4x3

∣∣∣
x2=1/3

= 0.

The same occurs with the equation
∂L
∂y

= 0, so in both cases µ = 0. Now from λ = 1−x2
2x2

,

λ =
1− x2

2x2

∣∣∣
x2=1/3

=
1− 1/3

2/3
= 1.

Finally, from x = y and z = 1−x2
2x

,

y = x
∣∣∣
x2=1/3

= ±
√

3

3
z = ±

√
3

3
.
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In conclusion the two stationary points are

P1 =

{
x =

√
3

3
, y =

√
3

3
, z =

√
3

3
, λ = 1, µ = 0

}

P2 =

{
x = −

√
3

3
, y = −

√
3

3
, z = −

√
3

3
, λ = 1, µ = 0

}
.

Now discuss the nature of those points, one needs the Hessian matrix for f .

∇2f =

2 0 0
0 2 0
0 0 2


No further analysis is required, both points are minima.
One can check that ∇2L projected in the kernel of the gradient of the constraints is positive
defined.
A way to identify the nature of the stationary points is to check the definition of ∇2L in the
kernel of the gradient of the constraints. So first compute the gradient and the Hessian of the
constraints,

∇H =

(
∇h1
∇h2

)
=

(
y + z x+ z x+ y

1 −1 0

)

∇2h1 =

0 1 1
1 0 1
1 1 0

 ∇2h2 =

0 0 0
0 0 0
0 0 0


The gradient evaluated in P1 and P2 gives respectively

∇H(P1) =

(
2
√
3

3
2
√
3

3
2
√
3

3

1 −1 0

)
∇H(P2) =

(
−2
√
3

3
−2
√
3

3
−2
√
3

3

1 −1 0

)
.

These are two pairs of linear independent vectors, thus the two kernels will have dimension
1. Hence the two bases of the kernels are w1 = (1, 1,−2) for P1 and w2 = (1, 1,−2) = w1 for
P2.
In order to analyse the definition of the Hessian of the Lagrangian, first compute ∇2L,

∇2L = ∇2f − λ∇2h1 − µ∇2h2.

Evaluating it in the two points gives

∇2L(P1) = ∇2L(P2) =

2 0 0
0 2 0
0 0 2

−
0 1 1

1 0 1
1 1 0

− 0

0 0 0
0 0 0
0 0 0

 =

 2 −1 −1
−1 2 −1
−1 −1 2


Using Sylvester’s theorem on ∇2L one can not conclude anything on the nature of the points,
in facts the three minors (m1, m2, m3) of ∇2L give respectively

m1 = 2 m2 = 3 m3 = 0.
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But to find the nature of the stationary points it is enough now to perform

wT1∇2L(P1)w1 = (1, 1,−2)

 2 −1 −1
−1 2 −1
−1 −1 2

 1
1
−2

 = 18 > 0

hence P1 and P2 are minima.

3 Exercise 3

Solve the following constrained optimization.

f(x, y, z) = xyz

with constraints

h1(x, y, z) = xy + yz + xz − 1 = 0 h2(x, y, z) = x− y = 0.

3.1 Solution with Lagrange multipliers

First compute the Lagrangian,

L(x, y, z, λ, µ) = f(x, y, z)− λh1(x, y, z)− µh1(x, y, z)

= xyz − λ(xy + yz + xz − 1)− µ(x− y)

Then there is to solve the gradient of L equal to zero, i.e.

∇L(x, y, z, λ, µ) =



∂L
∂x

∂L
∂y

∂L
∂z

∂L
∂λ

∂L
∂µ



T

=



yz − λ(y + z)− µ

xz − λ(x+ z) + µ

xy − λ(y + x)

xy + yz + xz − 1

x− y



T

= 0

This is a non linear system, from the last equation one has x = y, that should be substituted

in the other equations. Equation
∂L
∂λ

yields

∂L
∂λ

= x2 + 2xz − 1 = 0 =⇒ z =
1− x2

2x
x 6= 0.
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Putting this expression for z in
∂L
∂z

returns

∂L
∂z

= x2 − λ2x = 0 =⇒ λ =
x2

2x
=⇒ λ =

x

2
.

The knowledge of x = y, z = 1−x2
2x

and λ = x
2

in the first and second equation of the gradient
of L gives

∂L
∂x

= x
(1− x2)

2x
− x

2

(
x+

1− x2
2x

)
− µ = 0

∂L
∂y

= x
(1− x2)

2x
− x

2

(
x+

1− x2
2x

)
+ µ = 0.

Eliminating µ for example summing the two equation gives

∂L
∂x

+
∂L
∂y

= 2x
(1− x2

2x
− x

(
x+

1− x2
2x

)
= 0

Therefore simplifying the expression

1− x2 − x2 − 1

2
+
x2

2
= 0 =⇒ 3x2 = 1 =⇒ x = ±

√
1/3 = ±

√
3

3
.

By backward substitution one can obtain the solution of the nonlinear system, in particular

∂L
∂x

= 0 =⇒ µ = x
(1− x2)

2x
− x

2

(
x+

1− x2
2x

)
=
x2

2
− 1− x2

4
=

3x2 − 1

4

∣∣∣
x2=1/3

= 0.

The same occurs with the equation
∂L
∂y

= 0, so in both cases µ = 0. Now from λ =
x

2
,

λ =
x

2

∣∣∣
x2=1/3

= ±
√

3

6
.

Finally, from x = y and z = 1−x2
2x

,

y = x
∣∣∣
x2=1/3

= ±
√

3

3
z = ±

√
3

3
.

In conclusion the two stationary points are

P1 =

{
x =

√
3

3
, y =

√
3

3
, z =

√
3

3
, λ =

√
3

6
, µ = 0

}

P2 =

{
x = −

√
3

3
, y = −

√
3

3
, z = −

√
3

3
, λ = −

√
3

6
, µ = 0

}
.
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Now discuss the nature of those points, one needs the Hessian matrix for f and h1, h2.

∇2f =

0 z y
z 0 x
y x 0

∣∣∣∣∣
P1,P2

= ±
√

3

2

0 1 1
1 0 1
1 1 0



∇2h1 =

0 1 1
1 0 1
1 1 0

 ∇2h2 =

0 0 0
0 0 0
0 0 0


Using Sylvester’s theorem on ∇2f one can not conclude anything on the nature of the points,
in facts the three minors (m1, m2, m3) of ∇2f give respectively

m1 = 0 m2 = ±
√

3

2
(−1) = ∓

√
3

2
m3 = ±

√
3

2
det∇2f = ±

√
3

2
2

so the Hessian is not defined. So the correct way to identify the nature of the stationary
points is to check the definition of ∇2L in the kernel of the gradient of the constraints. So
first compute the gradient of the constraints,

∇H =

(
∇h1
∇h2

)
=

(
y + z x+ z x+ y

1 −1 0

)
The gradient evaluated in P1 and P2 gives respectively

∇H(P1) =

(
2
√
3

3
2
√
3

3
2
√
3

3

1 −1 0

)
∇H(P2) =

(
−2
√
3

3
−2
√
3

3
−2
√
3

3

1 −1 0

)
.

These are two pairs of linear independent vectors, thus the two kernels will have dimension
1. Hence the two bases of the kernels are w1 = (1, 1,−2) for P1 and w2 = (1, 1,−2) = w1 for
P2.
In order to analyse the definition of the Hessian of the Lagrangian, first compute ∇2L,

∇2L = ∇2f − λ∇2h1 − µ∇2h2.

Evaluating it in the two points gives

∇2L(P1) =

√
3

3

0 1 1
1 0 1
1 1 0

− √3

6

0 1 1
1 0 1
1 1 0

− 0

0 0 0
0 0 0
0 0 0

 =

√
3

6

0 1 1
1 0 1
1 1 0



∇2L(P2) = −
√

3

3

0 1 1
1 0 1
1 1 0

+

√
3

6

0 1 1
1 0 1
1 1 0

− 0

0 0 0
0 0 0
0 0 0

 = −
√

3

6

0 1 1
1 0 1
1 1 0

 .

To find the nature of the stationary points it is enough now to perform

wT1∇2L(P1)w1 = (1, 1,−2)

√
3

6

0 1 1
1 0 1
1 1 0

 1
1
−2

 = −
√

3 < 0
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hence P1 is a maximum, and

wT2∇2L(P2)w2 = (1, 1,−2)
−
√

3

6

0 1 1
1 0 1
1 1 0

 1
1
−2

 =
√

3 > 0

hence P2 is a minimum.


