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1 Exercise 1

Solve the following constrained minimization

f(x, y) = x(y − 1)

subject to

x2 + y2 ≤ 1 x+
1

2
≤ y.

1.1 Solution with KKT

First put the constraints in the form of the theorem, i.e. gi(x, y) ≥ 0, this gives

g1(x, y) = 1− x2 − y2 ≥ 0 g2(x, y) = y − x− 1

2
≥ 0.

The next step is to build the Lagrangian,

L(x, y, µ1, µ2) = f(x, y)− µ1g1(x, y)− µ2g2(x, y)

= x(y − 1)− µ1(1− x2 − y2)− µ2

(
y − x− 1

2

)
.

So using the (first order) KKT conditions, the associated non linear system is

∇(x,y)L(x, y, µ1, µ2)
T = 0

µ1g1(x, y) = 0

µ2g2(x, y) = 0

with the conditions

µ1 ≥ 0 µ2 ≥ 0 g1 ≥ 0 g2 ≥ 0.

1
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The gradient of the Lagrangian is

∇(x,y)L(x, y, µ1, µ2) =


∂L
∂x

∂L
∂y


T

=

(
y − 1 + 2µ1x+ µ2

x+ 2µ1y − µ2

)T

.

In other words one has to solve the following non linear system

y − 1 + 2µ1x+ µ2 = 0

x+ 2µ1y − µ2 = 0

µ1(1− x2 − y2) = 0

µ2

(
y − x− 1

2

)
= 0

This system is quite complex, so it is better to split it and solve it in several steps. First put
µ1 = 0 and solve the simplified system, then put µ2 = 0 and solve, and so on.

• µ1 = 0. Setting µ1 = 0 yields to the simpler system

y − 1 + µ2 = 0

x− µ2 = 0

µ2

(
y − x− 1

2

)
= 0.

From the second equation one has x = µ2, thus it remains a system of two equations in
two unknown.  y + x− 1 = 0

x

(
y − x− 1

2

)
= 0

=⇒

 y = 1− x

x

(
1

2
− 2x

)
= 0

hence x = 0 or x = 1
4
. From x one can obtain y = 1 or y = 3

4
and µ2 = 0 or µ2 = 1

4
. In

conclusion there are two solutions in this case, namely

P1 = {x = 0, y = 1, µ1 = 0, µ2 = 0}

P2 =

{
x =

1

4
, y =

3

4
, µ1 = 0, µ2 =

1

4

}
• µ2 = 0. Setting µ2 = 0 leads to the simpler system

y − 1 + 2µ1x = 0

x+ 2µ1y = 0

µ1

(
1− x2 − y2

)
= 0.
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From the second equation one has x = −2µ1y, thus it remains a system of two equations
in two unknown. {

y − 1− 4µ2
1y = 0

µ1 (1− 4µ2
1y

2 − y2) = 0
=⇒ y =

1

1− 4µ2
1

.

It remains a single expression for µ1

0 = µ1

(
1− 4µ2

1

1

(1− 4µ2
1)

2
− 1

(1− 4µ2
1)

2

)
=
µ1(1− 4µ2

1)
2 − 4µ3

1 − µ1

(1− 4µ2
1)

2
= 0 ⇐⇒

0 = 16µ5
1 − 4µ3

1 − 8µ3
1

= 16µ5
1 − 12µ3

1

This expression is zero if µ1 = 0 or if 16µ2
1 − 12 = 0, that is if µ1 = ±

√
3
2

. The negative
solution has to be dropped because the multiplier has to be positive. The positive
solution is not valid because it does not satisfy the constrain g2 ≥ 0. Therefore there are
only one solution in this case,

P1 = {x = 0, y = 1, µ1 = 0, µ2 = 0}

• µ1 = µ2 = 0. In this case one retrieves easily solution P1.

• µ1 6= 0 and 1− x2 − y2 = 0. From the equation of the constraint one has y = ±
√
1− x2,

so it is better to split the two cases.

– µ1 6= 0 and y = +
√
1− x2. From the equation of the second multiplier one has

µ2

(√
1− x2 − x− 1

2

)
= 0 ⇐⇒ µ2 = 0 or

√
1− x2 − x− 1

2
= 0

∗ µ2 = 0, then x = −2µ1

√
1− x2 hence

x2 = 4µ2
1(1− x2) =⇒ x2(1 + 4µ2

1) = 4µ2
1 =⇒ x2 =

4µ2
1

1 + 4µ2
1

.

Thus there are other two cases, i.e. the two square roots for x.

· When x = +

√
4µ2

1

1 + 4µ2
1

. This gives a single equation for µ1 which is derived
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from the equation ∂L
∂x

,

0 =
∂L
∂x

=

√
1− 4µ2

1

1 + 4µ2
1

− 1 + 2µ1

√
4µ2

1

1 + 4µ2
1

=

√
1 + 4µ2

1 − 4µ2
1

1 + 4µ2
1

− 1 + 2µ1

√
4µ2

1

1 + 4µ2
1

=
1√

1 + 4µ2
1

− 1 + 2µ1
2µ1√
1 + 4µ2

1

= 0 ⇐⇒

1−
√

1 + 4µ2
1 + 4µ2

1 = 0 ⇐⇒

1 + 4µ2
1 = 1 + 8µ2

1 + 16µ4
1.

That is when 16µ4
1 + 4µ2

1 = 0: µ1 = 0 is absurd, for hypothesis is µ1 6= 0; it
remains 16µ2

1 = −4 which has no real solution. So in this case there is no
solution.

· When x = −

√
4µ2

1

1 + 4µ2
1

. This gives a single equation for µ1 which is derived

from the equation ∂L
∂x

,

0 =
∂L
∂x

=

√
1− 4µ2

1

1 + 4µ2
1

− 1− 2µ1

√
4µ2

1

1 + 4µ2
1

=
1√

1 + 4µ2
1

− 1− 2µ1
2µ1√
1 + 4µ2

1

= 0 ⇐⇒

1−
√

1 + 4µ2
1 − 4µ2

1 = 0 ⇐⇒

1 + 4µ2
1 = 1− 8µ2

1 + 16µ4
1.

That is when 16µ4
1 − 12µ2

1 = 0: µ1 = 0 is absurd, for hypothesis is µ1 6= 0;

it remains 16µ2
1 = 12 which has solution µ1 = ±

√
12
16

= ±
√
3
2

. The negative
solution is not acceptable because the multiplier has to be positive; the

solution µ1 =
√
3
2

implies x = −
√

4·3/4
1+4·3/4 = −

√
3
2

, and y = +
√
1− x2 = 1

2
.

But this solution does not satisfy the first equation of the non linear system,
namely

0 =
∂L
∂x

= y − 1 + 2µ1x+ µ2 =
1

2
− 1 + 2

√
3

2

(
−
√
3

2

)
6= 0.

So this case has no solution.
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∗ µ2 6= 0 but
√
1− x2 − x− 1

2
= 0. There is a single expression for x that gives

0 =
√
1− x2 − x− 1

2
=⇒

√
1− x2 = x+

1

2

and removing the square root it remains 2x2 + x − 3
4
= 0 which has solution

x = −1
4
± 1

4

√
7. Therefore one obtains y in the two cases:

y = +
√
1− x2 =⇒ y =

1

4
+

1

4

√
7 and y = −1

4
+

1

4

√
7.

Substituting these values in the non linear system gives a reduced system

x+ 2µ1y − µ2 = 0

y − 1 + 2µ1x+ µ2 = 0.

Summing the two equation and substituting x = −1
4
+ 1

4

√
7 and the corre-

sponding y = 1
4
+ 1

4

√
7 yields

1

2

√
7− 1 +

1

2
µ1 +

1

2

√
7µ1 −

1

2
µ1 +

1

2

√
7µ1 = 0 ⇐⇒

1

2

√
7− 1 +

√
7µ1 = 0 =⇒ µ1 =

√
7

7
− 1

2
≈ −0.12 < 0.

Thus this solution in not acceptable. Checking the second solution for x and
y, i.e summing the two equation and substituting x = −1

4
− 1

4

√
7 and the

corresponding y = −1
4
+ 1

4

√
7 yields

−1

2
− 1− 1

2
µ1 +

1

2

√
7µ1 −

1

2
µ1 −

1

2

√
7µ1 = 0 ⇐⇒

µ1 = −
3

2
< 0.

So even this solution is not valid.

– µ1 6= 0 and y = −
√
1− x2. From the equation µ2g2 = 0

µ2

(
−
√
1− x2 − x− 1

2

)
= 0 ⇐⇒ µ2 = 0 or −

√
1− x2 − x− 1

2
= 0.

This leads to the two following different cases.

∗ µ2 = 0. In this case the first equation of the non linear system becomes

x− 2µ1

√
1− x2 = 0 =⇒ x2 =

4µ2
1

1 + 4µ2
1

=⇒ x = ± 2µ1√
1 + 4µ2

1
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· x = +
2µ1√
1 + 4µ2

1

. In this case the second equation of the system becomes

−

√
1− 4µ2

1

1 + 4µ2
1

− 1 + 2µ1
2µ1√
1 + 4µ2

1

= 0 ⇐⇒

−1−
√

1 + 4µ2
1 + 4µ2

1 = 0 ⇐⇒ 1− 8µ2
1 + 16µ4

1 = 1 + 4µ2
1

=⇒ 16µ4
1 − 4µ2

1 = 0 ⇐⇒ µ1 = 0,±1

2
.

The solution µ1 = 0 is absurd by hypothesis, µ1 = −1
2

is not valid because
it is negative, it remains to check if µ1 = 1

2
is acceptable. This implies

µ2 = 0 and

x =

√
2

2
=⇒ y = −

√
2

2

but these values do not satisfy the first equation of the system, in facts

−
√
2

2
− 1 + 2 · 1

2

√
2

2
6= 0.

So no one of these solutions is valid. Now check the case for the negative
values of the root for x.

· x = − 2µ1√
1 + 4µ2

1

. In this case the second equation of the system becomes

−

√
1− 4µ2

1

1 + 4µ2
1

− 1− 2µ1
2µ1√
1 + 4µ2

1

= 0 ⇐⇒

−1−
√

1 + 4µ2
1 − 4µ2

1 = 0 ⇐⇒ 1 + 8µ2
1 + 16µ4

1 = 1 + 4µ2
1

=⇒ 16µ4
1 + 4µ2

1 = 0 ⇐⇒ µ1 = 0,±i1
2
.

So no solution is acceptable.

∗ µ2 6= 0 and −
√
1− x2 − x − 1

2
= 0. This is single equation for x that can be

solved squaring the root:

−
√
1− x2 − x− 1

2
= 0 ⇐⇒ x2 + x+

1

4
= 1− x2 =⇒ 2x2 + x− 3

4

This case is the same of the case µ2 6= 0, y = +
√
1− x2 and

√
1− x2−x−1

2
= 0,

so the same conclusion holds: there is no solution.
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• µ2 6= 0 and y − x− 1
2
= 0. One obtains y = x+ 1

2
and from the equation µ1g1 = 0

µ1

(
1− x2 −

(
x+

1

2

)2
)

= µ1

(
2x2 + x− 3

4

)
= 0

There are two cases, µ1 = 0 and 2x2 + x− 3

4
= 0.

– µ1 = 0. From the second equation of the system one has µ2 = x, and from the first
equation of the system

y − 1 + µ2 = x+
1

2
− 1 + µ2 = 0 =⇒ µ2 =

1

4
.

From that values one has x = 1
4

and y = 1
4
+ 1

2
= 3

4
. Further more one can check

that this solution satisfy the non linear system and is therefore a valid candidate,

P2 =

{
x =

1

4
, y =

3

4
, µ1 = 0, µ2 =

1

4

}
.

– 2x2 + x − 3

4
= 0. The solution of this quadratic are x = −1

4
± 1

4

√
7 and so y =

±1
4
+ 1

4

√
7 and µ2 = x. But these solution do not satisfy the first equation of the

system, giving respectively

1

4
+

1

4

√
7− 1− 1

4
+

1

4

√
7 6= 0

1

4
− 1

4

√
7− 1− 1

4
− 1

4

√
7 6= 0.

In conclusion there are only two candidates to be minima,

P1 = {x = 0, y = 1, µ1 = 0, µ2 = 0}

P2 =

{
x =

1

4
, y =

3

4
, µ1 = 0, µ2 =

1

4

}
.

To check if they are maxima, minima or saddle points one has to see if the projected Hessian
of the Lagrangian is SPD etc. The Hessian of L with respect to x, y is

∇2
(x,y)L = ∇2

(x,y)L(P1) = ∇2
(x,y)L(P2) =

(
0 1
1 0

)
.

The gradient of the constraints is

∇G(x, y) =
(
−2x −2y
−1 1

)
.

With KKT conditions one has to project the Hessian of L only with respect to the active
constraints, i.e. those for which gi(Pj) = 0, in this case, g1(P1) = 1 − 0 − 1 = 0, g2(P1) =
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1− 0− 1/2 6= 0 and g1(P2) = 1− 1/16− 9/16 6= 0, g2(P2) = 3/4− 1/4− 1/2 = 0, so for P1 is
active g1, for P2 is active g2.

∇g1(P1) =
(
−2x −2y

) ∣∣∣
P1

=
(
0 −2

)
∇g2(P2) =

(
−1 1

) ∣∣∣
P2

=
(
−1 1

)
.

A vector in the kernel of ∇g1(P1) is w1 = (1, 0)T , a vector in the kernel of ∇g2(P2) is w2 =
(1, 1)T . Hence the projection of the Hessian becomes in the two cases

wT
1∇2

(x,y)L(P1)w1 =
(
1 0

)(0 1
1 0

)(
1
0

)
= 0,

wT
2∇2

(x,y)L(P2)w2 =
(
1 1

)(0 1
1 0

)(
1
1

)
= 2.

So P2 is a minimum point, but nothing can be concluded for P1.

2 Exercise 2

Solve the following constrained minimization

f(x, y, z) = z + xy

subject to

x2 + y2 ≤ 1 x ≤ y + z.

2.1 Solution with KKT

First put the constraints in the form of the theorem, i.e. gi(x, y, z) ≥ 0, this gives

g1(x, y, z) = 1− x2 − y2 ≥ 0 g2(x, y, z) = y + z − x ≥ 0.

The next step is to build the Lagrangian,

L(x, y, µ1, µ2) = f(x, y, z)− µ1g1(x, y, z)− µ2g2(x, y, z)

= z + xy − µ1(1− x2 − y2)− µ2 (y + z − x) .

So using the (first order) KKT conditions, the associated non linear system is

∂L
∂x

= y + 2µ1x+ µ2 = 0

∂L
∂y

= x+ 2µ1y − µ2 = 0

∂L
∂z

= 1− µ2

µ1g1 = µ1

(
1− x2 − y2

)
= 0

µ2g2 = µ2 (y + z − x) = 0
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with the conditions

µ1 ≥ 0 µ2 ≥ 0 g1 ≥ 0 g2 ≥ 0.

To solve the non linear system, it is convenient to divide it in the various cases.

• µ1 = 0. From ∂L
∂z

one has µ2 = 1. In this way the general system simplifies to

y + z − x = 0

x− 1 = 0

y + 1 = 0.

The solution is trivially x = 1, y = −1, and from the first equation −1 + z − 1 = 0 =⇒
z = 2. One can check that this is not a valid candidate, because it does not satisfy the
constraint g1 ≥ 0.

• µ2 = 0. From ∂L
∂z

= 1 6= 0, this is absurd, so there is no solution.

• µ1 = µ2 = 0. From ∂L
∂z

= 1 6= 0, this is absurd, so there is no solution.

• µ1 6= 0 and 1− x2 − y2 = 0. Here there are two subcases:

– y = +
√
1− x2. From the equation µ2g2 = 0 there are two cases,

∗ µ2 = 0. This implies as before ∂L
∂z

= 1 6= 0, so no solution.
∗ y + z − x = 0. The resulting system becomes

y + z − x = 0

y =
√
1− x2

x+ 2µ1

√
1− x2 − 1 = 0

√
1− x2 + 2µ1x+ 1 = 0.

From the last equation one has

2µ1x = −1−
√
1− x2 =⇒ µ1 =

−1−
√
1− x2

2x
for x 6= 0.

Putting this expression in the third equation gives,

0 = x+
−1−

√
1− x2
x

√
1− x2 − 1

= x−
√
1− x2
x

− 1− x2

x
− 1

=
x2 −

√
1− x2 − 1 + x2 − x

x

=
2x2 − x− 1−

√
1− x2

x
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Removing the square root yields

4x4 + x2 + 1− 4x3 − 4x2 + 2x− 1 + x2 = 0

4x4 − 4x3 − 2x2 + 2x = 0

This equation has two trivial roots, x = 0 and x = 1, the other two can be
obtained from the reduction of the quartic to a quadratic, and are x = ±

√
2
2

.
Now the solution x = 0 has to be discarded because of the discussion for µ1,
the solution x = 1 gives µ1 = −1

2
which is not valid, the solution x =

√
2
2

gives µ1 =
−1−
√

1/2
√
2

= −1
2
−
√
2
2
< 0 and is not valid, finally x = −

√
2
2

gives

µ1 =
−1−
√

1/2

−
√
2

= 1
2
+
√
2
2

. This y = y =
√
2
2

, z = x − y = −
√
2. One can verify

that this solution satisfy the two constraints. In conclusion there is only one
valid candidate in this case,

P =

{
x = −

√
2

2
, y =

√
2

2
, z = −

√
2, µ1 =

1 +
√
2

2
, µ2 = 1

}
.

– y = −
√
1− x2. As in the previous case there are two possibilities:

∗ µ2 = 0. In this case the choose µ2 = 0 produces the same absurd as before.
∗ y + z − x = 0. The simplified system becomes

y + z − x = 0

y = −
√
1− x2

x+ 2µ1

√
1− x2 − 1 = 0

−
√
1− x2 + 2µ1x+ 1 = 0.

From the last equation one has

2µ1y = 1− x =⇒ µ1 = −
1− x

2
√
1− x2

for x 6= ±1.

Putting this expression in the third equation gives,

0 = −
√
1− x2 − 1− x√

1− x2
x+ 1

= −(1− x2)− x+ x2 +
√
1− x2

= 4x4 + x2 + 1− 4x3 − 4x2 + 2x− 1 + x2

= 4x4 − 4x3 − 2x2 + 2x

This is the quartic of the previous case, this time x = 1 is not a valid solution,
x =

√
2
2

gives µ1 = −1−
√
2/2

2
√

1/2
= 1

2
−
√
2
2
< 0 and is not valid, x = −

√
2
2

gives

µ1 = −1
2
−
√
2
2
< 0 is not valid. So in this case there are no solutions.
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• µ2 6= 0 and y + z − x = 0. Here there are two subcases

– µ1 = 0. The simplified system becomes

y + z − x = 0

y + 1 = 0

x− 1 = 0

so there is the trivial solution x = 1, y = −1, z = 2 but does not satisfy the
constraints.

– 1 − x2 − y2 = 0. There the two subcases y = ±
√
1− x2, but are identical as those

done before, so they give the same result.

In conclusion there is only one valid candidate, namely

P =

{
x = −

√
2

2
, y =

√
2

2
, z = −

√
2, µ1 =

1 +
√
2

2
, µ2 = 1

}
.

The Hessian of the Lagrangian is

∇2
(x,y,z)L =

2µ1 1 0
1 2µ1 0
0 0 0

 .

The gradient of the constraints is

∇G =

(
−2x −2y 0
−1 −1 1

)
.

Now it is necessary to check if the constraints are active, i.e. if g1(P ) = 0 or g2(P ) = 0. Thus

g1(P ) = 1− 1

2
− 1

2
= 0

g2(P ) =

√
2

2
−
√
2 +

√
2

2
= 0

So both constraints are active and the whole gradient has to be considered

∇G(P ) =
(√

2 −
√
2 0

−1 −1 1

)
.

To find a vector w = (α, β, γ)T in the kernel of ∇G(P ) one can solve this linear system

0 = ∇G(P )w =

(√
2 −

√
2 0

−1 −1 1

)αβ
γ

 =

(√
2α−

√
2β

−α + β + γ

)
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A possible solution is w = (1, 1, 0)T . The projection of the Hessian in this kernel is thus

wT∇2
(x,y,z)L(P )w =

(
1 1 0

)1 +
√
2 1 0

0 1 +
√
2 0

0 0 0

1
1
0

 =

(
1 1 0

)1 +
√
2 + 1

1 +
√
2 + 1
0

 = 1 +
√
2 + 1 + 1 +

√
2 + 1 = 4 + 2

√
2 > 0.

Hence P is a minimum point.


