Exercitation 7

Numerical Methods for Dynamical Systems and Control

Marco Frego
 PhD student at DIMS

November 24, 2011

1 Exercise 1

Solve the following constrained minimization

$$
f(x, y)=x(y-1)
$$

subject to

$$
x^{2}+y^{2} \leq 1 \quad x+\frac{1}{2} \leq y
$$

1.1 Solution with KKT

First put the constraints in the form of the theorem, i.e. $g_{i}(x, y) \geq 0$, this gives

$$
g_{1}(x, y)=1-x^{2}-y^{2} \geq 0 \quad g_{2}(x, y)=y-x-\frac{1}{2} \geq 0 .
$$

The next step is to build the Lagrangian,

$$
\begin{aligned}
\mathcal{L}\left(x, y, \mu_{1}, \mu_{2}\right) & =f(x, y)-\mu_{1} g_{1}(x, y)-\mu_{2} g_{2}(x, y) \\
& =x(y-1)-\mu_{1}\left(1-x^{2}-y^{2}\right)-\mu_{2}\left(y-x-\frac{1}{2}\right) .
\end{aligned}
$$

So using the (first order) KKT conditions, the associated non linear system is

$$
\begin{aligned}
& \nabla_{(x, y)} \mathcal{L}\left(x, y, \mu_{1}, \mu_{2}\right)^{T}=\mathbf{0} \\
& \mu_{1} g_{1}(x, y)=0 \\
& \mu_{2} g_{2}(x, y)=0
\end{aligned}
$$

with the conditions

$$
\mu_{1} \geq 0 \quad \mu_{2} \geq 0 \quad g_{1} \geq 0 \quad g_{2} \geq 0 .
$$

The gradient of the Lagrangian is

$$
\nabla_{(x, y)} \mathcal{L}\left(x, y, \mu_{1}, \mu_{2}\right)=\binom{\frac{\partial \mathcal{L}}{\partial x}}{\frac{\partial \mathcal{L}}{\partial y}}^{T}=\binom{y-1+2 \mu_{1} x+\mu_{2}}{x+2 \mu_{1} y-\mu_{2}}^{T}
$$

In other words one has to solve the following non linear system

$$
\begin{aligned}
& y-1+2 \mu_{1} x+\mu_{2}=0 \\
& x+2 \mu_{1} y-\mu_{2}=0 \\
& \mu_{1}\left(1-x^{2}-y^{2}\right)=0 \\
& \mu_{2}\left(y-x-\frac{1}{2}\right)=0
\end{aligned}
$$

This system is quite complex, so it is better to split it and solve it in several steps. First put $\mu_{1}=0$ and solve the simplified system, then put $\mu_{2}=0$ and solve, and so on.

- $\mu_{1}=0$. Setting $\mu_{1}=0$ yields to the simpler system

$$
\begin{array}{ll}
y-1+\mu_{2} & =0 \\
x-\mu_{2} & =0 \\
\mu_{2}\left(y-x-\frac{1}{2}\right) & =0 .
\end{array}
$$

From the second equation one has $x=\mu_{2}$, thus it remains a system of two equations in two unknown.

$$
\left\{\begin{array} { l }
{ y + x - 1 = 0 } \\
{ x (y - x - \frac { 1 } { 2 }) = 0 }
\end{array} \Longrightarrow \left\{\begin{array}{l}
y=1-x \\
x\left(\frac{1}{2}-2 x\right)=0
\end{array}\right.\right.
$$

hence $x=0$ or $x=\frac{1}{4}$. From x one can obtain $y=1$ or $y=\frac{3}{4}$ and $\mu_{2}=0$ or $\mu_{2}=\frac{1}{4}$. In conclusion there are two solutions in this case, namely

$$
\begin{aligned}
& P_{1}=\left\{x=0, y=1, \mu_{1}=0, \mu_{2}=0\right\} \\
& P_{2}=\left\{x=\frac{1}{4}, y=\frac{3}{4}, \mu_{1}=0, \mu_{2}=\frac{1}{4}\right\}
\end{aligned}
$$

- $\mu_{2}=0$. Setting $\mu_{2}=0$ leads to the simpler system

$$
\begin{array}{ll}
y-1+2 \mu_{1} x & =0 \\
x+2 \mu_{1} y & =0 \\
\mu_{1}\left(1-x^{2}-y^{2}\right) & =0
\end{array}
$$

From the second equation one has $x=-2 \mu_{1} y$, thus it remains a system of two equations in two unknown.

$$
\left\{\begin{array}{ll}
y-1-4 \mu_{1}^{2} y & =0 \\
\mu_{1}\left(1-4 \mu_{1}^{2} y^{2}-y^{2}\right) & =0
\end{array} \Longrightarrow y=\frac{1}{1-4 \mu_{1}^{2}}\right.
$$

It remains a single expression for μ_{1}

$$
\begin{aligned}
0 & =\mu_{1}\left(1-4 \mu_{1}^{2} \frac{1}{\left(1-4 \mu_{1}^{2}\right)^{2}}-\frac{1}{\left(1-4 \mu_{1}^{2}\right)^{2}}\right) \\
& =\frac{\mu_{1}\left(1-4 \mu_{1}^{2}\right)^{2}-4 \mu_{1}^{3}-\mu_{1}}{\left(1-4 \mu_{1}^{2}\right)^{2}}=0 \Longleftrightarrow \\
0 & =16 \mu_{1}^{5}-4 \mu_{1}^{3}-8 \mu_{1}^{3} \\
& =16 \mu_{1}^{5}-12 \mu_{1}^{3}
\end{aligned}
$$

This expression is zero if $\mu_{1}=0$ or if $16 \mu_{1}^{2}-12=0$, that is if $\mu_{1}= \pm \frac{\sqrt{3}}{2}$. The negative solution has to be dropped because the multiplier has to be positive. The positive solution is not valid because it does not satisfy the constrain $g_{2} \geq 0$. Therefore there are only one solution in this case,

$$
P_{1}=\left\{x=0, y=1, \mu_{1}=0, \mu_{2}=0\right\}
$$

- $\mu_{1}=\mu_{2}=0$. In this case one retrieves easily solution P_{1}.
- $\mu_{1} \neq 0$ and $1-x^{2}-y^{2}=0$. From the equation of the constraint one has $y= \pm \sqrt{1-x^{2}}$, so it is better to split the two cases.
- $\mu_{1} \neq 0$ and $y=+\sqrt{1-x^{2}}$. From the equation of the second multiplier one has

$$
\mu_{2}\left(\sqrt{1-x^{2}}-x-\frac{1}{2}\right)=0 \Longleftrightarrow \mu_{2}=0 \quad \text { or } \quad \sqrt{1-x^{2}}-x-\frac{1}{2}=0
$$

* $\mu_{2}=0$, then $x=-2 \mu_{1} \sqrt{1-x^{2}}$ hence

$$
x^{2}=4 \mu_{1}^{2}\left(1-x^{2}\right) \Longrightarrow x^{2}\left(1+4 \mu_{1}^{2}\right)=4 \mu_{1}^{2} \Longrightarrow x^{2}=\frac{4 \mu_{1}^{2}}{1+4 \mu_{1}^{2}}
$$

Thus there are other two cases, i.e. the two square roots for x.
. When $x=+\sqrt{\frac{4 \mu_{1}^{2}}{1+4 \mu_{1}^{2}}}$. This gives a single equation for μ_{1} which is derived
from the equation $\frac{\partial \mathcal{L}}{\partial x}$,

$$
\begin{aligned}
0=\frac{\partial \mathcal{L}}{\partial x}= & \sqrt{1-\frac{4 \mu_{1}^{2}}{1+4 \mu_{1}^{2}}}-1+2 \mu_{1} \sqrt{\frac{4 \mu_{1}^{2}}{1+4 \mu_{1}^{2}}} \\
= & \sqrt{\frac{1+4 \mu_{1}^{2}-4 \mu_{1}^{2}}{1+4 \mu_{1}^{2}}}-1+2 \mu_{1} \sqrt{\frac{4 \mu_{1}^{2}}{1+4 \mu_{1}^{2}}} \\
= & \frac{1}{\sqrt{1+4 \mu_{1}^{2}}}-1+2 \mu_{1} \frac{2 \mu_{1}}{\sqrt{1+4 \mu_{1}^{2}}}=0 \Longleftrightarrow \\
& 1-\sqrt{1+4 \mu_{1}^{2}}+4 \mu_{1}^{2}=0 \Longleftrightarrow \\
& 1+4 \mu_{1}^{2}=1+8 \mu_{1}^{2}+16 \mu_{1}^{4} .
\end{aligned}
$$

That is when $16 \mu_{1}^{4}+4 \mu_{1}^{2}=0: \mu_{1}=0$ is absurd, for hypothesis is $\mu_{1} \neq 0$; it remains $16 \mu_{1}^{2}=-4$ which has no real solution. So in this case there is no solution.
. When $x=-\sqrt{\frac{4 \mu_{1}^{2}}{1+4 \mu_{1}^{2}}}$. This gives a single equation for μ_{1} which is derived from the equation $\frac{\partial \mathcal{L}}{\partial x}$,

$$
\begin{aligned}
0=\frac{\partial \mathcal{L}}{\partial x}= & \sqrt{1-\frac{4 \mu_{1}^{2}}{1+4 \mu_{1}^{2}}}-1-2 \mu_{1} \sqrt{\frac{4 \mu_{1}^{2}}{1+4 \mu_{1}^{2}}} \\
= & \frac{1}{\sqrt{1+4 \mu_{1}^{2}}}-1-2 \mu_{1} \frac{2 \mu_{1}}{\sqrt{1+4 \mu_{1}^{2}}}=0 \Longleftrightarrow \\
& 1-\sqrt{1+4 \mu_{1}^{2}}-4 \mu_{1}^{2}=0 \Longleftrightarrow \\
& 1+4 \mu_{1}^{2}=1-8 \mu_{1}^{2}+16 \mu_{1}^{4} .
\end{aligned}
$$

That is when $16 \mu_{1}^{4}-12 \mu_{1}^{2}=0: \mu_{1}=0$ is absurd, for hypothesis is $\mu_{1} \neq 0$; it remains $16 \mu_{1}^{2}=12$ which has solution $\mu_{1}= \pm \sqrt{\frac{12}{16}}= \pm \frac{\sqrt{3}}{2}$. The negative solution is not acceptable because the multiplier has to be positive; the solution $\mu_{1}=\frac{\sqrt{3}}{2}$ implies $x=-\sqrt{\frac{4 \cdot 3 / 4}{1+4 \cdot 3 / 4}}=-\frac{\sqrt{3}}{2}$, and $y=+\sqrt{1-x^{2}}=\frac{1}{2}$. But this solution does not satisfy the first equation of the non linear system, namely

$$
0=\frac{\partial \mathcal{L}}{\partial x}=y-1+2 \mu_{1} x+\mu_{2}=\frac{1}{2}-1+2 \frac{\sqrt{3}}{2}\left(-\frac{\sqrt{3}}{2}\right) \neq 0 .
$$

So this case has no solution.

* $\mu_{2} \neq 0$ but $\sqrt{1-x^{2}}-x-\frac{1}{2}=0$. There is a single expression for x that gives

$$
0=\sqrt{1-x^{2}}-x-\frac{1}{2} \Longrightarrow \sqrt{1-x^{2}}=x+\frac{1}{2}
$$

and removing the square root it remains $2 x^{2}+x-\frac{3}{4}=0$ which has solution $x=-\frac{1}{4} \pm \frac{1}{4} \sqrt{7}$. Therefore one obtains y in the two cases:

$$
y=+\sqrt{1-x^{2}} \Longrightarrow y=\frac{1}{4}+\frac{1}{4} \sqrt{7} \text { and } y=-\frac{1}{4}+\frac{1}{4} \sqrt{7}
$$

Substituting these values in the non linear system gives a reduced system

$$
\begin{aligned}
& x+2 \mu_{1} y-\mu_{2}=0 \\
& y-1+2 \mu_{1} x+\mu_{2}=0 .
\end{aligned}
$$

Summing the two equation and substituting $x=-\frac{1}{4}+\frac{1}{4} \sqrt{7}$ and the corresponding $y=\frac{1}{4}+\frac{1}{4} \sqrt{7}$ yields

$$
\begin{aligned}
& \frac{1}{2} \sqrt{7}-1+\frac{1}{2} \mu_{1}+\frac{1}{2} \sqrt{7} \mu_{1}-\frac{1}{2} \mu_{1}+\frac{1}{2} \sqrt{7} \mu_{1}=0 \Longleftrightarrow \\
& \frac{1}{2} \sqrt{7}-1+\sqrt{7} \mu_{1}=0 \Longrightarrow \mu_{1}=\frac{\sqrt{7}}{7}-\frac{1}{2} \approx-0.12<0
\end{aligned}
$$

Thus this solution in not acceptable. Checking the second solution for x and y, i.e summing the two equation and substituting $x=-\frac{1}{4}-\frac{1}{4} \sqrt{7}$ and the corresponding $y=-\frac{1}{4}+\frac{1}{4} \sqrt{7}$ yields

$$
\begin{aligned}
& -\frac{1}{2}-1-\frac{1}{2} \mu_{1}+\frac{1}{2} \sqrt{7} \mu_{1}-\frac{1}{2} \mu_{1}-\frac{1}{2} \sqrt{7} \mu_{1}=0 \Longleftrightarrow \\
& \mu_{1}=-\frac{3}{2}<0
\end{aligned}
$$

So even this solution is not valid.

- $\mu_{1} \neq 0$ and $y=-\sqrt{1-x^{2}}$. From the equation $\mu_{2} g_{2}=0$

$$
\mu_{2}\left(-\sqrt{1-x^{2}}-x-\frac{1}{2}\right)=0 \Longleftrightarrow \mu_{2}=0 \text { or }-\sqrt{1-x^{2}}-x-\frac{1}{2}=0
$$

This leads to the two following different cases.
$* \mu_{2}=0$. In this case the first equation of the non linear system becomes

$$
x-2 \mu_{1} \sqrt{1-x^{2}}=0 \Longrightarrow x^{2}=\frac{4 \mu_{1}^{2}}{1+4 \mu_{1}^{2}} \Longrightarrow x= \pm \frac{2 \mu_{1}}{\sqrt{1+4 \mu_{1}^{2}}}
$$

$\cdot x=+\frac{2 \mu_{1}}{\sqrt{1+4 \mu_{1}^{2}}}$. In this case the second equation of the system becomes

$$
\begin{aligned}
& -\sqrt{1-\frac{4 \mu_{1}^{2}}{1+4 \mu_{1}^{2}}}-1+2 \mu_{1} \frac{2 \mu_{1}}{\sqrt{1+4 \mu_{1}^{2}}}=0 \Longleftrightarrow \\
& -1-\sqrt{1+4 \mu_{1}^{2}}+4 \mu_{1}^{2}=0 \Longleftrightarrow 1-8 \mu_{1}^{2}+16 \mu_{1}^{4}=1+4 \mu_{1}^{2} \\
& \Longrightarrow 16 \mu_{1}^{4}-4 \mu_{1}^{2}=0 \Longleftrightarrow \mu_{1}=0, \pm \frac{1}{2} .
\end{aligned}
$$

The solution $\mu_{1}=0$ is absurd by hypothesis, $\mu_{1}=-\frac{1}{2}$ is not valid because it is negative, it remains to check if $\mu_{1}=\frac{1}{2}$ is acceptable. This implies $\mu_{2}=0$ and

$$
x=\frac{\sqrt{2}}{2} \Longrightarrow y=-\frac{\sqrt{2}}{2}
$$

but these values do not satisfy the first equation of the system, in facts

$$
-\frac{\sqrt{2}}{2}-1+2 \cdot \frac{1}{2} \frac{\sqrt{2}}{2} \neq 0
$$

So no one of these solutions is valid. Now check the case for the negative values of the root for x.
. $x=-\frac{2 \mu_{1}}{\sqrt{1+4 \mu_{1}^{2}}}$. In this case the second equation of the system becomes

$$
\begin{aligned}
& -\sqrt{1-\frac{4 \mu_{1}^{2}}{1+4 \mu_{1}^{2}}}-1-2 \mu_{1} \frac{2 \mu_{1}}{\sqrt{1+4 \mu_{1}^{2}}}=0 \Longleftrightarrow \\
& -1-\sqrt{1+4 \mu_{1}^{2}}-4 \mu_{1}^{2}=0 \Longleftrightarrow 1+8 \mu_{1}^{2}+16 \mu_{1}^{4}=1+4 \mu_{1}^{2} \\
& \Longrightarrow 16 \mu_{1}^{4}+4 \mu_{1}^{2}=0 \Longleftrightarrow \mu_{1}=0, \pm \boldsymbol{i} \frac{1}{2} .
\end{aligned}
$$

So no solution is acceptable.

* $\mu_{2} \neq 0$ and $-\sqrt{1-x^{2}}-x-\frac{1}{2}=0$. This is single equation for x that can be solved squaring the root:

$$
-\sqrt{1-x^{2}}-x-\frac{1}{2}=0 \Longleftrightarrow x^{2}+x+\frac{1}{4}=1-x^{2} \Longrightarrow 2 x^{2}+x-\frac{3}{4}
$$

This case is the same of the case $\mu_{2} \neq 0, y=+\sqrt{1-x^{2}}$ and $\sqrt{1-x^{2}}-x-\frac{1}{2}=0$, so the same conclusion holds: there is no solution.

- $\mu_{2} \neq 0$ and $y-x-\frac{1}{2}=0$. One obtains $y=x+\frac{1}{2}$ and from the equation $\mu_{1} g_{1}=0$

$$
\mu_{1}\left(1-x^{2}-\left(x+\frac{1}{2}\right)^{2}\right)=\mu_{1}\left(2 x^{2}+x-\frac{3}{4}\right)=0
$$

There are two cases, $\mu_{1}=0$ and $2 x^{2}+x-\frac{3}{4}=0$.

- $\mu_{1}=0$. From the second equation of the system one has $\mu_{2}=x$, and from the first equation of the system

$$
y-1+\mu_{2}=x+\frac{1}{2}-1+\mu_{2}=0 \Longrightarrow \mu_{2}=\frac{1}{4}
$$

From that values one has $x=\frac{1}{4}$ and $y=\frac{1}{4}+\frac{1}{2}=\frac{3}{4}$. Further more one can check that this solution satisfy the non linear system and is therefore a valid candidate,

$$
P_{2}=\left\{x=\frac{1}{4}, y=\frac{3}{4}, \mu_{1}=0, \mu_{2}=\frac{1}{4}\right\} .
$$

$-2 x^{2}+x-\frac{3}{4}=0$. The solution of this quadratic are $x=-\frac{1}{4} \pm \frac{1}{4} \sqrt{7}$ and so $y=$ $\pm \frac{1}{4}+\frac{1}{4} \sqrt{7}$ and $\mu_{2}=x$. But these solution do not satisfy the first equation of the system, giving respectively

$$
\begin{aligned}
& \frac{1}{4}+\frac{1}{4} \sqrt{7}-1-\frac{1}{4}+\frac{1}{4} \sqrt{7} \neq 0 \\
& \frac{1}{4}-\frac{1}{4} \sqrt{7}-1-\frac{1}{4}-\frac{1}{4} \sqrt{7} \neq 0
\end{aligned}
$$

In conclusion there are only two candidates to be minima,

$$
\begin{aligned}
& P_{1}=\left\{x=0, y=1, \mu_{1}=0, \mu_{2}=0\right\} \\
& P_{2}=\left\{x=\frac{1}{4}, y=\frac{3}{4}, \mu_{1}=0, \mu_{2}=\frac{1}{4}\right\} .
\end{aligned}
$$

To check if they are maxima, minima or saddle points one has to see if the projected Hessian of the Lagrangian is SPD etc. The Hessian of \mathcal{L} with respect to x, y is

$$
\nabla_{(x, y)}^{2} \mathcal{L}=\nabla_{(x, y)}^{2} \mathcal{L}\left(P_{1}\right)=\nabla_{(x, y)}^{2} \mathcal{L}\left(P_{2}\right)=\left(\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right)
$$

The gradient of the constraints is

$$
\nabla G(x, y)=\left(\begin{array}{cc}
-2 x & -2 y \\
-1 & 1
\end{array}\right)
$$

With KKT conditions one has to project the Hessian of \mathcal{L} only with respect to the active constraints, i.e. those for which $g_{i}\left(P_{j}\right)=0$, in this case, $g_{1}\left(P_{1}\right)=1-0-1=0, g_{2}\left(P_{1}\right)=$
$1-0-1 / 2 \neq 0$ and $g_{1}\left(P_{2}\right)=1-1 / 16-9 / 16 \neq 0, g_{2}\left(P_{2}\right)=3 / 4-1 / 4-1 / 2=0$, so for P_{1} is active g_{1}, for P_{2} is active g_{2}.

$$
\nabla g_{1}\left(P_{1}\right)=\left.\left(\begin{array}{ll}
-2 x & -2 y
\end{array}\right)\right|_{P_{1}}=\left(\begin{array}{ll}
0 & -2
\end{array}\right) \quad \nabla g_{2}\left(P_{2}\right)=\left.\left(\begin{array}{ll}
-1 & 1
\end{array}\right)\right|_{P_{2}}=\left(\begin{array}{ll}
-1 & 1
\end{array}\right)
$$

A vector in the kernel of $\nabla g_{1}\left(P_{1}\right)$ is $w_{1}=(1,0)^{T}$, a vector in the kernel of $\nabla g_{2}\left(P_{2}\right)$ is $w_{2}=$ $(1,1)^{T}$. Hence the projection of the Hessian becomes in the two cases

$$
\begin{aligned}
& w_{1}^{T} \nabla_{(x, y)}^{2} \mathcal{L}\left(P_{1}\right) w_{1}=\left(\begin{array}{ll}
1 & 0
\end{array}\right)\left(\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right)\binom{1}{0}=0 \\
& w_{2}^{T} \nabla_{(x, y)}^{2} \mathcal{L}\left(P_{2}\right) w_{2}=\left(\begin{array}{ll}
1 & 1
\end{array}\right)\left(\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right)\binom{1}{1}=2 .
\end{aligned}
$$

So P_{2} is a minimum point, but nothing can be concluded for P_{1}.

2 Exercise 2

Solve the following constrained minimization

$$
f(x, y, z)=z+x y
$$

subject to

$$
x^{2}+y^{2} \leq 1 \quad x \leq y+z
$$

2.1 Solution with KKT

First put the constraints in the form of the theorem, i.e. $g_{i}(x, y, z) \geq 0$, this gives

$$
g_{1}(x, y, z)=1-x^{2}-y^{2} \geq 0 \quad g_{2}(x, y, z)=y+z-x \geq 0
$$

The next step is to build the Lagrangian,

$$
\begin{aligned}
\mathcal{L}\left(x, y, \mu_{1}, \mu_{2}\right) & =f(x, y, z)-\mu_{1} g_{1}(x, y, z)-\mu_{2} g_{2}(x, y, z) \\
& =z+x y-\mu_{1}\left(1-x^{2}-y^{2}\right)-\mu_{2}(y+z-x) .
\end{aligned}
$$

So using the (first order) KKT conditions, the associated non linear system is

$$
\begin{aligned}
& \frac{\partial \mathcal{L}}{\partial x}=y+2 \mu_{1} x+\mu_{2}=0 \\
& \frac{\partial \mathcal{L}}{\partial y}=x+2 \mu_{1} y-\mu_{2}=0 \\
& \frac{\partial \mathcal{L}}{\partial z}=1-\mu_{2} \\
& \mu_{1} g_{1}=\mu_{1}\left(1-x^{2}-y^{2}\right)=0 \\
& \mu_{2} g_{2}=\mu_{2}(y+z-x)=0
\end{aligned}
$$

with the conditions

$$
\mu_{1} \geq 0 \quad \mu_{2} \geq 0 \quad g_{1} \geq 0 \quad g_{2} \geq 0
$$

To solve the non linear system, it is convenient to divide it in the various cases.

- $\mu_{1}=0$. From $\frac{\partial \mathcal{L}}{\partial z}$ one has $\mu_{2}=1$. In this way the general system simplifies to

$$
\begin{aligned}
& y+z-x=0 \\
& x-1=0 \\
& y+1=0 .
\end{aligned}
$$

The solution is trivially $x=1, y=-1$, and from the first equation $-1+z-1=0 \Longrightarrow$ $z=2$. One can check that this is not a valid candidate, because it does not satisfy the constraint $g_{1} \geq 0$.

- $\mu_{2}=0$. From $\frac{\partial \mathcal{L}}{\partial z}=1 \neq 0$, this is absurd, so there is no solution.
- $\mu_{1}=\mu_{2}=0$. From $\frac{\partial \mathcal{L}}{\partial z}=1 \neq 0$, this is absurd, so there is no solution.
- $\mu_{1} \neq 0$ and $1-x^{2}-y^{2}=0$. Here there are two subcases:
$-y=+\sqrt{1-x^{2}}$. From the equation $\mu_{2} g_{2}=0$ there are two cases, * $\mu_{2}=0$. This implies as before $\frac{\partial \mathcal{L}}{\partial z}=1 \neq 0$, so no solution.
$* y+z-x=0$. The resulting system becomes

$$
\begin{aligned}
& y+z-x=0 \\
& y=\sqrt{1-x^{2}} \\
& x+2 \mu_{1} \sqrt{1-x^{2}}-1=0 \\
& \sqrt{1-x^{2}}+2 \mu_{1} x+1=0 .
\end{aligned}
$$

From the last equation one has

$$
2 \mu_{1} x=-1-\sqrt{1-x^{2}} \Longrightarrow \mu_{1}=\frac{-1-\sqrt{1-x^{2}}}{2 x} \text { for } x \neq 0
$$

Putting this expression in the third equation gives,

$$
\begin{aligned}
0 & =x+\frac{-1-\sqrt{1-x^{2}}}{x} \sqrt{1-x^{2}}-1 \\
& =x-\frac{\sqrt{1-x^{2}}}{x}-\frac{1-x^{2}}{x}-1 \\
& =\frac{x^{2}-\sqrt{1-x^{2}}-1+x^{2}-x}{x} \\
& =\frac{2 x^{2}-x-1-\sqrt{1-x^{2}}}{x}
\end{aligned}
$$

Removing the square root yields

$$
\begin{aligned}
& 4 x^{4}+x^{2}+1-4 x^{3}-4 x^{2}+2 x-1+x^{2}=0 \\
& 4 x^{4}-4 x^{3}-2 x^{2}+2 x=0
\end{aligned}
$$

This equation has two trivial roots, $x=0$ and $x=1$, the other two can be obtained from the reduction of the quartic to a quadratic, and are $x= \pm \frac{\sqrt{2}}{2}$. Now the solution $x=0$ has to be discarded because of the discussion for μ_{1}, the solution $x=1$ gives $\mu_{1}=-\frac{1}{2}$ which is not valid, the solution $x=\frac{\sqrt{2}}{2}$ gives $\mu_{1}=\frac{-1-\sqrt{1 / 2}}{\sqrt{2}}=-\frac{1}{2}-\frac{\sqrt{2}}{2}<0$ and is not valid, finally $x=-\frac{\sqrt{2}}{2}$ gives $\mu_{1}=\frac{-1-\sqrt{1 / 2}}{-\sqrt{2}}=\frac{1}{2}+\frac{\sqrt{2}}{2}$. This $y=y=\frac{\sqrt{2}}{2}, z=x-y=-\sqrt{2}$. One can verify that this solution satisfy the two constraints. In conclusion there is only one valid candidate in this case,

$$
P=\left\{x=-\frac{\sqrt{2}}{2}, y=\frac{\sqrt{2}}{2}, z=-\sqrt{2}, \mu_{1}=\frac{1+\sqrt{2}}{2}, \mu_{2}=1\right\} .
$$

$-y=-\sqrt{1-x^{2}}$. As in the previous case there are two possibilities:

* $\mu_{2}=0$. In this case the choose $\mu_{2}=0$ produces the same absurd as before.
$* y+z-x=0$. The simplified system becomes

$$
\begin{aligned}
& y+z-x=0 \\
& y=-\sqrt{1-x^{2}} \\
& x+2 \mu_{1} \sqrt{1-x^{2}}-1=0 \\
& -\sqrt{1-x^{2}}+2 \mu_{1} x+1=0 .
\end{aligned}
$$

From the last equation one has

$$
2 \mu_{1} y=1-x \Longrightarrow \mu_{1}=-\frac{1-x}{2 \sqrt{1-x^{2}}} \text { for } x \neq \pm 1
$$

Putting this expression in the third equation gives,

$$
\begin{aligned}
0 & =-\sqrt{1-x^{2}}-\frac{1-x}{\sqrt{1-x^{2}}} x+1 \\
& =-\left(1-x^{2}\right)-x+x^{2}+\sqrt{1-x^{2}} \\
& =4 x^{4}+x^{2}+1-4 x^{3}-4 x^{2}+2 x-1+x^{2} \\
& =4 x^{4}-4 x^{3}-2 x^{2}+2 x
\end{aligned}
$$

This is the quartic of the previous case, this time $x=1$ is not a valid solution, $x=\frac{\sqrt{2}}{2}$ gives $\mu_{1}=-\frac{1-\sqrt{2} / 2}{2 \sqrt{1 / 2}}=\frac{1}{2}-\frac{\sqrt{2}}{2}<0$ and is not valid, $x=-\frac{\sqrt{2}}{2}$ gives $\mu_{1}=-\frac{1}{2}-\frac{\sqrt{2}}{2}<0$ is not valid. So in this case there are no solutions.

- $\mu_{2} \neq 0$ and $y+z-x=0$. Here there are two subcases
- $\mu_{1}=0$. The simplified system becomes

$$
\begin{aligned}
& y+z-x=0 \\
& y+1=0 \\
& x-1=0
\end{aligned}
$$

so there is the trivial solution $x=1, y=-1, z=2$ but does not satisfy the constraints.

- $1-x^{2}-y^{2}=0$. There the two subcases $y= \pm \sqrt{1-x^{2}}$, but are identical as those done before, so they give the same result.

In conclusion there is only one valid candidate, namely

$$
P=\left\{x=-\frac{\sqrt{2}}{2}, y=\frac{\sqrt{2}}{2}, z=-\sqrt{2}, \mu_{1}=\frac{1+\sqrt{2}}{2}, \mu_{2}=1\right\} .
$$

The Hessian of the Lagrangian is

$$
\nabla_{(x, y, z)}^{2} \mathcal{L}=\left(\begin{array}{ccc}
2 \mu_{1} & 1 & 0 \\
1 & 2 \mu_{1} & 0 \\
0 & 0 & 0
\end{array}\right)
$$

The gradient of the constraints is

$$
\nabla G=\left(\begin{array}{ccc}
-2 x & -2 y & 0 \\
-1 & -1 & 1
\end{array}\right)
$$

Now it is necessary to check if the constraints are active, i.e. if $g_{1}(P)=0$ or $g_{2}(P)=0$. Thus

$$
\begin{aligned}
& g_{1}(P)=1-\frac{1}{2}-\frac{1}{2}=0 \\
& g_{2}(P)=\frac{\sqrt{2}}{2}-\sqrt{2}+\frac{\sqrt{2}}{2}=0
\end{aligned}
$$

So both constraints are active and the whole gradient has to be considered

$$
\nabla G(P)=\left(\begin{array}{ccc}
\sqrt{2} & -\sqrt{2} & 0 \\
-1 & -1 & 1
\end{array}\right)
$$

To find a vector $w=(\alpha, \beta, \gamma)^{T}$ in the kernel of $\nabla G(P)$ one can solve this linear system

$$
0=\nabla G(P) w=\left(\begin{array}{ccc}
\sqrt{2} & -\sqrt{2} & 0 \\
-1 & -1 & 1
\end{array}\right)\left(\begin{array}{l}
\alpha \\
\beta \\
\gamma
\end{array}\right)=\binom{\sqrt{2} \alpha-\sqrt{2} \beta}{-\alpha+\beta+\gamma}
$$

A possible solution is $w=(1,1,0)^{T}$. The projection of the Hessian in this kernel is thus

$$
\begin{gathered}
\\
w^{T} \nabla_{(x, y, z)}^{2} \mathcal{L}(P) w=\left(\begin{array}{lll}
1 & 1 & 0
\end{array}\right)\left(\begin{array}{ccc}
1+\sqrt{2} & 1 & 0 \\
0 & 1+\sqrt{2} & 0 \\
0 & 0 & 0
\end{array}\right)\left(\begin{array}{l}
1 \\
1 \\
0
\end{array}\right)= \\
\left(\begin{array}{lll}
1 & 1 & 0
\end{array}\right)\left(\begin{array}{c}
1+\sqrt{2}+1 \\
1+\sqrt{2}+1 \\
0
\end{array}\right)=1+\sqrt{2}+1+1+\sqrt{2}+1=4+2 \sqrt{2}>0 .
\end{gathered}
$$

Hence P is a minimum point.

