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1 Exercise 1

Compute the exponential of the following matrix.
17 =20
A= (12 —14)
1.1 Solution with Eigenvectors

If A has a full set of eigenvectors and eigenvalues, then A can be diagonalized in A =
PDP!, where D is the matrix whose diagonal are the eigenvalues of A, and P is the
matrix of the eigenvectors.

The characteristic polynomial of matrix A is

17— —20

det(A—)\I):det( 19 —14- 1

) = (17 = A)(=14 — \) + 1220

= —17- 14 —17TA+ 14X+ X2 +12-20
= —238 — 3\ + A2 + 240
=N —3\+2.

The roots of the characteristic polynomial are A = 1, 2. There are two distinct eigenvalues, so
the matrix is diagonalizable. To compute the exponential one needs a basis of eigenvectors,
they can be calculated as follows.

17 =20 o o
Av = \v — (12 _14> (5>:>\(5)

This matrix product ends up in a linear system, with a non zero solution, for example sum-
ming the two linear equations.

B 170 — 208 — Aoy (0
Av— v =0 = (120&—145—>\5)_<0>'
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For the first eigenvalue A = 1, the sum of this two equations leads to

35 5
2 — 343 — _ — = — (3 =—-4.
9o — 34 —a— =0 = « 286 15}

For the second eigenvalue \ = 2, the sum of the two equations leads to
36 4
290 — 340 — 20— 2 =0 = a:2—76:§ﬂ.

To obtain two eigenvectors vy, v,, one can substitute an arbitrary non zero value for the two
betas, e.g. 3 = 1. Hence one has v; = (2,1)” and v, = (5,1)”. Therefore the matrix P of
eigenvectors is

5 4
11 L =3
P= = P'=-12 =<_12 16).
4 5 12 —15
~ 1 -1 =
3 4

The matrix exponential is defined via the Taylor’s series

eA:i‘:—f:i¥:P<iIZ—f> P !'=plPpPt

k=0 k=0 k=0

In facts, A* = PDP-'PDP~'...PDP~!' = PD"*P~!, and the exponential of a diagonal
matrix is the exponential of the diagonal elements, i.e. the eigenvalues. In conclusion one

has
1\ (e 0\ (-12 16\ (2 1\ [—12 16e
1)\0 e*)\ 12 —15) \5 1)\ 12¢* —15¢?

_[—1be +16e* 20e — 20e?
T\ 122 — 12¢  15e — 15¢2?

e = PPP ! = (

LI Ot

1.2 Solution with the Cayley-Hamilton theorem

From the Taylor’s expansion of the matrix exponential, one can consider ¢# as a polynomial
p(z) evaluated in x = A:

©  _k

A =p@)|, s =D

k=0

r=A

From the theorem of Cayley-Hamilton, the characteristic polynomial A(z) of matrix A, that
is A(z) = det(A — zI), has + = A as a root. Starting from this result one can perform long
division of p(z) divided by A(z), yielding
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where ¢(z) is the quotient polynomial and r(z) is the remainder of the division. Using the
fact that the degree of r(x) is strictly less than the degree of A(z), i.e. Ir(z) < dA(z) = n.
Now evaluating p(x) in z = A, one has

p(2)|,_y = p(A) = e = A(A) - (A) +1(A) = r(A).

Therefore the matrix exponential can be computed as a polynomial in 2 = A of finite degree.
In this exercise n = 2 so p(x) = ap + ayx is a polynomial of degree 1. To find the neces-
sary relation for the coefficient of p(z) one can use the property that if there are n distinct
eigenvalues, then p()\;) = ¢i. In this exercise one has

p(A) =p(1) = el = ag+ ay
p(A2) =p(2) = e? = ap + 2a,

thus the associated linear system is
e = ag+ a
e? = ap + 2a,.

The solution of the system is ay = 2e — ¢? and a; = ¢? — e. Hence the matrix exponential
becomes

e = p(A) =al + 1, A
o (10N . (1T =20
= (2e —¢%) (0 1) + (e —e) (12 _14)

_ (2e—e*+17e* — 17e —20e? + 20e
- 12¢%2 — 12e 2¢ — e? + 14e — 14€?

[ —15e + 16e2 20e — 20e?
T\ 12e2 —12¢  15e — 15e? ) -

2 Exercise 2

Solve the following variational problem.

1
max/ 27" — x* + 2z dt z(0) =1, (1) = 0.
0

2.1 Solution

The first thing to do is to restate the problem as a problem of minimum, this can be done
changing the sign of the integrand. Then the problem can be solved easily by using the
Euler-Lagrange equation,

dof of

dior o M
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One has f(t,r,2') = —(22/ —2*+2x) so g = 2x—2and % = —2, hence the Euler-Lagrange
€T i
equation becomes

20 —2=0 = z(t) = 1.

3 Exercise 3

Solve the following variational problem.

1
min/ (') + 10tedt  z(0) =1, 2(1) = 2.
0

3.1 Solution

The problem can be solved easily by using the Euler-Lagrange equation, as in (1). One has

0 d o
ft,z,2") = (/)% + 1th SO 8_£ = 10t and ay 22/, thus Eﬁ_ij’ = E%/ = 22", hence the
Euler-Lagrange equation becomes

5 5
27" =10t = 2" =5t = x':§t2+cl — $=6t3+01t+02

The constants ¢; and ¢, can be obtained using the initial conditions,

z(0) =cp=1
)
z(1) = 6+Cl+c2:2’
thatis¢; = 1/6 and ¢ = 1.
In conclusion the minimizing z(¢) is
x(t) = O3 +-t+1
66

4 Exercise 4

Solve the following variational problem.

mm/ 202 +3(2/)*dt  x(0) =1,z ( 5) =e.
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4.1 Solution

The problem can be solved easily by using the Euler-Lagrange equation, as in (1). One has

0 d o
flt,x,2") = 222 + 3(31:*’)2 SO —J; = 4z and i 62’, thus Ea—i = Em’ = 62", hence the
Euler-Lagrange equation becomes
" " 2 2
62" =4dr = 62" —4dor =0 = 6N —4=0 = A== 3

Because the differential equation is homogeneous, the solution is only
2 2
x(t) = cle\/gt + 6267\/;
The constants ¢; and ¢, can be obtained using the initial conditions,

I(O):Cl+02:1

( 3)

x — | =e = ce+ coe,
2

thatisc; = 1 and ¢, = 0.

In conclusion the minimizing () is




