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1 Exercise 1

Compute the exponential of the following matrix.

A =

(
17 −20
12 −14

)

1.1 Solution with Eigenvectors

If A has a full set of eigenvectors and eigenvalues, then A can be diagonalized in A =
PDP−1, where D is the matrix whose diagonal are the eigenvalues of A, and P is the
matrix of the eigenvectors.
The characteristic polynomial of matrix A is

det(A− λI) = det

(
17− λ −20

12 −14− λ

)
= (17− λ)(−14− λ) + 12 · 20

= −17 · 14− 17λ+ 14λ+ λ2 + 12 · 20

= −238− 3λ+ λ2 + 240

= λ2 − 3λ+ 2.

The roots of the characteristic polynomial are λ = 1, 2. There are two distinct eigenvalues, so
the matrix is diagonalizable. To compute the exponential one needs a basis of eigenvectors,
they can be calculated as follows.

Av = λv =⇒
(

17 −20
12 −14

)(
α
β

)
= λ

(
α
β

)
.

This matrix product ends up in a linear system, with a non zero solution, for example sum-
ming the two linear equations.

Av − λv = 0 =⇒
(

17α− 20β − λα
12α− 14β − λβ

)
=

(
0
0

)
.
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For the first eigenvalue λ = 1, the sum of this two equations leads to

29α− 34β − α− β = 0 =⇒ α =
35

28
β =

5

4
β.

For the second eigenvalue λ = 2, the sum of the two equations leads to

29α− 34β − 2α− 2β = 0 =⇒ α =
36

27
β =

4

3
β.

To obtain two eigenvectors v1,v2, one can substitute an arbitrary non zero value for the two
betas, e.g. β = 1. Hence one has v1 = (5

4
, 1)T and v2 = (4

3
, 1)T . Therefore the matrix P of

eigenvectors is

P =


5

4
1

4

3
1

 =⇒ P−1 = −12


1 −4

3

−1
5

4

 =

(
−12 16
12 −15

)
.

The matrix exponential is defined via the Taylor’s series

eA =
∞∑
k=0

Ak

k!
=
∞∑
k=0

PDkP−1

k!
= P

(
∞∑
k=0

Dk

k!

)
P−1 = P eDP−1.

In facts, Ak = PDP−1PDP−1 · · ·PDP−1 = PDkP−1, and the exponential of a diagonal
matrix is the exponential of the diagonal elements, i.e. the eigenvalues. In conclusion one
has

eA = P eDP−1 =

(
5
4

1
4
3

1

)(
e 0
0 e2

)(
−12 16
12 −15

)
=

(
5
4

1
4
3

1

)(
−12e 16e
12e2 −15e2

)
=

(
−15e+ 16e2 20e− 20e2

12e2 − 12e 15e− 15e2

)

1.2 Solution with the Cayley-Hamilton theorem

From the Taylor’s expansion of the matrix exponential, one can consider eA as a polynomial
p(x) evaluated in x = A:

eA = p(x)
∣∣
x=A

=
∞∑
k=0

xk

k!

∣∣∣∣
x=A

.

From the theorem of Cayley-Hamilton, the characteristic polynomial ∆(x) of matrix A, that
is ∆(x) = det(A − xI), has x = A as a root. Starting from this result one can perform long
division of p(x) divided by ∆(x), yielding

p(x) = ∆(x) · q(x) + r(x)
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where q(x) is the quotient polynomial and r(x) is the remainder of the division. Using the
fact that the degree of r(x) is strictly less than the degree of ∆(x), i.e. ∂r(x) < ∂∆(x) = n.
Now evaluating p(x) in x = A, one has

p(x)
∣∣
x=A

= p(A) = eA = ∆(A) · q(A) + r(A) = r(A).

Therefore the matrix exponential can be computed as a polynomial in x = A of finite degree.
In this exercise n = 2 so p(x) = a0 + a1x is a polynomial of degree 1. To find the neces-
sary relation for the coefficient of p(x) one can use the property that if there are n distinct
eigenvalues, then p(λi) = eλi. In this exercise one has

p(λ1) = p(1) = e1 = a0 + a1

p(λ2) = p(2) = e2 = a0 + 2a1

thus the associated linear system is

e1 = a0 + a1

e2 = a0 + 2a1.

The solution of the system is a0 = 2e − e2 and a1 = e2 − e. Hence the matrix exponential
becomes

eA = p(A) = a0I + a1A

= (2e− e2)
(

1 0
0 1

)
+ (e2 − e)

(
17 −20
12 −14

)
=

(
2e− e2 + 17e2 − 17e −20e2 + 20e

12e2 − 12e 2e− e2 + 14e− 14e2

)
=

(
−15e+ 16e2 20e− 20e2

12e2 − 12e 15e− 15e2

)
.

2 Exercise 2

Solve the following variational problem.

max

∫ 1

0

2x′ − x2 + 2x dt x(0) = 1, x(1) = 0.

2.1 Solution

The first thing to do is to restate the problem as a problem of minimum, this can be done
changing the sign of the integrand. Then the problem can be solved easily by using the
Euler-Lagrange equation,

d

dt

∂f

∂x′
=
∂f

∂x
. (1)
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One has f(t, x, x′) = −(2x′−x2 +2x) so
∂f

∂x
= 2x−2 and

∂f

∂x′
= −2, hence the Euler-Lagrange

equation becomes

2x− 2 = 0 =⇒ x(t) = 1.

3 Exercise 3

Solve the following variational problem.

min

∫ 1

0

(x′)2 + 10tx dt x(0) = 1, x(1) = 2.

3.1 Solution

The problem can be solved easily by using the Euler-Lagrange equation, as in (1). One has

f(t, x, x′) = (x′)2 + 10tx so
∂f

∂x
= 10t and

∂f

∂x′
= 2x′, thus

d

dt

∂f

∂x′
=

d

dt
2x′ = 2x′′, hence the

Euler-Lagrange equation becomes

2x′′ = 10t =⇒ x′′ = 5t =⇒ x′ =
5

2
t2 + c1 =⇒ x =

5

6
t3 + c1t+ c2

The constants c1 and c2 can be obtained using the initial conditions,

x(0) = c2 = 1

x(1) =
5

6
+ c1 + c2 = 2,

that is c1 = 1/6 and c2 = 1.
In conclusion the minimizing x(t) is

x(t) =
5

6
t3 +

1

6
t+ 1 .

4 Exercise 4

Solve the following variational problem.

min

∫ √ 3
2

0

2x2 + 3(x′)2 dt x(0) = 1, x

(√
3

2

)
= e.
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4.1 Solution

The problem can be solved easily by using the Euler-Lagrange equation, as in (1). One has

f(t, x, x′) = 2x2 + 3(x′)2 so
∂f

∂x
= 4x and

∂f

∂x′
= 6x′, thus

d

dt

∂f

∂x′
=

d

dt
6x′ = 6x′′, hence the

Euler-Lagrange equation becomes

6x′′ = 4x =⇒ 6x′′ − 4x = 0 =⇒ 6λ2 − 4 = 0 =⇒ λ = ±
√

2

3
.

Because the differential equation is homogeneous, the solution is only

x(t) = c1e
√

2
3
t + c2e

−
√

2
3
t

The constants c1 and c2 can be obtained using the initial conditions,

x(0) = c1 + c2 = 1

x

(√
3

2

)
= e = c1e+ c2e,

that is c1 = 1 and c2 = 0.
In conclusion the minimizing x(t) is

x(t) = e
√

2
3
t .


