Exercitation 9

Numerical Methods for Dynamical Systems and Control

Marco Frego
PhD student at DIMS

December 14, 2011

1 Exercise 1

Solve the following system of finite difference equations.

$$
\begin{aligned}
x_{k+2} & =2 x_{k+1}-x_{k} \\
y_{k+1} & =1+x_{k}
\end{aligned}
$$

with initial conditions $x_{0}=0, x_{1}=1, y_{0}=1$.

1.1 Solution with Z-transform

The transformed system becomes

$$
\begin{aligned}
z^{2} X-z & =2 z X-X \\
z Y-z & =\frac{z}{z-1}+X .
\end{aligned}
$$

Reducing the system, from the first equation

$$
X=\frac{z}{z^{2}-2 z+1}=\frac{z}{(z-1)^{2}}
$$

Applying the inverse Z-transform yields

$$
\mathcal{Z}^{-1}\left\{\frac{z}{(z-1)^{2}}\right\}=k
$$

In conclusion the solution for x_{k} is

$$
x_{k}=k \text {. }
$$

The solution for y_{k} can be obtained from the second equation of the system, which leads (for $k \geq 1$) to

$$
y_{k+1}=1+x_{k} \Longrightarrow y_{k}=1+x_{k-1}=1+k-1=k .
$$

One can notice that this solution does not meet the requirements for $y_{0}=1$ so one way is to adjust y_{k} in zero with a delta, i.e. $y_{k}=k+\delta_{0}(k)$. Of course one can solve the second equation in z for Y and perform the inverse transform, this gives

$$
Y=\frac{X}{z}+\frac{1}{z-1}+1=\frac{1}{(z-1)^{2}}+\frac{1}{z-1}+1
$$

and doing the least common multiple

$$
Y=\frac{1+z-1+z^{2}-2 z+1}{(z-1)^{2}}=\frac{z^{2}-z+1}{(z-1)^{2}}=\frac{A z}{z-1}+\frac{B z}{(z-1)^{2}}
$$

The easiest way to compute the partial fraction reduction is to consider the expression Y / z :

$$
\frac{Y}{z}=\frac{z^{2}-z+1}{z(z-1)^{2}}=\frac{A}{z-1}+\frac{B}{(z-1)^{2}}+\frac{C}{z}
$$

By direct substitution one finds out $B=1$ and $C=1$. To compute coefficient A one can multiply Y / z by z and then push $z \rightarrow \infty$,

$$
\lim _{z \rightarrow \infty} \frac{Y z}{z}=\lim _{z \rightarrow \infty} \frac{z^{2}-z+1}{(z-1)^{2}}=\lim _{z \rightarrow \infty} \frac{A z}{z-1}+\frac{B z}{(z-1)^{2}}+\frac{C z}{z} .
$$

This implies the linear equation $A+0+C=1$, that is $A=0$. So the partial fraction decomposition for Y is

$$
Y=\frac{z}{(z-1)^{2}}+\frac{z}{z} .
$$

Thus the inverse Z-transform implies

$$
y_{k}=k+\delta_{0}(k) \text {. }
$$

2 Exercise 2

Solve this system of differential equations.

$$
\begin{aligned}
x^{\prime \prime}-y^{\prime \prime} & =e^{t} \\
x+y & =0
\end{aligned}
$$

with $x(0)=1, x^{\prime}(0)=0, y(0)=-1$ and $y^{\prime}(0)=0$.

2.1 Solution with Laplace transform

The transformed system becomes

$$
\begin{aligned}
& s^{2} X-s x(0)-x^{\prime}(0)-s^{2} Y+s y(0)+y^{\prime}(0)=\frac{1}{s-1} \\
& X+Y=0
\end{aligned}
$$

Focusing on the first equation, the substitution of the initial values gives

$$
s^{2} X-2 s-s^{2} Y=\frac{1}{s-1}
$$

Using the second equation gives $Y=-X$ so the first equation reduces to

$$
X=\frac{1}{s-1} \frac{1}{2 s^{2}}+\frac{2 s}{2 s^{2}}=\frac{1}{2} \frac{1}{s^{2}(s-1)}+\frac{1}{s} .
$$

The partial fraction decomposition of the first term gives

$$
X=\frac{1}{2}\left(\frac{A}{s}+\frac{B}{s^{2}}+\frac{C}{s-1}\right)+\frac{1}{s} .
$$

By direct substitution one has $B=-1$ and $C=1$, multiplying by s and pushing $s \rightarrow \infty$

$$
\lim _{s \rightarrow \infty} \frac{s}{s^{2}(s-1)}=\lim _{s \rightarrow \infty} A+\frac{B}{s}+C=0
$$

therefore $A+C=0$ that is $A=-1$. In conclusion

$$
X=\frac{1}{2}\left(-\frac{1}{s}-\frac{1}{s^{2}}+\frac{1}{s-1}\right)+\frac{1}{s} \Longrightarrow x(t)=-\frac{1}{2}-\frac{t}{2}-\frac{e^{t}}{2}+1 .
$$

So the required solution is $x(t)=\frac{1}{2}-\frac{t}{2}-\frac{e^{t}}{2}$ and $y(t)=-x(t)$.

3 Exercise 3

Solve the differential equation

$$
y^{\prime \prime \prime}(t)=\cos (t)+A, \quad y(0)=1, y^{\prime}(0)=1, y^{\prime \prime}(0)=A
$$

and determine A such that $\lim _{t \rightarrow \infty} \frac{y(t)}{t^{3}}=1$.

3.1 Solution with calculus

The exercise can be done without using particular ODE techniques, in fact the equation can be integrated three times. One has

$$
y^{\prime \prime}(t)=\sin (t)+A t+c_{1} \Longrightarrow y^{\prime \prime}(0)=A=c_{1}
$$

thus $c_{1}=A$. Integrating again

$$
y^{\prime}(t)=-\cos (t)+\frac{A t^{2}}{2}+A t+c_{2} \Longrightarrow y^{\prime}(0)=1=-1+c_{2}
$$

hence $c_{2}=2$, and integrating another time,

$$
y(t)=-\sin (t)+\frac{A t^{3}}{6}+\frac{A t^{2}}{2}+2 t+c_{3} \Longrightarrow y(0)=1=c_{3}
$$

therefore $c_{3}=1$, so the general expression for $y(t)$ is

$$
y(t)=-\sin (t)+\frac{A t^{3}}{6}+\frac{A t^{2}}{2}+2 t+1
$$

Now from the condition of the limit one has

$$
\begin{equation*}
1=\lim _{t \rightarrow \infty} \frac{y(t)}{t^{3}}=\lim _{t \rightarrow \infty}-\frac{\sin (t)+\frac{A t^{3}}{6}+\frac{A t^{2}}{2}+2 t+1}{t^{3}}=\frac{A}{6} \tag{1}
\end{equation*}
$$

thus $A=6$.

3.2 Solution with Laplace Transform

The only problem is to perform the Laplace transform of a third derivative,

$$
\mathcal{L}\left(y^{\prime \prime \prime}(t)\right)=s^{3} Y-s^{2} y(0)-s y^{\prime}(0)-y^{\prime \prime}(0)
$$

so the transformation of the equation yields

$$
s^{3} Y-s^{2} y(0)-s y^{\prime}(0)-y^{\prime \prime}(0)=\frac{s}{s^{2}+1}+\frac{A}{s}
$$

The substitution of the initial conditions gives

$$
s^{3} Y-s^{2}-s-A=\frac{s}{s^{2}+1}+\frac{A}{s} \Longrightarrow Y=\frac{A}{s^{3}}+\frac{1}{s^{2}}+\frac{1}{s}+\frac{1}{s^{2}\left(s^{2}+1\right)}+\frac{A}{s^{4}}
$$

The partial fraction decomposition of $1 /\left(s^{2}\left(s^{2}+1\right)\right)$ is

$$
\frac{1}{s^{2}\left(s^{2}+1\right)}=\frac{\alpha}{s}+\frac{\beta}{s^{2}}+\frac{\gamma}{s^{2}+1}
$$

and with the usual methods, $\beta=1$. Then

$$
\lim _{s \rightarrow \infty} \frac{s}{s^{2}\left(s^{2}+1\right)}=\alpha=0 \Longrightarrow \alpha=0 .
$$

Finally,

$$
\frac{1}{s^{2}\left(s^{2}+1\right)}-\frac{\beta}{s^{2}}-\frac{\alpha}{s}=\frac{\gamma}{s^{2}+1} \Longrightarrow \frac{-s^{2}}{s^{2}\left(s^{2}+1\right)}=\frac{\gamma}{s^{2}+1} \Longrightarrow \gamma=-1
$$

The equation for Y is thus

$$
Y=\frac{A}{s^{3}}+\frac{1}{s^{2}}+\frac{1}{s}+\frac{1}{s^{2}}-\frac{1}{s^{2}+1}+\frac{A}{s^{4}}
$$

and the inversion gives

$$
y(t)=\frac{A t^{2}}{2}+t+1+t-\sin (t)+\frac{A t^{3}}{6}
$$

and one can apply the condition of the limit as in (1).

4 Exercise 4

Write the coefficients of the Fourier series of $f(x)=x \cos (x)$ defined in $(-\pi, \pi)$ and extended periodically in \mathbb{R}.

4.1 Solution with real coefficients

The coefficient a_{n} are all zero because the integral

$$
a_{n}=\frac{1}{\pi} \int_{-\pi}^{\pi} x \cos (x) \cos (n x) d x=0
$$

is identically zero, in facts the integrand is an odd function integrated on a symmetric interval. It remains to compute the integral for b_{n}.

$$
\begin{aligned}
b_{n}= & \frac{1}{\pi} \int_{-\pi}^{\pi} x \cos (x) \sin (n x) d x \\
= & \frac{1}{\pi} \int_{-\pi}^{\pi} x \frac{e^{i x}+e^{-i x}}{2} \frac{e^{i n x}-e^{-i n x}}{2 \boldsymbol{i}} d x \\
= & \frac{1}{\pi} \int_{-\pi}^{\pi} \frac{x}{4 \boldsymbol{i}}\left(e^{i x(n+1)}-e^{-i x(n-1)}+e^{i x(n-1)}-e^{-\boldsymbol{i} x(n+1)}\right) d x \\
= & \frac{1}{\pi} \int_{-\pi}^{\pi} \frac{x}{4 \boldsymbol{i}}(2 \boldsymbol{i} \sin (n+1) x+2 \boldsymbol{i} \sin (n-1) x) d x \\
= & \left.\frac{1}{2 \pi}\left[x\left(-\frac{1}{n+1}\right) \cos (n+1) x-x \frac{1}{n-1} \cos (n-1) x\right]\right|_{-\pi} ^{\pi} \\
& -\frac{1}{2 \pi} \int_{-\pi}^{\pi}\left[\left(-\frac{1}{n+1}\right) \cos (n+1) x-\frac{1}{n-1} \cos (n-1) x\right] d x \\
= & \frac{1}{2}\left[-\frac{1}{n+1}(-1)^{n+1}-\frac{1}{n-1}(-1)^{n+1}-\frac{1}{n+1}(-1)^{n+1}-\frac{1}{n-1}(-1)^{n+1}\right] \\
& -\left.\frac{2}{2 \pi}\left[-\frac{1}{(n+1)^{2}} \sin (n+1) x-\frac{1}{(n-1)^{2}} \sin (n-1) x\right]\right|_{0} ^{\pi}
\end{aligned}
$$

$$
\begin{aligned}
& =\frac{1}{2}\left[\frac{(-1)^{n}}{n+1}+\frac{(-1)^{n}}{n-1}+\frac{(-1)^{n}}{n+1}+\frac{(-1)^{n}}{n-1}\right]-0 \\
& =\frac{(-1)^{n}}{2}\left[\frac{n-1+n+1+n-1+n+1}{n^{2}-1}\right] \\
& =\frac{(-1)^{n}}{2}\left[\frac{4 n}{n^{2}-1}\right] \\
& =\frac{(-1)^{n} 2 n}{n^{2}-1}
\end{aligned}
$$

In conclusion the required coefficients are

$$
a_{n}=0 \quad b_{n}=\frac{(-1)^{n} 2 n}{n^{2}-1} \quad n \geq 2
$$

