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1 Exercise 1

Solve the following system of finite difference equations.

xk+2 = 2xk+1 − xk
yk+1 = 1 + xk

with initial conditions x0 = 0, x1 = 1, y0 = 1.

1.1 Solution with Z-transform

The transformed system becomes

z2X − z = 2zX −X

zY − z =
z

z − 1
+X.

Reducing the system, from the first equation

X =
z

z2 − 2z + 1
=

z

(z − 1)2

Applying the inverse Z-transform yields

Z−1
{

z

(z − 1)2

}
= k.

In conclusion the solution for xk is

xk = k .

The solution for yk can be obtained from the second equation of the system, which leads (for
k ≥ 1) to

yk+1 = 1 + xk =⇒ yk = 1 + xk−1 = 1 + k − 1 = k.
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One can notice that this solution does not meet the requirements for y0 = 1 so one way is to
adjust yk in zero with a delta, i.e. yk = k+δ0(k). Of course one can solve the second equation
in z for Y and perform the inverse transform, this gives

Y =
X

z
+

1

z − 1
+ 1 =

1

(z − 1)2
+

1

z − 1
+ 1

and doing the least common multiple

Y =
1 + z − 1 + z2 − 2z + 1

(z − 1)2
=
z2 − z + 1

(z − 1)2
=

Az

z − 1
+

Bz

(z − 1)2
.

The easiest way to compute the partial fraction reduction is to consider the expression Y/z:

Y

z
=
z2 − z + 1

z(z − 1)2
=

A

z − 1
+

B

(z − 1)2
+
C

z
.

By direct substitution one finds out B = 1 and C = 1. To compute coefficient A one can
multiply Y/z by z and then push z →∞,

lim
z→∞

Y z

z
= lim

z→∞

z2 − z + 1

(z − 1)2
= lim

z→∞

Az

z − 1
+

Bz

(z − 1)2
+
Cz

z
.

This implies the linear equation A + 0 + C = 1, that is A = 0. So the partial fraction
decomposition for Y is

Y =
z

(z − 1)2
+
z

z
.

Thus the inverse Z-transform implies

yk = k + δ0(k) .

2 Exercise 2

Solve this system of differential equations.

x′′ − y′′ = et

x+ y = 0

with x(0) = 1, x′(0) = 0, y(0) = −1 and y′(0) = 0.

2.1 Solution with Laplace transform

The transformed system becomes

s2X − sx(0)− x′(0)− s2Y + sy(0) + y′(0) =
1

s− 1

X + Y = 0.
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Focusing on the first equation, the substitution of the initial values gives

s2X − 2s− s2Y =
1

s− 1

Using the second equation gives Y = −X so the first equation reduces to

X =
1

s− 1

1

2s2
+

2s

2s2
=

1

2

1

s2(s− 1)
+

1

s
.

The partial fraction decomposition of the first term gives

X =
1

2

(
A

s
+
B

s2
+

C

s− 1

)
+

1

s
.

By direct substitution one has B = −1 and C = 1, multiplying by s and pushing s→∞

lim
s→∞

s

s2(s− 1)
= lim

s→∞
A+

B

s
+ C = 0

therefore A+ C = 0 that is A = −1. In conclusion

X =
1

2

(
−1

s
− 1

s2
+

1

s− 1

)
+

1

s
=⇒ x(t) = −1

2
− t

2
− et

2
+ 1.

So the required solution is x(t) =
1

2
− t

2
− et

2
and y(t) = −x(t).

3 Exercise 3

Solve the differential equation

y′′′(t) = cos(t) + A, y(0) = 1, y′(0) = 1, y′′(0) = A

and determine A such that lim
t→∞

y(t)

t3
= 1.

3.1 Solution with calculus

The exercise can be done without using particular ODE techniques, in fact the equation can
be integrated three times. One has

y′′(t) = sin(t) + At+ c1 =⇒ y′′(0) = A = c1

thus c1 = A. Integrating again

y′(t) = − cos(t) +
At2

2
+ At+ c2 =⇒ y′(0) = 1 = −1 + c2
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hence c2 = 2, and integrating another time,

y(t) = − sin(t) +
At3

6
+
At2

2
+ 2t+ c3 =⇒ y(0) = 1 = c3

therefore c3 = 1, so the general expression for y(t) is

y(t) = − sin(t) +
At3

6
+
At2

2
+ 2t+ 1

Now from the condition of the limit one has

1 = lim
t→∞

y(t)

t3
= lim

t→∞
−
sin(t) +

At3

6
+
At2

2
+ 2t+ 1

t3
=
A

6
(1)

thus A = 6.

3.2 Solution with Laplace Transform

The only problem is to perform the Laplace transform of a third derivative,

L(y′′′(t)) = s3Y − s2y(0)− sy′(0)− y′′(0)

so the transformation of the equation yields

s3Y − s2y(0)− sy′(0)− y′′(0) = s

s2 + 1
+
A

s
.

The substitution of the initial conditions gives

s3Y − s2 − s− A =
s

s2 + 1
+
A

s
=⇒ Y =

A

s3
+

1

s2
+

1

s
+

1

s2(s2 + 1)
+
A

s4

The partial fraction decomposition of 1/(s2(s2 + 1)) is

1

s2(s2 + 1)
=
α

s
+
β

s2
+

γ

s2 + 1

and with the usual methods, β = 1. Then

lim
s→∞

s

s2(s2 + 1)
= α = 0 =⇒ α = 0.

Finally,

1

s2(s2 + 1)
− β

s2
− α

s
=

γ

s2 + 1
=⇒ −s2

s2(s2 + 1)
=

γ

s2 + 1
=⇒ γ = −1.

The equation for Y is thus

Y =
A

s3
+

1

s2
+

1

s
+

1

s2
− 1

s2 + 1
+
A

s4



Exercitation 9 5

and the inversion gives

y(t) =
At2

2
+ t+ 1 + t− sin(t) +

At3

6

and one can apply the condition of the limit as in (1).

4 Exercise 4

Write the coefficients of the Fourier series of f(x) = x cos(x) defined in (−π, π) and extended
periodically in R.

4.1 Solution with real coefficients

The coefficient an are all zero because the integral

an =
1

π

∫ π

−π
x cos(x) cos(nx) dx = 0

is identically zero, in facts the integrand is an odd function integrated on a symmetric interval.
It remains to compute the integral for bn.

bn =
1

π

∫ π

−π
x cos(x) sin(nx) dx [Euler formula]

=
1

π

∫ π

−π
x
eix + e−ix

2

einx − e−inx

2i
dx

=
1

π

∫ π

−π

x

4i

(
eix(n+1) − e−ix(n−1) + eix(n−1) − e−ix(n+1)

)
dx

=
1

π

∫ π

−π

x

4i
(2i sin(n+ 1)x+ 2i sin(n− 1)x) dx [by parts]

=
1

2π

[
x

(
− 1

n+ 1

)
cos(n+ 1)x− x 1

n− 1
cos(n− 1)x

] ∣∣∣∣∣
π

−π

− 1

2π

∫ π

−π

[(
− 1

n+ 1

)
cos(n+ 1)x− 1

n− 1
cos(n− 1)x

]
dx

=
1

2

[
− 1

n+ 1
(−1)n+1 − 1

n− 1
(−1)n+1 − 1

n+ 1
(−1)n+1 − 1

n− 1
(−1)n+1

]

− 2

2π

[
− 1

(n+ 1)2
sin(n+ 1)x− 1

(n− 1)2
sin(n− 1)x

] ∣∣∣∣∣
π

0
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=
1

2

[
(−1)n

n+ 1
+

(−1)n

n− 1
+

(−1)n

n+ 1
+

(−1)n

n− 1

]
− 0

=
(−1)n

2

[
n− 1 + n+ 1 + n− 1 + n+ 1

n2 − 1

]
=

(−1)n

2

[
4n

n2 − 1

]
=

(−1)n2n
n2 − 1

.

In conclusion the required coefficients are

an = 0 bn =
(−1)n2n
n2 − 1

n ≥ 2.


