# Exercitation 10 

Numerical Methods for Dynamical Systems and Control

Marco Frego<br>PhD student at DIMS

December 15, 2011

## 1 Exercise 1

Compute the matrix exponential $e^{\boldsymbol{A}}$ where

$$
\boldsymbol{A}=\left(\begin{array}{ccc}
2 & -1 & -1 \\
-1 & 2 & -1 \\
-1 & -1 & 2
\end{array}\right)
$$

### 1.1 Solution with Cayley-Hamilton

The first thing to do is to find the eigenvalues, this can be done solving the equation $\operatorname{det}(\boldsymbol{A}-$ $\lambda \boldsymbol{I})=0$.

$$
\boldsymbol{A}-\lambda \boldsymbol{I}=\left(\begin{array}{ccc}
2 & -1 & -1 \\
-1 & 2 & -1 \\
-1 & -1 & 2
\end{array}\right)-\lambda\left(\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right)=\left(\begin{array}{ccc}
2-\lambda & -1 & -1 \\
-1 & 2-\lambda & -1 \\
-1 & -1 & 2-\lambda
\end{array}\right)
$$

Its determinant is

$$
\begin{aligned}
0=\operatorname{det}(\boldsymbol{A}-\lambda \boldsymbol{I}) & =(2-\lambda)\left[(2-\lambda)^{2}-1\right]+[(\lambda-2)-1]-[1+(2-\lambda)] \\
& =(2-\lambda)^{3}-(2-\lambda)+(\lambda-2-1-1-2+\lambda) \\
& =8-12 \lambda+6 \lambda^{2}-\lambda^{3}-2+\lambda+2 \lambda-6 \\
& =-\lambda^{3}+6 \lambda^{2}-9 \lambda \\
& =\lambda(\lambda-3)^{2} .
\end{aligned}
$$

The solution of that equation are $\lambda=0$ and a double root $\lambda=3$. Using the Cayley-Hamilton theorem, one has to compute the polynomial $p(x)=a_{0}+a_{1} x+a_{2} x^{2}$ using the relations $p(\lambda=0)=e^{0}, p(\lambda=3)=e^{3}$ and $p^{\prime}(\lambda=3)=e^{3}$. This gives a non linear system in the
coefficients $a_{i}$, namely

$$
\begin{aligned}
p(0) & =a_{0}=e^{0} \\
p(3) & =a_{0}+3 a_{1}+9 a_{2}=e^{3} \\
p^{\prime}(3) & =a_{1}+6 a_{2}=e^{3} .
\end{aligned}
$$

Using the first equation, $a_{0}=1$, substituting this value in the other two equation yields from the third equation, $a_{1}=e^{3}-6 a_{2}$. Using this expression in the second equation gives $1+3 e^{3}-18 a_{2}+9 a_{2}=e^{3}$ from which

$$
\begin{array}{lc}
a_{0} & = \\
a_{1}=e^{3}-6 a_{2}=\frac{9 e^{3}-6-12 e^{3}}{9}=\frac{-3 e^{3}-6}{9} \\
a_{2} & =
\end{array} \frac{\frac{1+2 e^{3}}{9} .}{}
$$

In conclusion the required expression $e^{\boldsymbol{A}}=p(\boldsymbol{A})$, that is

$$
p(\boldsymbol{A})=a_{0} \boldsymbol{I}+a_{1} \boldsymbol{A}+a_{2} \boldsymbol{A}^{2}=\boldsymbol{I}-\frac{e^{3}+2}{3} \boldsymbol{A}+\frac{1+2 e^{3}}{9} \boldsymbol{A}^{2}
$$

One can compute $\boldsymbol{A}^{2}$ and obtains

$$
\boldsymbol{A}^{2}=\left(\begin{array}{ccc}
6 & -3 & -3 \\
-3 & 6 & -3 \\
-3 & -3 & 6
\end{array}\right)
$$

Putting all together

$$
\left(\begin{array}{ccc}
1 / 3+2 / 3 e^{3} & -1 / 3 e^{3}+1 / 3 & -1 / 3 e^{3}+1 / 3 \\
-1 / 3 e^{3}+1 / 3 & 1 / 3+2 / 3 e^{3} & -1 / 3 e^{3}+1 / 3 \\
-1 / 3 e^{3}+1 / 3 & -1 / 3 e^{3}+1 / 3 & 1 / 3+2 / 3 e^{3}
\end{array}\right) .
$$

### 1.2 Solution with standard linear algebra

From the previous section, the eigenvalues of the matrix are $\lambda=0$ and a double root $\lambda=3$. So the algebraic multiplicity of 0 is $a . m \cdot(0)=1$ and $a . m \cdot(3)=2$. To find a basis of eigenvectors one need to check if the geometric multiplicity of the eigenvalues is equal to the algebraic multiplicity.
The rank of $\boldsymbol{A}-0 \boldsymbol{I}$ is equal to the rank of $\boldsymbol{A}$ and is 2 , in facts the first row is equal to the sum of the other two rows with opposite sign. So the geometric multiplicity of 0 is $g . m .(0)=n-r k(\boldsymbol{A}-\lambda \boldsymbol{I})=3-2=1$ and is equal to the algebraic multiplicity of 0 .
The same computation for $\lambda=3$ gives

$$
\boldsymbol{A}-3 \boldsymbol{I}=\left(\begin{array}{lll}
-1 & -1 & -1 \\
-1 & -1 & -1 \\
-1 & -1 & -1
\end{array}\right)
$$

hence this matrix has rank 1 and so $g . m .(3)=3-1=2=a . m .(3)$. So there are enough eigenvectors to construct the matrix $\boldsymbol{P}$ of eigenvectors.
The eigenvector corresponding to 0 is a non zero vector of the kernel of $\boldsymbol{A}$, i.e. a vector $v_{0}=(\alpha, \beta, \gamma)^{T}$ such that $\boldsymbol{A} v_{0}=\mathbf{0}$.

$$
\boldsymbol{A} v_{0}=(2 \alpha-\beta-\gamma,-\alpha+2 \beta-\gamma,-\alpha-\beta+2 \gamma)^{T}=\mathbf{0}
$$

One possible solution is $v_{0}=(1,1,1)^{T}$.
For $\lambda=3$ there are two eigenvectors which must satisfy

$$
\boldsymbol{A} v=(2 \alpha-\beta-\gamma,-\alpha+2 \beta-\gamma,-\alpha-\beta+2 \gamma)^{T}=(3 \alpha, 3 \beta, 3 \gamma)^{T}
$$

summing the first two relations one has $\alpha+\beta+\gamma=0$ and two linearly independent solution of this are $v_{1}=(1,-1,0)^{T}$ and $v_{2}=(1,0,-1)^{T}$.
The matrix $\boldsymbol{P}$ of eigenvectors is therefore

$$
\boldsymbol{P}=\left(\begin{array}{ccc}
1 & 1 & 1 \\
1 & -1 & 0 \\
1 & 0 & -1
\end{array}\right) \Longrightarrow \boldsymbol{P}^{-1}=\frac{1}{3}\left(\begin{array}{ccc}
1 & 1 & 1 \\
1 & -2 & 1 \\
1 & 1 & -2
\end{array}\right)
$$

In conclusion the exponetial of $\boldsymbol{A}$ is

$$
\begin{aligned}
\boldsymbol{P} e^{\boldsymbol{D}} \boldsymbol{P}^{-1} & =\left(\begin{array}{ccc}
1 & 1 & 1 \\
1 & -1 & 0 \\
1 & 0 & -1
\end{array}\right)\left(\begin{array}{ccc}
e^{0} & 0 & 0 \\
0 & e^{3} & 0 \\
0 & 0 & e^{3}
\end{array}\right) \frac{1}{3}\left(\begin{array}{ccc}
1 & 1 & 1 \\
1 & -2 & 1 \\
1 & 1 & -2
\end{array}\right) \\
& =\left(\begin{array}{ccc}
1 / 3+2 / 3 e^{3} & -1 / 3 e^{3}+1 / 3 & -1 / 3 e^{3}+1 / 3 \\
-1 / 3 e^{3}+1 / 3 & 1 / 3+2 / 3 e^{3} & -1 / 3 e^{3}+1 / 3 \\
-1 / 3 e^{3}+1 / 3 & -1 / 3 e^{3}+1 / 3 & 1 / 3+2 / 3 e^{3}
\end{array}\right) .
\end{aligned}
$$

## 2 Exercise 2

Compute the matrix exponential $e^{\boldsymbol{A}}$ where

$$
\boldsymbol{A}=\left(\begin{array}{cccc}
-7 & -5 & 5 & 10 \\
0 & -2 & 0 & 0 \\
0 & 0 & -2 & 0 \\
-5 & -5 & 5 & 8
\end{array}\right)
$$

### 2.1 Solution with linear algebra

The determinant of this matrix can be quite involved if expanded using the first row, but reduces to a single $3 \times 3$ determinant if expanded using the Laplace determinant formula
applied to the second or third row. Expanding along the third row one has

$$
\begin{aligned}
\operatorname{det}(\boldsymbol{A}-\lambda \boldsymbol{I}) & =\operatorname{det}\left(\begin{array}{cccc}
-7-\lambda & -5 & 5 & 10 \\
0 & -2-\lambda & 0 & 0 \\
0 & 0 & -2-\lambda & 0 \\
-5 & -5 & 5 & 8-\lambda
\end{array}\right) \\
& =(-2-\lambda) \operatorname{det}\left(\begin{array}{ccc}
-7-\lambda & 5 & 10 \\
0 & -2-\lambda & 0 \\
-5 & 5 & 8-\lambda
\end{array}\right) \\
& =(-2-\lambda)(-2-\lambda) \operatorname{det}\left(\begin{array}{cc}
-7-\lambda & 10 \\
-5 & 8-\lambda
\end{array}\right) \\
& =(-2-\lambda)^{2}[(7-\lambda)(8-\lambda)+50] \\
& =(-2-\lambda)^{2}\left[\lambda^{2}-\lambda-6\right]
\end{aligned}
$$

This equation has roots $\lambda=-2,3$ with $a \cdot m \cdot(-2)=3$ and $a \cdot m .(3)=1$. Now there is to check the geometric multiplicity. For the first eigenvalue:

$$
\boldsymbol{A}+2 \boldsymbol{I}=\left(\begin{array}{cccc}
-5 & -5 & 5 & 10 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 \\
-5 & -5 & 5 & 10
\end{array}\right)
$$

and this means that it has rank 1, so g.m. $(-2)=4-1=3=a \cdot m \cdot(-2)$. For the second eigenvalue one has

$$
\boldsymbol{A}-3 \boldsymbol{I}=\left(\begin{array}{cccc}
-10 & -5 & 5 & 10 \\
0 & -5 & 0 & 0 \\
0 & 0 & -5 & 0 \\
-5 & -5 & 5 & 5
\end{array}\right) \Longrightarrow\left(\begin{array}{cccc}
0 & -5 & 5 & 0 \\
0 & -5 & 0 & 0 \\
0 & 0 & -5 & 0 \\
-5 & -5 & 5 & 5
\end{array}\right) \Longrightarrow\left(\begin{array}{cccc}
0 & 0 & -5 & 0 \\
0 & -5 & 0 & 0 \\
0 & 0 & -5 & 0 \\
-5 & -5 & 5 & 5
\end{array}\right)
$$

where in the first passage were used the first and fourth rows, in the second passage, the second and the first. It turns out that it has rank 3, so $g \cdot m \cdot(3)=4-3=1=a \cdot m .(3)$. Therefore there exists a basis of eigenvectors. For $\lambda=-2$ three eigenvectors can be $v_{1}=(1,0,-1,1)^{T}$, $v_{2}=(0,1,1,0)^{T}$ and $v_{3}=(1,-1,0,0)^{T}$, because all satisfy $(\boldsymbol{A}-3 \boldsymbol{I}) v=\mathbf{0}$. For $\lambda=3$ one has that $v_{4}=(1,0,0,1)^{T}$ satisfies $(\boldsymbol{A}+2 \boldsymbol{I}) v_{4}=\mathbf{0}$. Thus the matrix $\boldsymbol{P}$ is

$$
\boldsymbol{P}=\left(\begin{array}{cccc}
1 & 0 & 1 & 1 \\
0 & 1 & -1 & 0 \\
-1 & 1 & 0 & 0 \\
1 & 0 & 0 & 1
\end{array}\right) \Longrightarrow \boldsymbol{P}^{-1}=\left(\begin{array}{cccc}
1 & 1 & -1 & -1 \\
1 & 1 & 0 & -1 \\
1 & 0 & 0 & -1 \\
-1 & -1 & 1 & 2
\end{array}\right)
$$

To compute the inverse of $\boldsymbol{P}$ it is enough to reduce the matrix $(\boldsymbol{P} \mid \boldsymbol{I})$ in row echelon form.

$$
\begin{aligned}
& \left(\begin{array}{cccc|cccc}
1 & 0 & 1 & 1 & 1 & 0 & 0 & 0 \\
0 & 1 & -1 & 0 & 0 & 1 & 0 & 0 \\
0 & 0 & 2 & 1 & 1 & -1 & 1 & 0 \\
0 & 0 & -1 & 0 & -1 & 0 & 0 & 1
\end{array}\right) \Longrightarrow\left(\begin{array}{cccc|cccc}
1 & 0 & 1 & 1 & 1 & 0 & 0 & 0 \\
0 & 1 & -1 & 0 & \mid & 0 & 1 & 0 \\
0 & 0 \\
0 & 0 & 2 & 1 & 1 & -1 & 1 & 0 \\
0 & 0 & 0 & 1 / 2 & -1 / 2 & -1 / 2 & 1 / 2 & 1
\end{array}\right) \\
& \left(\begin{array}{cccc|cccc}
1 & 0 & 1 & 1 & 1 & 0 & 0 & 0 \\
0 & 1 & -1 & 0 & 0 & 1 & 0 & 0 \\
0 & 0 & 2 & 1 & 1 & -1 & 1 & 0 \\
0 & 0 & 0 & 1 & -1 & -1 & 1 & 2
\end{array}\right) \Longrightarrow\left(\begin{array}{cccc|cccc}
1 & 0 & 1 & 1 & 1 & 0 & 0 & 0 \\
0 & 1 & 0 & 1 / 2 & 1 / 2 & 1 / 2 & 1 / 2 & 0 \\
0 & 0 & 1 & 1 / 2 & 1 / 2 & -1 / 2 & 1 / 2 & 0 \\
0 & 0 & 0 & 1 & -1 & -1 & 1 & 2
\end{array}\right) \\
& \left(\begin{array}{cccc|cccc}
1 & 0 & 0 & 1 / 2 & 1 / 2 & 1 / 2 & -1 / 2 & 0 \\
0 & 1 & 0 & 0 & 1 & 1 & 0 & -1 \\
0 & 0 & 1 & 1 & 1 & 0 & 0 & -1 \\
0 & 0 & 0 & 1 & -1 & -1 & 1 & 2
\end{array}\right) \Longrightarrow\left(\begin{array}{cccc:cccc}
1 & 0 & 0 & 0 & 1 & 1 & -1 & -1 \\
0 & 1 & 0 & 0 & 1 & 1 & 0 & -1 \\
0 & 0 & 1 & 1 & 1 & 0 & 0 & -1 \\
0 & 0 & 0 & 1 & -1 & -1 & 1 & 2
\end{array}\right) .
\end{aligned}
$$

In conclusion the matrix exponential is now

$$
\begin{aligned}
\boldsymbol{P} e^{\boldsymbol{D}} \boldsymbol{P}^{-1} & =\left(\begin{array}{cccc}
1 & 0 & 1 & 1 \\
0 & 1 & -1 & 0 \\
-1 & 1 & 0 & 0 \\
1 & 0 & 0 & 1
\end{array}\right)\left(\begin{array}{cccc}
e^{-2} & 0 & 0 & 0 \\
0 & e^{-2} & 0 & 0 \\
0 & 0 & e^{-2} & 0 \\
0 & 0 & 0 & e^{3}
\end{array}\right)\left(\begin{array}{cccc}
1 & 1 & -1 & -1 \\
1 & 1 & 0 & -1 \\
1 & 0 & 0 & -1 \\
-1 & -1 & 1 & 2
\end{array}\right) \\
& =\left(\begin{array}{cccc}
1 & 0 & 1 & 1 \\
0 & 1 & -1 & 0 \\
-1 & 1 & 0 & 0 \\
1 & 0 & 0 & 1
\end{array}\right)\left(\begin{array}{cccc}
e^{-2} & e^{-2} & -e^{-2} & -e^{-2} \\
e^{-2} & e^{-2} & 0 & -e^{-2} \\
e^{-2} & 0 & 0 & -e^{-2} \\
-e^{3} & -e^{3} & e^{3} & 2 e^{3}
\end{array}\right) \\
& =\left(\begin{array}{cccc}
2 e^{-2}-e^{3} & e^{-2}-e^{3} & -e^{-2}+e^{3} & -2 e^{-2}+2 e^{3} \\
0 & e^{-2} & 0 & 0 \\
0 & 0 & e^{-2} & 0 \\
e^{-2}-e^{3} & e^{-2}-e^{3} & -e^{-2}+e^{3} & -e^{-2}+2 e^{3}
\end{array}\right) .
\end{aligned}
$$

### 2.2 Solution with Cayley-Hamilton

From the knowledge of the eigenvalues one imposes a linear system for the polynomial $p(x)=$ $a_{0}+a_{1} x+a_{2} x^{2}+a_{3} x^{3}$. In this case the system is

$$
\begin{array}{ll}
p(-2)=a_{0}-2 a_{1}+4 a_{2}-8 a_{3} & =e^{-2} \\
p^{\prime}(-2)=a_{1}+4 a_{2}+12 a_{3} & =e^{-2} \\
p^{\prime \prime}(-2)=2 a_{2}-12 a_{3} & =e^{-2} \\
p(3) & =a_{0}+3 a_{1}+9 a_{2}+27 a_{3}
\end{array}=e^{3}
$$

which has solution

$$
\begin{array}{ll}
a_{0}=\frac{477 e^{-2}+8 e^{3}}{125} & a_{1}=\frac{153 e^{-2}+12 e^{3}}{125} \\
a_{2}=\frac{-97 e^{-2}+12 e^{3}}{250} & a_{3}=\frac{-37 e^{-2}+2 e^{3}}{250} .
\end{array}
$$

In conclusion the required expression $e^{\boldsymbol{A}}=p(\boldsymbol{A})$, that is

$$
p(\boldsymbol{A})=a_{0} \boldsymbol{I}+a_{1} \boldsymbol{A}+a_{2} \boldsymbol{A}^{2}+a_{3} \boldsymbol{A}^{3}
$$

One can compute $\boldsymbol{A}^{2}$ and $\boldsymbol{A}^{3}$ obtains

$$
\boldsymbol{A}^{2}=\left(\begin{array}{cccc}
-1 & -5 & 5 & 10 \\
0 & 4 & 0 & 0 \\
0 & 0 & 4 & 0 \\
-5 & -5 & 5 & 14
\end{array}\right) \quad \boldsymbol{A}^{3}=\left(\begin{array}{cccc}
-43 & -35 & 35 & 70 \\
0 & -8 & 0 & 0 \\
0 & 0 & -8 & 0 \\
-35 & -35 & 35 & 62
\end{array}\right)
$$

## 3 Exercise 3

Solve the following optimal control problem

$$
\max \int_{0}^{1}\left(x-u^{2}\right) d t \quad x^{\prime}=u \quad x(0)=2 .
$$

### 3.1 Solution with the first variation

The Lagrangian is

$$
\mathcal{L}(x, u, \lambda, \mu)=\int_{0}^{1}\left[\left(x-u^{2}\right)-\lambda\left(x^{\prime}-u\right)\right] d t-\mu(x(0)-2) .
$$

Now perform the first variation

$$
\delta \mathcal{L}(x, u, \lambda, \mu)=\left.\frac{d}{d \alpha}\right|_{\alpha=0} \mathcal{L}\left(x+\alpha \delta_{x}, u+\alpha \delta_{u}, \lambda+\alpha \delta_{\lambda}, \mu+\alpha \delta_{\mu}\right)
$$

Making the substitution yields

$$
\begin{aligned}
\delta \mathcal{L}= & \lim _{\alpha \rightarrow 0} \frac{d}{d \alpha} \int_{0}^{1}\left[x+\alpha \delta_{x}-\left(u+\alpha \delta_{u}\right)^{2}-\left(\lambda+\alpha \delta_{\lambda}\right)\left(x^{\prime}+\alpha \delta_{x^{\prime}}-u-\alpha \delta_{u}\right)\right] d t \\
& \quad-\left(\mu+\alpha \delta_{\mu}\right)\left(x(0)+\alpha \delta_{x(0)}-2\right) \\
= & \lim _{\alpha \rightarrow 0} \int_{0}^{1}\left[\delta_{x}-2\left(u+\alpha \delta_{u}\right) \delta_{u}-\delta_{\lambda}\left(x^{\prime}+\alpha \delta_{x^{\prime}}-u-\alpha \delta_{u}\right)\right. \\
& \left.\quad-\left(\lambda+\alpha \delta_{\lambda}\right)\left(\delta_{x^{\prime}}-\delta_{u}\right)\right] d t-\delta \mu\left(x(0)+\alpha \delta_{x(0)}-2\right)-\left(\mu+\alpha \delta_{\mu}\right) \delta_{x(0)} \\
= & \int_{0}^{1}\left[\delta_{x}-2 u \delta_{u}-\delta_{\lambda}\left(x^{\prime}-u\right)-\lambda\left(\delta_{x^{\prime}}-\delta_{u}\right)\right] d t \\
& -\delta_{\mu}(x(0)-2)-\mu \delta_{x(0)}
\end{aligned}
$$

One can derive directly this last passage skipping the above calculations if performs the differentiation of each variable. Now there is the problem to express the variation $\delta_{x^{\prime}}$ in terms of the other variations. To see that consider the term involving $\delta_{x^{\prime}}$, that is $\lambda \delta_{x^{\prime}}$. If one differentiates $\lambda \delta_{x}$ with respect to $t$ has

$$
\frac{d}{d t}\left[\lambda \delta_{x}\right]=\lambda^{\prime} \delta_{x}+\lambda \delta_{x^{\prime}} \Longrightarrow \lambda \delta_{x^{\prime}}=\frac{d}{d t}\left[\lambda \delta_{x}\right]-\lambda^{\prime} \delta_{x}
$$

Using this relation in the above expression gives

$$
\begin{aligned}
\delta \mathcal{L}= & \int_{0}^{1}\left[\delta_{x}-2 u \delta_{u}-\delta_{\lambda}\left(x^{\prime}-u\right)-\frac{d}{d t}\left(\lambda \delta_{x}\right)+\lambda^{\prime} \delta_{x}+\lambda \delta_{u}\right] d t \\
& -\delta_{\mu}(x(0)-2)-\mu \delta_{x(0)} .
\end{aligned}
$$

Now collecting the variations in order to use the du Bois-Reymond theorem leads to

$$
\begin{aligned}
\delta \mathcal{L}= & \int_{0}^{1}\left[\delta_{x}\left(1+\lambda^{\prime}\right)+\delta_{u}(-2 u+\lambda)+\delta_{\lambda}\left(u-x^{\prime}\right)\right] d t \\
& -\lambda(1) \delta_{x(1)}+(\lambda(0)-\mu) \delta_{x(0)}-\delta \mu(x(0)-2)
\end{aligned}
$$

This leads to this system of ordinary differential equations,

$$
\begin{array}{rlrl}
1+\lambda^{\prime} & =0 & -\lambda(1) & =0 \\
-2 u+\lambda & =0 & \lambda(0)-\mu & =0 \\
u-x^{\prime} & =0 & x(0)-2 & =0
\end{array}
$$

From the first differential equation one has $\lambda=-t+c$, then using the initial condition $\lambda(1)=0$ yields $\lambda(1)=-1+c=0 \Longrightarrow c=1$. So the multiplier is $\lambda(t)=-t+1$.
From the multiplier one can resolve the optimal control $u(t)$, in facts from the second differential equation $-2 u+\lambda=0 \Longrightarrow u(t)=\frac{\lambda(t)}{2}=\frac{-t+1}{2}$.
Finally one can reconstruct the state variable $x(t)$. From the first differential equation $x^{\prime}=$
$\frac{-t+1}{2} \Longrightarrow x(t)=-\frac{1}{4} t^{2}+\frac{1}{2} t+c$. Now from the initial condition on $x(t)$ one has $x(0)=c=2$. In general, to prove the fact that this control maximizes the integral is a difficult task, therefore it is better to rely on special theorems.

