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1 Exercise 1

Compute the matrix exponential eA where

A =

 2 −1 −1
−1 2 −1
−1 −1 2

 .

1.1 Solution with Cayley-Hamilton

The first thing to do is to find the eigenvalues, this can be done solving the equation det(A−
λI) = 0.

A− λI =

 2 −1 −1
−1 2 −1
−1 −1 2

− λ
1 0 0
0 1 0
0 0 1

 =

2− λ −1 −1
−1 2− λ −1
−1 −1 2− λ


Its determinant is

0 = det(A− λI) = (2− λ)[(2− λ)2 − 1] + [(λ− 2)− 1]− [1 + (2− λ)]

= (2− λ)3 − (2− λ) + (λ− 2− 1− 1− 2 + λ)

= 8− 12λ+ 6λ2 − λ3 − 2 + λ+ 2λ− 6

= −λ3 + 6λ2 − 9λ

= λ(λ− 3)2.

The solution of that equation are λ = 0 and a double root λ = 3. Using the Cayley-Hamilton
theorem, one has to compute the polynomial p(x) = a0 + a1x + a2x

2 using the relations
p(λ = 0) = e0, p(λ = 3) = e3 and p′(λ = 3) = e3. This gives a non linear system in the
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coefficients ai, namely

p(0) = a0 = e0

p(3) = a0 + 3a1 + 9a2 = e3

p′(3) = a1 + 6a2 = e3.

Using the first equation, a0 = 1, substituting this value in the other two equation yields
from the third equation, a1 = e3 − 6a2. Using this expression in the second equation gives
1 + 3e3 − 18a2 + 9a2 = e3 from which

a0 = 1

a1 = e3 − 6a2 =
9e3 − 6− 12e3

9
=
−3e3 − 6

9

a2 =
1 + 2e3

9
.

In conclusion the required expression eA = p(A), that is

p(A) = a0I + a1A+ a2A
2 = I − e3 + 2

3
A+

1 + 2e3

9
A2

One can compute A2 and obtains

A2 =

 6 −3 −3
−3 6 −3
−3 −3 6

 .

Putting all together 
1/3 + 2/3 e3 −1/3 e3 + 1/3 −1/3 e3 + 1/3

−1/3 e3 + 1/3 1/3 + 2/3 e3 −1/3 e3 + 1/3

−1/3 e3 + 1/3 −1/3 e3 + 1/3 1/3 + 2/3 e3

 .

1.2 Solution with standard linear algebra

From the previous section, the eigenvalues of the matrix are λ = 0 and a double root λ = 3. So
the algebraic multiplicity of 0 is a.m.(0) = 1 and a.m.(3) = 2. To find a basis of eigenvectors
one need to check if the geometric multiplicity of the eigenvalues is equal to the algebraic
multiplicity.
The rank of A − 0I is equal to the rank of A and is 2, in facts the first row is equal to
the sum of the other two rows with opposite sign. So the geometric multiplicity of 0 is
g.m.(0) = n− rk(A− λI) = 3− 2 = 1 and is equal to the algebraic multiplicity of 0.
The same computation for λ = 3 gives

A− 3I =

−1 −1 −1−1 −1 −1
−1 −1 −1


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hence this matrix has rank 1 and so g.m.(3) = 3 − 1 = 2 = a.m.(3). So there are enough
eigenvectors to construct the matrix P of eigenvectors.
The eigenvector corresponding to 0 is a non zero vector of the kernel of A, i.e. a vector
v0 = (α, β, γ)T such that Av0 = 0.

Av0 = (2α− β − γ,−α + 2β − γ,−α− β + 2γ)T = 0

One possible solution is v0 = (1, 1, 1)T .
For λ = 3 there are two eigenvectors which must satisfy

Av = (2α− β − γ,−α + 2β − γ,−α− β + 2γ)T = (3α, 3β, 3γ)T

summing the first two relations one has α+ β + γ = 0 and two linearly independent solution
of this are v1 = (1,−1, 0)T and v2 = (1, 0,−1)T .
The matrix P of eigenvectors is therefore

P =

1 1 1
1 −1 0
1 0 −1

 =⇒ P−1 =
1

3

1 1 1
1 −2 1
1 1 −2


In conclusion the exponetial of A is

P eDP−1 =

1 1 1
1 −1 0
1 0 −1

e0 0 0
0 e3 0
0 0 e3

 1

3

1 1 1
1 −2 1
1 1 −2



=


1/3 + 2/3 e3 −1/3 e3 + 1/3 −1/3 e3 + 1/3

−1/3 e3 + 1/3 1/3 + 2/3 e3 −1/3 e3 + 1/3

−1/3 e3 + 1/3 −1/3 e3 + 1/3 1/3 + 2/3 e3

 .

2 Exercise 2

Compute the matrix exponential eA where

A =


−7 −5 5 10
0 −2 0 0
0 0 −2 0
−5 −5 5 8

 .

2.1 Solution with linear algebra

The determinant of this matrix can be quite involved if expanded using the first row, but
reduces to a single 3 × 3 determinant if expanded using the Laplace determinant formula
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applied to the second or third row. Expanding along the third row one has

det(A− λI) = det


−7− λ −5 5 10

0 −2− λ 0 0
0 0 −2− λ 0
−5 −5 5 8− λ


= (−2− λ) det

−7− λ 5 10
0 −2− λ 0
−5 5 8− λ


= (−2− λ)(−2− λ) det

(
−7− λ 10
−5 8− λ

)
= (−2− λ)2[(7− λ)(8− λ) + 50]

= (−2− λ)2[λ2 − λ− 6]

This equation has roots λ = −2, 3 with a.m.(−2) = 3 and a.m.(3) = 1. Now there is to check
the geometric multiplicity. For the first eigenvalue:

A+ 2I =


−5 −5 5 10
0 0 0 0
0 0 0 0
−5 −5 5 10


and this means that it has rank 1, so g.m.(−2) = 4 − 1 = 3 = a.m.(−2). For the second
eigenvalue one has

A− 3I =


−10 −5 5 10
0 −5 0 0
0 0 −5 0
−5 −5 5 5

 =⇒


0 −5 5 0
0 −5 0 0
0 0 −5 0
−5 −5 5 5

 =⇒


0 0 −5 0
0 −5 0 0
0 0 −5 0
−5 −5 5 5


where in the first passage were used the first and fourth rows, in the second passage, the
second and the first. It turns out that it has rank 3, so g.m.(3) = 4−3 = 1 = a.m.(3). Therefore
there exists a basis of eigenvectors. For λ = −2 three eigenvectors can be v1 = (1, 0,−1, 1)T ,
v2 = (0, 1, 1, 0)T and v3 = (1,−1, 0, 0)T , because all satisfy (A − 3I)v = 0. For λ = 3 one has
that v4 = (1, 0, 0, 1)T satisfies (A+ 2I)v4 = 0. Thus the matrix P is

P =


1 0 1 1
0 1 −1 0
−1 1 0 0
1 0 0 1

 =⇒ P−1 =


1 1 −1 −1
1 1 0 −1
1 0 0 −1
−1 −1 1 2


To compute the inverse of P it is enough to reduce the matrix (P |I) in row echelon form.

1 0 1 1 | 1 0 0 0
0 1 −1 0 | 0 1 0 0
−1 1 0 0 | 0 0 1 0
1 0 0 1 | 0 0 0 1

 =⇒


1 0 1 1 | 1 0 0 0
0 1 −1 0 | 0 1 0 0
0 1 1 1 | 1 0 1 0
0 1 0 1 | 0 0 1 1


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
1 0 1 1 | 1 0 0 0
0 1 −1 0 | 0 1 0 0
0 0 2 1 | 1 −1 1 0
0 0 −1 0 | −1 0 0 1

 =⇒


1 0 1 1 | 1 0 0 0
0 1 −1 0 | 0 1 0 0
0 0 2 1 | 1 −1 1 0
0 0 0 1/2 | −1/2 −1/2 1/2 1



1 0 1 1 | 1 0 0 0
0 1 −1 0 | 0 1 0 0
0 0 2 1 | 1 −1 1 0
0 0 0 1 | −1 −1 1 2

 =⇒


1 0 1 1 | 1 0 0 0
0 1 0 1/2 | 1/2 1/2 1/2 0
0 0 1 1/2 | 1/2 −1/2 1/2 0
0 0 0 1 | −1 −1 1 2



1 0 0 1/2 | 1/2 1/2 −1/2 0
0 1 0 0 | 1 1 0 −1
0 0 1 1 | 1 0 0 −1
0 0 0 1 | −1 −1 1 2

 =⇒


1 0 0 0 | 1 1 −1 −1
0 1 0 0 | 1 1 0 −1
0 0 1 1 | 1 0 0 −1
0 0 0 1 | −1 −1 1 2

 .

In conclusion the matrix exponential is now

P eDP−1 =


1 0 1 1
0 1 −1 0
−1 1 0 0
1 0 0 1



e−2 0 0 0
0 e−2 0 0
0 0 e−2 0
0 0 0 e3




1 1 −1 −1
1 1 0 −1
1 0 0 −1
−1 −1 1 2



=


1 0 1 1
0 1 −1 0
−1 1 0 0
1 0 0 1



e−2 e−2 −e−2 −e−2
e−2 e−2 0 −e−2
e−2 0 0 −e−2
−e3 −e3 e3 2e3



=


2e−2 − e3 e−2 − e3 −e−2 + e3 −2e−2 + 2e3

0 e−2 0 0
0 0 e−2 0

e−2 − e3 e−2 − e3 −e−2 + e3 −e−2 + 2e3

 .

2.2 Solution with Cayley-Hamilton

From the knowledge of the eigenvalues one imposes a linear system for the polynomial p(x) =
a0 + a1x+ a2x

2 + a3x
3. In this case the system is

p(−2) = a0 − 2a1 + 4a2 − 8a3 = e−2

p′(−2) = a1 + 4a2 + 12a3 = e−2

p′′(−2) = 2a2 − 12a3 = e−2

p(3) = a0 + 3a1 + 9a2 + 27a3 = e3
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which has solution

a0 =
477e−2 + 8e3

125
a1 =

153e−2 + 12e3

125

a2 =
−97e−2 + 12e3

250
a3 =

−37e−2 + 2e3

250
.

In conclusion the required expression eA = p(A), that is

p(A) = a0I + a1A+ a2A
2 + a3A

3

One can compute A2 and A3 obtains

A2 =


−1 −5 5 10
0 4 0 0
0 0 4 0
−5 −5 5 14

 A3 =


−43 −35 35 70
0 −8 0 0
0 0 −8 0
−35 −35 35 62



3 Exercise 3

Solve the following optimal control problem

max

∫ 1

0

(x− u2)dt x′ = u x(0) = 2.

3.1 Solution with the first variation

The Lagrangian is

L(x, u, λ, µ) =
∫ 1

0

[(x− u2)− λ(x′ − u)]dt− µ(x(0)− 2).

Now perform the first variation

δL(x, u, λ, µ) = d

dα

∣∣∣∣∣
α=0

L(x+ αδx, u+ αδu, λ+ αδλ, µ+ αδµ)
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Making the substitution yields

δL = lim
α→0

d

dα

∫ 1

0

[x+ αδx − (u+ αδu)
2 − (λ+ αδλ)(x

′ + αδx′ − u− αδu)]dt

−(µ+ αδµ)(x(0) + αδx(0) − 2)

= lim
α→0

∫ 1

0

[δx − 2(u+ αδu)δu − δλ(x′ + αδx′ − u− αδu)

−(λ+ αδλ)(δx′ − δu)]dt− δµ(x(0) + αδx(0) − 2)− (µ+ αδµ)δx(0)

=

∫ 1

0

[δx − 2uδu − δλ(x′ − u)− λ(δx′ − δu)]dt

−δµ(x(0)− 2)− µδx(0)

One can derive directly this last passage skipping the above calculations if performs the dif-
ferentiation of each variable. Now there is the problem to express the variation δx′ in terms
of the other variations. To see that consider the term involving δx′, that is λδx′. If one differ-
entiates λδx with respect to t has

d

dt
[λδx] = λ′δx + λδx′ =⇒ λδx′ =

d

dt
[λδx]− λ′δx.

Using this relation in the above expression gives

δL =

∫ 1

0

[δx − 2uδu − δλ(x′ − u)−
d

dt
(λδx) + λ′δx + λδu]dt

−δµ(x(0)− 2)− µδx(0).

Now collecting the variations in order to use the du Bois-Reymond theorem leads to

δL =

∫ 1

0

[δx(1 + λ′) + δu(−2u+ λ) + δλ(u− x′)]dt

−λ(1)δx(1) + (λ(0)− µ)δx(0) − δµ(x(0)− 2)

This leads to this system of ordinary differential equations,

1 + λ′ = 0 −λ(1) = 0

−2u+ λ = 0 λ(0)− µ = 0

u− x′ = 0 x(0)− 2 = 0

From the first differential equation one has λ = −t + c, then using the initial condition
λ(1) = 0 yields λ(1) = −1 + c = 0 =⇒ c = 1. So the multiplier is λ(t) = −t+ 1.
From the multiplier one can resolve the optimal control u(t), in facts from the second differ-
ential equation −2u+ λ = 0 =⇒ u(t) = λ(t)

2
= −t+1

2
.

Finally one can reconstruct the state variable x(t). From the first differential equation x′ =
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−t+1
2

=⇒ x(t) = −1
4
t2 + 1

2
t+ c. Now from the initial condition on x(t) one has x(0) = c = 2.

In general, to prove the fact that this control maximizes the integral is a difficult task, there-
fore it is better to rely on special theorems.


