Numerical Methods for Dynamic System and Control del 14/1/2013
\square Name \qquad MAt. NUMBER \square

Signature \qquad

1

Study the following constrained minimization problem.

$$
\operatorname{minimize} \quad f(x, y, z)=x+y^{2}-z, \quad \text { subject to } \quad x y+z=1, \quad 0 \leq x \leq 1,
$$

KKT system of first order condition:

$$
\begin{aligned}
1-\lambda y-\mu_{1}+\mu_{2} & =0 \\
2 y-\lambda x & =0 \\
-1-\lambda & =0 \\
x y+z-1 & =0 \\
\mu_{1} x & =0 \\
\mu_{2}(1-x) & =0
\end{aligned}
$$

Solutions of KKT system:

$$
\left\{\begin{array}{lll}
x=0, & y=0, \quad z=1, \quad \lambda=-1, \quad \mu_{1}=1, \quad \mu_{2}=0 & \text { OK } \\
x=2, \quad y=-1, \quad z=3, \quad \lambda=-1, \quad \mu_{1}=0, \quad \mu_{2}=0 & \text { NO }(x>1) \\
x=1, \quad y=-1 / 2, \quad z=3 / 2, \quad \lambda=-1, \quad \mu_{1}=0, \quad \mu_{2}=-1 / 2 & \text { NO }\left(\mu_{2}<0\right)
\end{array}\right.
$$

Discussion of the stationary point: $x=0, \quad y=0, \quad z=1, \quad \lambda=-1, \quad \mu_{1}=1, \quad \mu_{2}=0$

$$
\nabla\left[h, g_{1}\right]=\left(\begin{array}{ccc}
0 & 0 & 1 \\
1 & 0 & 0
\end{array}\right) \quad \boldsymbol{K}=\left(\begin{array}{l}
0 \\
1 \\
0
\end{array}\right) \quad \boldsymbol{K}^{T} \nabla^{2} \mathcal{L} \boldsymbol{K}=[2]
$$

Solve the following recurrence

$$
\begin{aligned}
x_{k+1} & =x_{k}+k, & x_{0}=0 \\
y_{k+1} & =x_{k}+y_{k}, & y_{0}=1,
\end{aligned}
$$

\mathcal{Z}-transform:

$$
\begin{aligned}
& (\zeta-1) x(\zeta)=\frac{\zeta}{(\zeta-1)^{2}} \\
& (\zeta-1) y(\zeta)=\zeta+x(\zeta)
\end{aligned}
$$

Solution in \mathcal{Z} :

$$
\begin{aligned}
& x(\zeta)=\frac{\zeta}{(\zeta-1)^{2}}, \\
& y(\zeta)=\frac{\zeta}{(\zeta-1)^{4}}+\frac{\zeta}{\zeta-1},
\end{aligned}
$$

Solution in k

$$
\begin{aligned}
& x_{k}=\frac{1}{2} k(k-1), \\
& y_{k}=\frac{1}{6}(k+1)\left(k^{2}-4 k+6\right)=1+\frac{k}{3}-\frac{k^{2}}{2}+\frac{k^{3}}{6},
\end{aligned}
$$

Solve using Laplace transform the following boundary value problem

$$
\begin{aligned}
x^{\prime \prime}(t)+y(t) & =e^{t}+e^{-t} \\
y^{\prime \prime}(t)-y(t) & =0 \\
x(0) & =1, \quad y(0)=1, \quad x(1)=\frac{1}{e}, \quad y(1)=e
\end{aligned}
$$

Suggestion: Set $A=x^{\prime}(0)$ and $B=y^{\prime}(0)$ then using Laplace transform compute A and B which satisfy the boundary conditions.

The Laplace transform:
$\left\{\begin{array}{l}s^{2} x(s)-A-s+y(s)=\frac{2 s}{s^{2}-1} \\ s^{2} y(s)-B-s-y(s)=0\end{array}\right.$

Solution in s with partial fraction expansion:

$$
\left\{\begin{array}{l}
x(s)=\frac{s^{3}-B+A s^{2}-A}{s^{2}\left(s^{2}-1\right)}=\frac{A+B}{s^{2}}+\frac{1+B}{2(s+1)}+\frac{1-B}{2(s-1)} \\
y(s)=\frac{B+s}{s^{2}-1}
\end{array}\right.
$$

$$
A=-1, \quad B=+1
$$

Solution in t :

$\left\{\begin{array}{l}x(t)=e^{-t} \\ y(t)=e^{t}\end{array}\right.$

Compute the coefficients of the Fourier series of the following function:

$$
f(x)= \begin{cases}0 & \text { for }-1 \leq x<0 \\ \sin (2 \pi x) & \text { for } 0 \leq x<1 / 2 \\ 0 & \text { for } 1 / 2 \leq x<1\end{cases}
$$

defined for $x \in(-1,1)$ and extended periodically.

Coefficients a_{k} and b_{k} for the Fourier serie:
$a_{0}=\frac{1}{\pi}$

$$
a_{2}=0, \quad \text { for } k \neq 2 \quad a_{k}=-\frac{2}{\pi\left(k^{2}-4\right)}\left(1+\cos \left(\frac{\pi k}{2}\right)\right)=\frac{-2}{\pi\left(k^{2}-4\right)} \begin{cases}2 & \text { for } k=4 m \\ 1 & \text { for } k=4 m+1 \\ 0 & \text { for } k=4 m+2 \\ 1 & \text { for } k=4 m+3\end{cases}
$$

$b_{2}=\frac{1}{4}, \quad$ for $k \neq 2 \quad b_{k}=-\frac{2}{\pi\left(k^{2}-4\right)} \sin \left(\frac{\pi k}{2}\right)=\frac{2}{\pi\left(k^{2}-4\right)} \begin{cases}0 & \text { for } k=4 m \\ -1 & \text { for } k=4 m+1 \\ 0 & \text { for } k=4 m+2 \\ 1 & \text { for } k=4 m+3\end{cases}$

