Numerical Methods for Dynamic System and Control del 7/2/2013
Surname \square Name \qquad Mat. number \qquad

Signature \qquad

1

Study the following constrained minimization problem.

$$
\operatorname{minimize} \quad f(x, y, z)=y z^{2}+x, \quad \text { subject to } \quad z=y, \quad y \geq 0, \quad x+y \geq 1,
$$

KKT system of first order condition:

$$
\left\{\begin{array}{r}
1-\mu_{2}=0 \\
z^{2}+\lambda-\mu_{1}-\mu_{2}=0 \\
2 y z-\lambda=0 \\
z-y=0 \\
\mu_{1} y=0 \\
\mu_{2}(x+y-1)=0
\end{array}\right.
$$

Solutions of KKT system:

$$
\left\{\begin{array}{llll}
x=1, \quad y=0, \quad z=0, \quad \lambda=0, \quad \mu_{1}=-1, \quad \mu_{2}=1 & \text { NO }\left(\mu_{1}<0\right) \\
x=1-\frac{1}{\sqrt{3}}, \quad y=\frac{1}{\sqrt{3}}, \quad z=\frac{1}{\sqrt{3}}, \quad \lambda=\frac{2}{3}, \quad \mu_{1}=0, \quad \mu_{2}=1 \quad & \text { OK } \\
x=1+\frac{1}{\sqrt{3}}, \quad y=-\frac{1}{\sqrt{3}}, \quad z=-\frac{1}{\sqrt{3}}, \quad \lambda=\frac{2}{3}, \quad \mu_{1}=0, \quad \mu_{2}=1 & \text { NO (contraint violation) }
\end{array}\right.
$$

Discussion of the stationary point: $x=1-\frac{1}{\sqrt{3}}, \quad y=\frac{1}{\sqrt{3}}, \quad z=\frac{1}{\sqrt{3}}, \quad \lambda=\frac{2}{3}, \quad \mu_{1}=0, \quad \mu_{2}=1$
$\nabla\left[h, g_{2}\right]=\left(\begin{array}{ccc}0 & -1 & 1 \\ 1 & 1 & 0\end{array}\right) \quad \boldsymbol{K}=\left(\begin{array}{c}-1 \\ 1 \\ 1\end{array}\right) \quad \boldsymbol{K}^{T} \nabla^{2} \mathcal{L} \boldsymbol{K}=[2 \sqrt{3}]$

Solve the following recurrence

$$
\begin{aligned}
x_{k+1} & =x_{k}+k^{2}, & x_{0}=0 \\
y_{k+1} & =x_{k}-y_{k}, & y_{0}=1,
\end{aligned}
$$

\mathcal{Z}-transform:

$$
\begin{aligned}
& (\zeta-1) x(\zeta)=\frac{\zeta(\zeta+1)}{(\zeta-1)^{3}} \\
& (\zeta+1) y(\zeta)=\zeta+x(\zeta)
\end{aligned}
$$

Solution in \mathcal{Z} :

$$
\begin{aligned}
& x(\zeta)=\frac{\zeta(\zeta+1)}{(\zeta-1)^{4}}, \\
& y(\zeta)=\frac{\zeta}{(\zeta-1)^{4}}+\frac{\zeta}{\zeta+1},
\end{aligned}
$$

$$
\begin{aligned}
& x_{k}=\frac{1}{3} k^{3}-\frac{1}{2} k^{2}+\frac{1}{6} k \\
& y_{k}=\frac{1}{6} k^{3}-\frac{1}{2} k^{2}+\frac{1}{3} k+(-1)^{k},
\end{aligned}
$$

Solve using Laplace transform the following boundary value problem

$$
\begin{aligned}
x^{\prime \prime}(t)+y^{\prime}(t) & =3 \\
y^{\prime \prime}(t)-y(t) & =-t \\
x(0) & =0, \quad y(0)=0, \quad x(1)=1, \quad y(1)=1,
\end{aligned}
$$

Suggestion: Set $A=x^{\prime}(0)$ and $B=y^{\prime}(0)$ then using Laplace transform compute A and B which satisfy the boundary conditions.

The Laplace transform:

$$
\left\{\begin{aligned}
s^{2} x(s)-A+s y(s) & =\frac{3}{s} \\
s^{2} y(s)-B-y(s) & =-\frac{1}{s^{2}}
\end{aligned}\right.
$$

Solution in s with partial fraction expansion:

$$
\left\{\begin{array}{l}
x(s)=\frac{A}{s^{2}}-\frac{B}{s\left(s^{2}-1\right)}+\frac{3 s^{2}-2}{s^{3}\left(s^{2}-1\right)}=\frac{2}{s^{3}}+\frac{A}{s^{2}}+\frac{B-1}{s}+\frac{1-B}{2(s+1)}+\frac{1-B}{2(s-1)} \\
y(s)=\frac{B}{s^{2}-1}-\frac{1}{s^{2}\left(s^{2}-1\right)}
\end{array}\right.
$$

Value of A and B :

$$
A=0, \quad B=1
$$

Solution in t :

$$
\left\{\begin{array}{l}
x(t)=t^{2} \\
y(t)=t
\end{array}\right.
$$

Compute the coefficients of the Fourier series of the following function:

$$
f(x)=\left\{\begin{array}{lll}
1 & \text { for }-2 \leq x<0 \\
1-2 x & \text { for } 0 \leq x<1 \\
2 x-3 & \text { for } 1 \leq x<2
\end{array}\right.
$$

defined for $x \in(-2,2)$ and extended periodically.

Coefficients a_{k} and b_{k} for the Fourier serie:

$$
a_{0}=1
$$

$$
a_{k}=\frac{4}{\pi^{2} k^{2}}\left(1-2 \cos \left(\frac{\pi k}{2}\right)+(-1)^{k}\right)=\frac{16}{\pi^{2} k^{2}} \begin{cases}1 & \text { for } k=4 m+2 \\ 0 & \text { otherwise }\end{cases}
$$

$$
b_{k}=-\frac{8}{\pi^{2} k^{2}} \sin \left(\frac{\pi k}{2}\right)=\frac{8}{\pi^{2} k^{2}} \begin{cases}0 & \text { for } k=4 m \\ -1 & \text { for } k=4 m+1 \\ 0 & \text { for } k=4 m+2 \\ 1 & \text { for } k=4 m+3\end{cases}
$$

