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Constrained minima and Lagrange multiplier

Consider the constrained minimization problem
minimize: f(x)
subject to: hi(x) =0 i=1,2,...,m

Solution algorithm

m
Compute the Lagrangian function: L(z, A) = f(x) — Z Axhy ()
k=1

e Solve the nonlinear system V,£(x, A) = 07 with h(zx) = 0.

e For each solution points (x*, A*) compute Vh(z*) and check it is full rank, or the
rows are linearly indiependent.

e Compute the matrix K the kernel of Vh(z*), i.e. Vh(z*)K = 0.

e Compute the reduce Hessian
H = K'V2L(x*, MK,

— Necessary condition: H is semi-positive definite.

- Sufficient condition: H is positive definite.
The following theorem prove the sufficient condition.
Theorem 1 (of Lagrange multiplier) Let f € C3(R",R)a map and z* alocal minima of

f(x) satisfying the constraints h € C2(R",R™), i.e. h(z*) = 0. If Vh(z*) is full rank then
there exists m scalars Ay such that

ViL(z*,A) = V@) = ) AVi(a*) = o (A)
k=1
moreover, for all z € R" which satisfy Vh(z*)z = 0 it follows
2TV Lt Nz = 2T | V) - )| MVi(z*) |22 0 (B)

k=1

in other words the matrix V2(f(x*) — X - h(z*)) is semi-SPD in the Kernel of Vh(zx*).



Proof. Let * a local minima, then there exists ¢ > 0 such that
f(@®) < f(z), for all = € B with h(z) = 0, 1)

where B = {x | ||:1: - ac*” < ¢}. Consider thus, the functions sequence

2 a0 2)

ful@) = f(@) +klIh@)|? + a |z - =*
with the corresponding sequence of (unconstrained) local minima in B:

xj = argmin fi(x).
xeB

The sequence x is contained in the compact ball B and from compactness there exists
a converging sub-sequence xy, — & € B. The rest of the proof to verify that = * and
it a minimum.

Step 1: h(z) = 0. Notice that the sequence x; satisfy fi(xzx) < f(x*), in fact

ful@y) < fil@*) = f@*) + k[[p@*)| + a|a* - 2*| = f*).

and by definition (2) we have

ki @l + alle, - 2*[ < f@*) - fla)

< f(x*) - meilrglf(:c) =C < 400

©)

so that

=|lh@)=0 = h(z)=0.

lim ||h(mk].)|| =0 = Hh(lim ack/,)
j—ooo Iy

Step 2: £ = *. From (3)

||z, - 2* | < f@*) = flaw) - ki ||| < fa*) - f)
and taking the limit

2

a ([lim @, — x*

j—o0

<allz-2*| < fla*) - lim f(ay) < f(a*) - f(@)
From ||h(z)|| = 0 it follows that from (1) that f(z*) < f(&) and
alle -a*| < f@*) - f@) <0

and, thus & = =*.



Step 3: Build multiplier. Cause @y, are unconstrained local minima for f(x) it follows

Vi (@) = V@) + kY |h@)|| +aV ||z, - 2*| = 0
remembering that
Vizl? = V(z - z) =227,
Vik@)I? = V(h(@) - h(z)) = 2h(x)" Vh(z),

it follows (doing transposition)

V()" +2k;Vh(zy,)" h(zy) + 2a(xy, — 2*) = 0. (4)
Left multiplying by Vh(xy,)

Vh(y,) [V (@x)" + 20z, - x*)| + 2Kk Vh(ay )Vh(z) h(zy) = 0
Cause Vh(z*) € R™" is full rank for j large by continuity Vh(ackj) is full rank and thus
Vh(:ckj)Vh(:ck],)T € R™ " are nonsingular, thus
2kih(ay,) = — (VA Vhizy)T) Vh) [Vf(i) +2a(, - 2*)

taking the limit for j — oo

-1
lim 2k;h(xy,) = - (Vh(z*)Vh(*)")  Vh(@*)Vf(z*)! = -A (5)

j—oo
and taking the limit of (4) with (5) we have Vf(z*)T — Vh(z*)TX = 0.

Step 4: Build a special sequence of z;. We needs a sequence z; — z such that
Vh(xy,)zj = 0 for all j. The sequence z; is built as the projection of z into the Kernel of
Vh(ack].), ie.
L T T
zj =z = Vh(zy)" [Vh(zy)Vh(zy)" | Vh(zy)z
infact
-1
Vh(y)zj = Vh(zy)z — Vh(ay)Vh(xy)" [Vh(z)Vh(z)T| Vh(a)z
= Vh(wy)z - Vh(:ck].)z =0

consider now the limit

lim z; = = - lim Vh(ay,)" [Vh(ay,)Vh(zy)T| Vh(ay,)z

j—o0 j—o0

= = Vh(a*)" [Vh(z*)Vh@*)'| ' Vh(z*)=
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and thus, if z is in the kernel of Vh(z*), i.e. Vh(x*)z = 0 we have

Vh(mk].)zj =0 with lim z; = 2.

]—00

Step 5: Necessary conditions. Cause @y, are unconstrained local minima for fi (x) it
follows that matrices V2 fkj(wk].) are semi positive defined, i.e.

zTVkaj(:nkj)z >0, Yz eR"

moreover
2
V2 fi (@) = V2 flan) + KV |G| + 20V (@, - 2*)
m (6)
= V()" +kV2 ) Iyl ) + 201
i=1
using the identity
V2h(z)? = Vh(x)Vh(z)") = 2Vh(x) Vh(x) + 2h(x)Vh(x)
in (8)

V2 fi () = V2 f(ay) + 2k Y Vi) Vhi(i) +2K; ) hiaeg )V2hi( ) + 2T
i=1 i=1

Let z € R" then 0 < 2TV fi (21,)z, ie.

m
2
0 < 2"V f(my )z + Z(2kjhi(a:kj))zTV2hi(a:kj)z + 2k; ||Vh(ai ) 2| + 22121
i=1

Inequality is true for all z € R" and thus for any z in the kernel of Vh(z*). Choosing z
in the kernel of Vh(x*) from previous step the sequence z; satisfy

m
2
0 < 2] V2 f(ay)z) + Z(Zk]-hi(mkj))z].TVZhi(mkj)zj +2a||=]|
i=1
and taking the limit j — co with (5)

m
0< 2"V f(a*)z + Y | iz VPhi(x*)z + 20|12
i=1



cause a > 0 can be chosen arbitrarily it follows
m
0< 2TV f(a*)z = Y Ai[2TV2hi(a*)z]
i=1

which is the relation to be proved. O

Inequality constraints
It is possible to adapt theorem 1 for inequality constraints. Consider the NLP problem
minimize: f(x)
subject to: hi(x) =0 i=1,2,...,m
gi(x) >0 i=12,...,p

introducing the slack variablese;, i =1,2,...,pand yT = (:L'T, eT) the new problem
minimize: fly) = f(x)
subject to: hi(y) = hi(x) =0 i=12,...,m
hiom(y) = gi(@) — ¢ =0 i=12,...p

with the Lagrangian function:

m p
L@, e, A p) = f@)= Y (@) = Y i (ge(@) - )
k=1 k=1

The first order condition becomes
m p
ViL@* e A ) = Vi) = Y AVi(a*) = ) mVgia*) = 07,
k=1 k=1

VGL(m*, e\p) = 2([4161, ceey ypep) = OT,
h(x*) = 0,
gr(x*) = e 2 0,

and second order condition become zTV%x E)L(ac*, e,\, i)z = 0 for z in the kernel of
matrix

V. h(z*) 0
( 7)

Vig(x™) 2diag(es, ..., ep)
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where

VZ

(x,e

ViL(x*, e N 1) 0
) (8)

L@taxun:(
) 0 V2L(x*, e\, 1)

and V,VI L(x*,e, \, u) = 0, moreover

m P
ViL@* e, p) = VAf(@*) = ) AVin(a*) - ) wVigula®),
k=1 k=1

VSL(‘T*r €, A/ IJJ) =2 diag(‘ulr Uz, ey “p)

Notice that pger = 0 is equivalent of ‘uke}% = 0 and thus pgr(xz*) = 0. So that when

M
Qk(x*) > 0 then py = 0. Up to a reordering we split g(xz) = (z(z)g; ) where
gk(w*):ei:O, k=1,2,...,r
gk(m*):ei>0, k=r+1,r+2,...,p

and thus (7) becomes
Vih(z*) 0 O
VigP(@*) 0 0 |, 2diag(exs1, - - -, ep) = E. )
V.g?@*) 0 E

and

M 0

VZL(x*, e A p) = ( ) M = 2diag(u1, 2, - -, lr) (10)

0 O

The group of constraints g()(z*) that are zeros are the active constraints. The kernel of
(9) can be written as

K 0
K = 0 I, K is the kernel of (
—E WV, gP@*K 0

Vi h(z*)
) (11)

VegW(z*)

where K is the kernel of the matrix

V. h(z*)
( ng(l)(a:*) )



thus z can be written as Kd and thus second order condition zTV(Zx E).lj(avz*, e\ u)z=>0
become

0<d’ [«TVZ

(xe)

Li* e, A wK|d, deR
and using (11) with (8) and (10)

ViL(x*,e,A\,u) O O

[KTV2,  L*, e, A wK]| = KT 0 M 0]|%K,
0 0 0
K™V2L(x*, e, \,p))K 0O
(T

Using the solution algorithm of the equality constrained problem we have

e Necessary condition: the matrices
KTV§L($*, e, \, WK, and M
must be semi-positive defined. This imply that yy >0 fork=1,2,...,p

e Sufficient condition: the matrices
K'V2L(xz*, e, A, ))K, and M

must be positive defined. This imply that y; > 0 for the active constraints.
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Constrained minima, NLP problem

Consider the constrained minimization problem
minimize: f(x)
subject to: hi(x) =0 i=1,2,...,m (12)
gi(x) >0 i=12,...,p

Solution algorithm

Compute the Lagrangian function:
m P
LA p) = fl@) = Y M) = ) i)
k=1 k=1

e Solve the nonlinear system
ViL(@, A p) = 07
hi(x) = 0 k=1,2,...,m
ur8k(x) = 0 k=1,2,...,p
keep only the solutions with 1 > 0 and gx(z*) = 0.

e Foreach solution points (x*, A*, u*) compute Vh(z*) with Vg, (z*) where g (z*) =
0 are the active constraints with p; > 0 and check they are linearly independent.

e Compute matrix K the kernel of Vh(z*) with Vgi(x*) where gi(z*) = 0 are the
active constraints with py > 0.

e Compute the reduce Hessian
H = K'V2L(x*, \K,

— Necessary condition: H is semi-positive definite.

- Sufficient condition: H is positive definite and u; > 0 for all the active
constraints.

Definition 1 The set
F=leeR" | W(x)=0, k=1,2,...,m, () =20, k=1,2,...,p,}

is called the feasible region or set of feasible points.

11



Definition 2 (Active set) The set A(x) defined as
A(x) = {k | gi(z) = 0}

is the set of active (unilateral) constraints.

Constrained minima general theorem and KKT

The following theorem (see [1]) give the necessary conditions for constrained minima.
Notice that no condition on the constraints are necessary.

Theorem 2 (Fritz John) If the functions f(x), g1(x),..., gy(x), are differentiable, then a
necessary condition that * be a local minimum to problem:

minimize: f(x)

subject to: gi(x) >0 i=12,...,p

is that there exist scalars uf, u¥, wy, (not all zero) such that the following inequalities and
equalities are satisfied:

V. L(x*, 1) = 07
Mzgk(w*) = 0/ k = 1/ 2/ 00 '/p;
u; >0, k=0,1,2,...,p;

where
14
L@, 1) = f@) = ) e k()
k=1

In [2] Kuhn and Tucker showed that if a condition, called the first order constraint
qualification, holds at *, A* then Ay can be taken equal to 1.

Definition 3 (Constraints qualification LI) Let be the unilateral and bilateral constraints
g(x) and h(x), the point x* is admissible if

gk(x*) =0, Ii(x*) = 0.
The constraints g(x) and h(x) are qualified at «* if the point x* is admissible and the vectors
(Ve(e®) : ke A@M) [ VIn@*), Vhaa?), .., Viu(a®))

are linearly independent.
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Definition 4 (Constraint qualification (Mangasarian-Fromovitz)) The constraints g(x)
and h(x) are qualified at x* if the point x* is admissible and does not exists a linear
combination

m

m
e Vgi(z*) + Z BiVh(z*) = 0
keA(z*) k=1

with ay > 0 for k € A(x*) and oy with By not all 0. In other words, there not exists a non trivial
linear combination of the null vector such that oy > 0 for k € A(x*).

The next theorems are taken from [3].

Theorem 3 (First order necessary conditions) Let f € C(R") and the constraints g €
CY(R",RP) and h € CY(R",R™). Suppose that =* is a local minima of (12) and that the
constraints qualification LI holds at a*. Then there are Lagrange multiplier vectors X and p
such that the following conditions are satisfied at (x*, A, p)

Ve L(x*, N, ) = 07
h(z*) = 0, k=1,2,...,m;

wex*) =0,  k=12,...,p;
pe =0, k=1,2,...,p;

where

m 2
LA = f@) = Y Ache@) = Y e gela)
k=1 k=1

Theorem 4 (Second order necessary conditions) Let f € C?>(R") and the constraints
g € CA(R",RP)and h € C3(R",R™). Let x* satisfying the First order necessary conditions, a
necessary condition for =* be a local minima is that the m + p scalars (Lagrange Multiplier)
of the first order necessary condition satisfy:

d'ViL(@*, N, p)d > 0
for all d such that

Viy(z*)d = 0, k=1,2,...,m
Ver(z*)d =0, if k € A(x™) and py > 0
Vgr(x™)d > 0, ifk € A(x™*) and p, =0

13



Remark 1 The conditions

Vgr(xz*)d =0, ifk € A(x*) and p >0

Var(z*)d > 0, ifk € A(x*) and e =0
restrict the space of direction to be considered. If changed with

Var(x*)d =0, ifk € A(x*)

theorems 4 is still valid cause necessary condition is tested in a smaller set.
Theorem 5 (Second order sufficient conditions) Let f € C>(R") and the constraints
g € C3(R",RP) and h € C*>(R",R™). Let x* satisfying the First order necessary conditions,

a sufficient condition for x* be a local minima is that the m +p scalars (Lagrange Multiplier)
of the first order necessary condition satisfy:

d'V2L(x*, N, u)d > 0
forall d # 0O such that
Viy(z*)d = 0, k=1,2,...,m

Ve(x*)d =0, ifk € A(x*) and py > 0
Ver(@*)d > 0, ifk € A(x*) and p =0

Remark 2 The condition
Vgi(x™)d > 0, ifk € A(x*) and . =0

restrict the space of direction to be considered. If omitted the theorems 5 is still valid cause
sufficient condition is tested in a larger set.
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