Tables and summary
 "Numerical Methods for Dynamic System and Control"

Enrico Bertolazzi
AA 2012/2013

Fourier Serie

$$
\begin{aligned}
S_{f}(x)=\frac{a_{0}}{2} & +\sum_{k=1}^{\infty}\left(a_{k} \cos \frac{k \pi x}{\ell}+b_{k} \sin \frac{k \pi x}{\ell}\right), \\
a_{0} & =\frac{1}{\ell} \int_{-\ell}^{\ell} f(x) \mathrm{d} x \\
a_{k} & =\frac{1}{\ell} \int_{-\ell}^{\ell} f(x) \cos \frac{k \pi x}{\ell} \mathrm{~d} x \\
b_{k} & =\frac{1}{\ell} \int_{-\ell}^{\ell} f(x) \sin \frac{k \pi x}{\ell} \mathrm{~d} x .
\end{aligned}
$$

Z and Laplace transform

Z Transform Table: $\sum_{k=0}^{\infty} f_{k} z^{-k}$	
$k_{\ell}=k(k-1) \cdots(k-\ell+1)=\frac{k!}{(k-\ell)!}$	
δ_{k}	1
$\mathbf{1}_{k}$	$\frac{z}{z-1}$
a^{k}	$\frac{z}{z-a}$

$k a^{k}$	$\frac{z a}{(z-a)^{2}}$
$k(k-1) a^{k}$	$\frac{2 z a^{2}}{(z-a)^{3}}$
$k_{\ell} a^{k}$	$\ell!\frac{z a^{\ell}}{(z-a)^{\ell+1}}$
$a^{k}\binom{k}{\ell}$	$\frac{z a^{\ell}}{(z-a)^{\ell+1}}$
$a^{k} f_{k}$	$\bar{f}\left(\frac{z}{a}\right)$
$k f_{k}$	$-z \frac{\mathrm{~d} \frac{\widetilde{f}(z)}{\mathrm{d} z}}{}$
$k^{2} f_{k}$	$\left(z \frac{\mathrm{~d}}{\mathrm{~d} z}\right)\left(z \frac{\mathrm{~d}}{\mathrm{~d} z}\right) \widetilde{f}(z)$
$k^{\ell} f_{k}$	$\left(-z \frac{\mathrm{~d}}{\mathrm{~d} z}\right)^{\ell} \widetilde{f}(z)$
$f_{k+\ell}$	$z^{\ell}\left(\widetilde{f}(z)-\sum_{j=0}^{\ell-1} f_{j} z^{-j}\right)$
$f_{k-\ell}$	$z^{-\ell} \widetilde{f}(z)$
$k_{\ell} f_{k-\ell}$	$(-1)^{\ell} z \frac{\mathrm{~d}^{\ell}}{\mathrm{d} z^{\ell}}\left(\frac{1}{z} \widetilde{f}(z)\right)$
$(f \star g)_{k}$	$\widetilde{f}(z) \widetilde{g}(z)$
$a^{k} \sin \omega k$	$\frac{z a \sin \omega}{z^{2}-2 z a \cos \omega+a^{2}}$
\ldots	$\frac{z a \sin \omega}{(z-a \cos \omega)^{2}+(a \sin \omega)^{2}}$
$a^{k} \cos \omega k$	$\frac{z^{2}-z a \cos \omega}{z^{2}-2 z a \cos \omega+a^{2}}$
	$\frac{z^{2}-z a \cos \omega}{(z-a \cos \omega)^{2}+(a \sin \omega)^{2}}$

Laplace Transform Table $\int_{0}^{\infty} f(t) e^{-s t} \mathrm{~d} t$	
$a f(t)+b g(t)$	$a \widehat{f(s)}+b \widehat{g}(s)$
$f(a t)$	$\frac{1}{a} \widehat{f}\left(\frac{s}{a}\right) \quad[a>0]$
$e^{a t} f(t)$	$\widehat{f(s-a)}$
$f(t-a)$	$e^{-a s} \widehat{f(s)}$
1, t, t^{k}	$\frac{1}{s}, \quad \frac{1}{s^{2}}, \quad \frac{k!}{s^{k+1}}$
$a^{b t}$	$\frac{1}{s-b \log a}$
$\int_{0}^{t} f(z) \mathrm{d} z$	$\frac{1}{s} \widehat{f(s)}$
$f^{\prime}(t)$	$s \widehat{f(s)}-f\left(0^{+}\right)$
$f^{\prime \prime}(t)$	$s^{2} \widehat{f(s)}-f^{\prime}\left(0^{+}\right)-s f\left(0^{+}\right)$
$\frac{\mathrm{d}^{n}}{\mathrm{~d} t^{n}} f(t)$	$s^{n} \widehat{f}(s)-\sum_{j=0}^{n-1} s^{n-j-1} f^{(j)}\left(0^{+}\right)$
$t^{n} f(t)$	$(-1)^{n} \frac{\mathrm{~d}^{n}}{\mathrm{~d} s^{n}} \widehat{f(s)}$
$(f \star g)(t)$	$\widehat{f(s)} \widehat{g}(s)$
$e^{a t} \cos \omega t, \quad e^{a t} \sin \omega t$	$\frac{s-a}{(s-a)^{2}+\omega^{2}}, \quad \frac{\omega}{(s-a)^{2}+\omega^{2}}$
$e^{a t} \cosh \omega t, \quad e^{a t} \sinh \omega t$	$\frac{s-a}{(s-a)^{2}-\omega^{2}}, \quad \frac{\omega}{(s-a)^{2}-\omega^{2}}$
$e^{a t} t^{n}$	$\frac{n!}{(s-a)^{n+1}}$
$e^{\alpha t}-e^{\beta t}$	$\frac{\alpha-\beta}{(s-\alpha)(s-\beta)}$

Constrained minima and Lagrange multiplier

Consider the constrained minimization problem

$$
\begin{array}{ll}
\operatorname{minimize} & f(\boldsymbol{x}) \\
\text { subject to: } & h_{i}(\boldsymbol{x})=0 \quad i=1,2, \ldots, m
\end{array}
$$

Solution algorithm

- Compute the Lagrangian function: $\mathcal{L}(\boldsymbol{x}, \boldsymbol{\lambda})=f(\boldsymbol{x})-\sum_{k=1}^{m} \lambda_{k} h_{k}(\boldsymbol{x})$
- Solve the nonlinear system $\nabla_{x} \mathcal{L}(x, \boldsymbol{\lambda})=\mathbf{0}^{T}$ with $\boldsymbol{h}(\boldsymbol{x})=\mathbf{0}$.
- For each solution points ($\boldsymbol{x}^{\star}, \boldsymbol{\lambda}^{\star}$) compute $\nabla \boldsymbol{h}\left(\boldsymbol{x}^{\star}\right)$ and check it is full rank, or the rows are linearly indiependent.
- Compute the matrix \boldsymbol{K} the kernel of $\nabla \boldsymbol{h}\left(\boldsymbol{x}^{\star}\right)$, i.e. $\nabla \boldsymbol{h}\left(\boldsymbol{x}^{\star}\right) \boldsymbol{K}=\mathbf{0}$.
- Compute the reduce Hessian

$$
\boldsymbol{H}=\boldsymbol{K}^{T} \nabla_{x}^{2} \mathcal{L}\left(\boldsymbol{x}^{\star}, \boldsymbol{\lambda}^{\star}\right) \boldsymbol{K},
$$

- Necessary condition: \boldsymbol{H} is semi-positive definite.
- Sufficient condition: \boldsymbol{H} is positive definite.

The following theorem prove the sufficient condition.
Theorem 1 (of Lagrange multiplier) Let $f \in C^{2}\left(\mathbb{R}^{n}, \mathbb{R}\right)$ a map and \boldsymbol{x}^{\star} a local minima of $f(\boldsymbol{x})$ satisfying the constraints $\boldsymbol{h} \in C^{2}\left(\mathbb{R}^{n}, \mathbb{R}^{m}\right)$, i.e. $\boldsymbol{h}\left(\boldsymbol{x}^{\star}\right)=0$. If $\nabla \boldsymbol{h}\left(\boldsymbol{x}^{\star}\right)$ is full rank then there exists m scalars λ_{k} such that

$$
\begin{equation*}
\nabla_{x} \mathcal{L}\left(\boldsymbol{x}^{\star}, \boldsymbol{\lambda}\right)=\nabla f\left(\boldsymbol{x}^{\star}\right)-\sum_{k=1}^{m} \lambda_{k} \nabla h_{k}\left(\boldsymbol{x}^{\star}\right)=\mathbf{0}^{T} \tag{A}
\end{equation*}
$$

moreover, for all $\boldsymbol{z} \in \mathbb{R}^{n}$ which satisfy $\nabla \boldsymbol{h}\left(\boldsymbol{x}^{\star}\right) \boldsymbol{z}=\mathbf{0}$ it follows

$$
\begin{equation*}
\boldsymbol{z}^{T} \nabla_{x}^{2} \mathcal{L}\left(\boldsymbol{x}^{\star}, \lambda\right) \boldsymbol{z}=\boldsymbol{z}^{T}\left(\nabla^{2} f\left(\boldsymbol{x}^{\star}\right)-\sum_{k=1}^{m} \lambda_{k} \nabla^{2} h_{k}\left(\boldsymbol{x}^{\star}\right)\right) \boldsymbol{z} \geq 0 \tag{B}
\end{equation*}
$$

in other words the matrix $\nabla_{x}^{2}\left(f\left(\boldsymbol{x}^{\star}\right)-\boldsymbol{\lambda} \cdot \boldsymbol{h}\left(\boldsymbol{x}^{\star}\right)\right)$ is semi-SPD in the Kernel of $\nabla \boldsymbol{h}\left(\boldsymbol{x}^{\star}\right)$.

Proof. Let \boldsymbol{x}^{\star} a local minima, then there exists $\varepsilon>0$ such that

$$
\begin{equation*}
f\left(\boldsymbol{x}^{\star}\right) \leq f(\boldsymbol{x}), \quad \text { for all } \boldsymbol{x} \in B \text { with } \boldsymbol{h}(\boldsymbol{x})=\mathbf{0}, \tag{1}
\end{equation*}
$$

where $B=\left\{\boldsymbol{x} \mid\left\|\boldsymbol{x}-\boldsymbol{x}^{\star}\right\| \leq \varepsilon\right\}$. Consider thus, the functions sequence

$$
\begin{equation*}
f_{k}(\boldsymbol{x})=f(\boldsymbol{x})+k\|\boldsymbol{h}(\boldsymbol{x})\|^{2}+\alpha\left\|\boldsymbol{x}-\boldsymbol{x}^{\star}\right\|^{2}, \quad \alpha>0 \tag{2}
\end{equation*}
$$

with the corresponding sequence of (unconstrained) local minima in B :

$$
\boldsymbol{x}_{k}=\underset{\boldsymbol{x} \in B}{\operatorname{argmin}} f_{k}(\boldsymbol{x}) .
$$

The sequence \boldsymbol{x}_{k} is contained in the compact ball B and from compactness there exists a converging sub-sequence $x_{k_{j}} \rightarrow \bar{x} \in B$. The rest of the proof to verify that $\bar{x}=x^{\star}$ and it a minimum.

Step 1: $\boldsymbol{h}(\overline{\boldsymbol{x}})=\mathbf{0}$. Notice that the sequence x_{k} satisfy $f_{k}\left(\boldsymbol{x}_{k}\right) \leq f\left(\boldsymbol{x}^{\star}\right)$, in fact

$$
f_{k}\left(\boldsymbol{x}_{k}\right) \leq f_{k}\left(\boldsymbol{x}^{\star}\right)=f\left(\boldsymbol{x}^{\star}\right)+k\left\|\boldsymbol{h}\left(\boldsymbol{x}^{\star}\right)\right\|^{2}+\alpha\left\|\boldsymbol{x}^{\star}-x^{\star}\right\|^{2}=f\left(\boldsymbol{x}^{\star}\right) .
$$

and by definition (2) we have

$$
\begin{align*}
k_{j}\left\|\boldsymbol{h}\left(\boldsymbol{x}_{k_{j}}\right)\right\|^{2}+\alpha\left\|\boldsymbol{x}_{k_{j}}-\boldsymbol{x}^{\star}\right\|^{2} & \leq f\left(\boldsymbol{x}^{\star}\right)-f\left(\boldsymbol{x}_{k_{j}}\right) \\
& \leq f\left(\boldsymbol{x}^{\star}\right)-\min _{\boldsymbol{x} \in B} f(\boldsymbol{x})=C<+\infty \tag{3}
\end{align*}
$$

so that

$$
\lim _{j \rightarrow \infty}\left\|h\left(x_{k_{j}}\right)\right\|=0 \quad \Rightarrow \quad\left\|h\left(\lim _{j \rightarrow \infty} x_{k_{j}}\right)\right\|=\|\boldsymbol{h}(\overline{\boldsymbol{x}})\|=0 \quad \Rightarrow \quad \boldsymbol{h}(\overline{\boldsymbol{x}})=\mathbf{0} .
$$

Step 2: $\bar{x}=x^{\star}$. From (3)

$$
\alpha\left\|x_{k_{j}}-x^{\star}\right\|^{2} \leq f\left(x^{\star}\right)-f\left(x_{k_{j}}\right)-k_{j}\left\|h\left(x_{k_{j}}\right)\right\|^{2} \leq f\left(x^{\star}\right)-f\left(x_{k_{j}}\right)
$$

and taking the limit

$$
\alpha\left\|\lim _{j \rightarrow \infty} x_{k_{j}}-\boldsymbol{x}^{\star}\right\|^{2} \leq \alpha\left\|\overline{\boldsymbol{x}}-\boldsymbol{x}^{\star}\right\|^{2} \leq f\left(\boldsymbol{x}^{\star}\right)-\lim _{j \rightarrow \infty} f\left(\boldsymbol{x}_{k_{j}}\right) \leq f\left(\boldsymbol{x}^{\star}\right)-f(\overline{\boldsymbol{x}})
$$

From $\|\boldsymbol{h}(\overline{\boldsymbol{x}})\|=0$ it follows that from (1) that $f\left(\boldsymbol{x}^{\star}\right) \leq f(\overline{\boldsymbol{x}})$ and

$$
\alpha\left\|\overline{\boldsymbol{x}}-\boldsymbol{x}^{\star}\right\|^{2} \leq f\left(\boldsymbol{x}^{\star}\right)-f(\overline{\boldsymbol{x}}) \leq 0
$$

and, thus $\bar{x}=x^{\star}$.

Step 3: Build multiplier. Cause $\boldsymbol{x}_{k_{j}}$ are unconstrained local minima for $f_{k_{j}}(\boldsymbol{x})$ it follows

$$
\nabla f_{k_{j}}\left(\boldsymbol{x}_{k_{j}}\right)=\nabla f\left(\boldsymbol{x}_{k_{j}}\right)+k_{j} \nabla\left\|\boldsymbol{h}\left(\boldsymbol{x}_{k_{j}}\right)\right\|^{2}+\alpha \nabla\left\|\boldsymbol{x}_{k_{j}}-\boldsymbol{x}^{\star}\right\|^{2}=\mathbf{0}
$$

remembering that

$$
\begin{aligned}
\nabla\|\boldsymbol{x}\|^{2} & =\nabla(\boldsymbol{x} \cdot \boldsymbol{x})=2 \boldsymbol{x}^{T}, \\
\nabla\|\boldsymbol{h}(\boldsymbol{x})\|^{2} & =\nabla(\boldsymbol{h}(\boldsymbol{x}) \cdot \boldsymbol{h}(\boldsymbol{x}))=2 \boldsymbol{h}(\boldsymbol{x})^{T} \nabla \boldsymbol{h}(\boldsymbol{x}),
\end{aligned}
$$

it follows (doing transposition)

$$
\begin{equation*}
\nabla f\left(\boldsymbol{x}_{k_{j}}\right)^{T}+2 k_{j} \nabla \boldsymbol{h}\left(\boldsymbol{x}_{k_{j}}\right)^{T} \boldsymbol{h}\left(\boldsymbol{x}_{k_{j}}\right)+2 \alpha\left(\boldsymbol{x}_{k_{j}}-\boldsymbol{x}^{\star}\right)=\mathbf{0} \tag{4}
\end{equation*}
$$

Left multiplying by $\nabla \boldsymbol{h}\left(\boldsymbol{x}_{k_{j}}\right)$

$$
\nabla \boldsymbol{h}\left(\boldsymbol{x}_{k_{j}}\right)\left[\nabla f\left(\boldsymbol{x}_{k_{j}}\right)^{T}+2 \alpha\left(\boldsymbol{x}_{k_{j}}-\boldsymbol{x}^{\star}\right)\right]+2 k_{j} \nabla \boldsymbol{h}\left(\boldsymbol{x}_{k_{j}}\right) \nabla \boldsymbol{h}\left(\boldsymbol{x}_{k_{j}}\right)^{T} \boldsymbol{h}\left(\boldsymbol{x}_{k_{j}}\right)=\mathbf{0}
$$

Cause $\nabla \boldsymbol{h}\left(\boldsymbol{x}^{\star}\right) \in \mathbb{R}^{m \times n}$ is full rank for j large by continuity $\nabla \boldsymbol{h}\left(\boldsymbol{x}_{k_{j}}\right)$ is full rank and thus $\nabla \boldsymbol{h}\left(\boldsymbol{x}_{k_{j}}\right) \nabla \boldsymbol{h}\left(\boldsymbol{x}_{k_{j}}\right)^{T} \in \mathbb{R}^{m \times m}$ are nonsingular, thus

$$
2 k_{j} \boldsymbol{h}\left(\boldsymbol{x}_{k_{j}}\right)=-\left(\nabla \boldsymbol{h}\left(\boldsymbol{x}_{k_{j}}\right) \nabla \boldsymbol{h}\left(\boldsymbol{x}_{k_{j}}\right)^{T}\right)^{-1} \nabla \boldsymbol{h}\left(\boldsymbol{x}_{k_{j}}\right)\left[\nabla f\left(\boldsymbol{x}_{k_{j}}\right)^{T}+2 \alpha\left(\boldsymbol{x}_{k_{j}}-\boldsymbol{x}^{\star}\right)\right]
$$

taking the limit for $j \rightarrow \infty$

$$
\begin{equation*}
\lim _{j \rightarrow \infty} 2 k_{j} \boldsymbol{h}\left(\boldsymbol{x}_{k_{j}}\right)=-\left(\nabla \boldsymbol{h}\left(\boldsymbol{x}^{\star}\right) \nabla \boldsymbol{h}\left(\boldsymbol{x}^{\star}\right)^{T}\right)^{-1} \nabla \boldsymbol{h}\left(\boldsymbol{x}^{\star}\right) \nabla f\left(\boldsymbol{x}^{\star}\right)^{T}=-\boldsymbol{\lambda} \tag{5}
\end{equation*}
$$

and taking the limit of (4) with (5) we have $\nabla f\left(\boldsymbol{x}^{\star}\right)^{T}-\nabla \boldsymbol{h}\left(\boldsymbol{x}^{\star}\right)^{T} \boldsymbol{\lambda}=\mathbf{0}$.

Step 4: Build a special sequence of \boldsymbol{z}_{j}. We needs a sequence $\boldsymbol{z}_{j} \rightarrow \boldsymbol{z}$ such that $\nabla \boldsymbol{h}\left(\boldsymbol{x}_{k_{j}}\right) \boldsymbol{z}_{j}=\mathbf{0}$ for all j. The sequence \boldsymbol{z}_{j} is built as the projection of \boldsymbol{z} into the Kernel of $\nabla \boldsymbol{h}\left(\boldsymbol{x}_{k_{j}}\right)$, i.e.

$$
\boldsymbol{z}_{j}=\boldsymbol{z}-\nabla \boldsymbol{h}\left(\boldsymbol{x}_{k_{j}}\right)^{T}\left[\nabla \boldsymbol{h}\left(\boldsymbol{x}_{k_{j}}\right) \nabla \boldsymbol{h}\left(\boldsymbol{x}_{k_{j}}\right)^{T}\right]^{-1} \nabla \boldsymbol{h}\left(\boldsymbol{x}_{k_{j}}\right) \boldsymbol{z}
$$

infact

$$
\begin{aligned}
\nabla \boldsymbol{h}\left(\boldsymbol{x}_{k_{j}}\right) \boldsymbol{z}_{j} & =\nabla \boldsymbol{h}\left(\boldsymbol{x}_{k_{j}}\right) \boldsymbol{z}-\nabla \boldsymbol{h}\left(\boldsymbol{x}_{k_{j}}\right) \nabla \boldsymbol{h}\left(\boldsymbol{x}_{k_{j}}\right)^{T}\left[\nabla \boldsymbol{h}\left(\boldsymbol{x}_{k_{j}}\right) \nabla \boldsymbol{h}\left(\boldsymbol{x}_{k_{j}}\right)^{T}\right]^{-1} \nabla \boldsymbol{h}\left(\boldsymbol{x}_{k_{j}}\right) \boldsymbol{z} \\
& =\nabla \boldsymbol{h}\left(\boldsymbol{x}_{k_{j}}\right) \boldsymbol{z}-\nabla \boldsymbol{h}\left(\boldsymbol{x}_{k_{j}}\right) \boldsymbol{z}=\mathbf{0}
\end{aligned}
$$

consider now the limit

$$
\begin{aligned}
\lim _{j \rightarrow \infty} \boldsymbol{z}_{j} & =\boldsymbol{z}-\lim _{j \rightarrow \infty} \nabla \boldsymbol{h}\left(\boldsymbol{x}_{k_{j}}\right)^{T}\left[\nabla \boldsymbol{h}\left(\boldsymbol{x}_{k_{j}}\right) \nabla \boldsymbol{h}\left(\boldsymbol{x}_{k_{j}}\right)^{T}\right]^{-1} \nabla \boldsymbol{h}\left(\boldsymbol{x}_{k_{j}}\right) \boldsymbol{z} \\
& =\boldsymbol{z}-\nabla \boldsymbol{h}\left(\boldsymbol{x}^{\star}\right)^{T}\left[\nabla \boldsymbol{h}\left(\boldsymbol{x}^{\star}\right) \nabla \boldsymbol{h}\left(\boldsymbol{x}^{\star}\right)^{T}\right]^{-1} \nabla \boldsymbol{h}\left(\boldsymbol{x}^{\star}\right) \boldsymbol{z}
\end{aligned}
$$

and thus, if \boldsymbol{z} is in the kernel of $\nabla \boldsymbol{h}\left(\boldsymbol{x}^{\star}\right)$, i.e. $\nabla \boldsymbol{h}\left(\boldsymbol{x}^{\star}\right) \boldsymbol{z}=\mathbf{0}$ we have

$$
\nabla \boldsymbol{h}\left(\boldsymbol{x}_{k_{j}}\right) \boldsymbol{z}_{j}=0 \quad \text { with } \quad \lim _{j \rightarrow \infty} z_{j}=\boldsymbol{z} .
$$

Step 5: Necessary conditions. Cause $\boldsymbol{x}_{k_{j}}$ are unconstrained local minima for $f_{k_{j}}(\boldsymbol{x})$ it follows that matrices $\nabla^{2} f_{k_{j}}\left(x_{k_{j}}\right)$ are semi positive defined, i.e.

$$
z^{T} \nabla^{2} f_{k_{j}}\left(x_{k_{j}}\right) z \geq 0, \quad \forall z \in \mathbb{R}^{n}
$$

moreover

$$
\begin{align*}
\nabla^{2} f_{k_{j}}\left(\boldsymbol{x}_{k_{j}}\right) & =\nabla^{2} f\left(\boldsymbol{x}_{k_{j}}\right)+k \nabla^{2}\left\|\boldsymbol{h}\left(\boldsymbol{x}_{k_{j}}\right)\right\|^{2}+2 \alpha \nabla\left(\boldsymbol{x}_{k_{j}}-\boldsymbol{x}^{\star}\right) \\
& =\nabla^{2} f\left(\boldsymbol{x}_{k_{j}}\right)^{T}+k \nabla^{2} \sum_{i=1}^{m} h_{i}\left(\boldsymbol{x}_{k_{j}}\right)^{2}+2 \alpha \boldsymbol{I} \tag{6}
\end{align*}
$$

using the identity

$$
\nabla^{2} h(x)^{2}=\nabla\left(2 h(x) \nabla h(x)^{T}\right)=2 \nabla h(x)^{T} \nabla h(x)+2 h(x) \nabla^{2} h(x)
$$

in (8)

$$
\nabla^{2} f_{k_{j}}\left(\boldsymbol{x}_{k_{j}}\right)=\nabla^{2} f\left(\boldsymbol{x}_{k_{j}}\right)+2 k_{j} \sum_{i=1}^{m} \nabla h_{i}\left(\boldsymbol{x}_{k_{j}}\right)^{T} \nabla h_{i}\left(\boldsymbol{x}_{k_{j}}\right)+2 k_{j} \sum_{i=1}^{m} h_{i}\left(\boldsymbol{x}_{k_{j}}\right) \nabla^{2} h_{i}\left(\boldsymbol{x}_{k_{j}}\right)+2 \alpha \boldsymbol{I}
$$

Let $\boldsymbol{z} \in \mathbb{R}^{n}$ then $0 \leq \boldsymbol{z}^{T} \nabla^{2} f_{k_{j}}\left(\boldsymbol{x}_{k_{j}}\right) \boldsymbol{z}$, i.e.

$$
0 \leq \boldsymbol{z}^{T} \nabla^{2} f\left(\boldsymbol{x}_{k_{j}}\right) \boldsymbol{z}+\sum_{i=1}^{m}\left(2 k_{j} h_{i}\left(\boldsymbol{x}_{k_{j}}\right)\right) \boldsymbol{z}^{T} \nabla^{2} h_{i}\left(\boldsymbol{x}_{k_{j}}\right) \boldsymbol{z}+2 k_{j}\left\|\nabla \boldsymbol{h}\left(\boldsymbol{x}_{k_{j}}\right) \boldsymbol{z}\right\|^{2}+2 \alpha\|\boldsymbol{z}\|^{2}
$$

Inequality is true for all $\boldsymbol{z} \in \mathbb{R}^{n}$ and thus for any \boldsymbol{z} in the kernel of $\nabla \boldsymbol{h}\left(\boldsymbol{x}^{\star}\right)$. Choosing \boldsymbol{z} in the kernel of $\nabla \boldsymbol{h}\left(\boldsymbol{x}^{\star}\right)$ from previous step the sequence \boldsymbol{z}_{j} satisfy

$$
0 \leq \boldsymbol{z}_{j}^{T} \nabla^{2} f\left(\boldsymbol{x}_{k_{j}}\right) \boldsymbol{z}_{j}+\sum_{i=1}^{m}\left(2 k_{j} h_{i}\left(\boldsymbol{x}_{k_{j}}\right)\right) \boldsymbol{z}_{j}^{T} \nabla^{2} h_{i}\left(\boldsymbol{x}_{k_{j}}\right) \boldsymbol{z}_{j}+2 \alpha\left\|\boldsymbol{z}_{j}\right\|^{2}
$$

and taking the limit $j \rightarrow \infty$ with (5)

$$
0 \leq \boldsymbol{z}^{T} \nabla^{2} f\left(\boldsymbol{x}^{\star}\right) \boldsymbol{z}+\sum_{i=1}^{m} \lambda_{i} \boldsymbol{z}^{T} \nabla^{2} h_{i}\left(\boldsymbol{x}^{\star}\right) \boldsymbol{z}+2 \alpha\|\boldsymbol{z}\|^{2}
$$

cause $\alpha>0$ can be chosen arbitrarily it follows

$$
0 \leq \boldsymbol{z}^{T} \nabla^{2} f\left(x^{\star}\right) z-\sum_{i=1}^{m} \lambda_{i}\left[z^{T} \nabla^{2} h_{i}\left(x^{\star}\right) z\right]
$$

which is the relation to be proved.

Inequality constraints

It is possible to adapt theorem 1 for inequality constraints. Consider the NLP problem

$$
\begin{array}{lll}
\operatorname{minimize}: & f(x) & \\
\text { subject to: } & h_{i}(\boldsymbol{x})=0 & i=1,2, \ldots, m \\
& g_{i}(x) \geq 0 & i=1,2, \ldots, p
\end{array}
$$

introducing the slack variables $e_{i}, i=1,2, \ldots, p$ and $\boldsymbol{y}^{T}=\left(\boldsymbol{x}^{T}, \boldsymbol{e}^{T}\right)$ the new problem

$$
\begin{array}{lll}
\text { minimize: } & \mathrm{f}(\boldsymbol{y})=f(\boldsymbol{x}) & \\
\text { subject to: } & \mathrm{h}_{i}(\boldsymbol{y})=h_{i}(\boldsymbol{x})=0 & i=1,2, \ldots, m \\
& \mathrm{~h}_{i+m}(\boldsymbol{y})=g_{i}(\boldsymbol{x})-e_{i}^{2}=0 & i=1,2, \ldots, p
\end{array}
$$

with the Lagrangian function:

$$
\mathcal{L}(\boldsymbol{x}, \boldsymbol{e}, \boldsymbol{\lambda}, \boldsymbol{\mu})=f(\boldsymbol{x})-\sum_{k=1}^{m} \lambda_{k} h_{k}(\boldsymbol{x})-\sum_{k=1}^{p} \mu_{k}\left(g_{k}(\boldsymbol{x})-e_{k}^{2}\right)
$$

The first order condition becomes

$$
\begin{aligned}
\nabla_{x} \mathcal{L}\left(\boldsymbol{x}^{\star}, \boldsymbol{e}, \boldsymbol{\lambda}, \boldsymbol{\mu}\right) & =\nabla f\left(\boldsymbol{x}^{\star}\right)-\sum_{k=1}^{m} \lambda_{k} \nabla h_{k}\left(\boldsymbol{x}^{\star}\right)-\sum_{k=1}^{p} \mu_{k} \nabla g_{k}\left(\boldsymbol{x}^{\star}\right)=\mathbf{0}^{T}, \\
\nabla_{e} \mathcal{L}\left(\boldsymbol{x}^{\star}, \boldsymbol{e}, \boldsymbol{\lambda}, \boldsymbol{\mu}\right) & =2\left(\mu_{1} e_{1}, \ldots, \mu_{p} e_{p}\right)=\mathbf{0}^{T}, \\
h_{k}\left(\boldsymbol{x}^{\star}\right) & =0, \\
g_{k}\left(\boldsymbol{x}^{\star}\right) & =e_{k}^{2} \geq 0,
\end{aligned}
$$

and second order condition become $\boldsymbol{z}^{T} \nabla_{(x, e)}^{2} \mathcal{L}\left(x^{\star}, \boldsymbol{e}, \boldsymbol{\lambda}, \mu\right) \boldsymbol{z} \geq 0$ for \boldsymbol{z} in the kernel of matrix

$$
\left(\begin{array}{cc}
\nabla_{x} h\left(x^{\star}\right) & 0 \tag{7}\\
\nabla_{x} g\left(x^{\star}\right) & 2 \operatorname{diag}\left(e_{1}, \ldots, e_{p}\right)
\end{array}\right)
$$

where

$$
\nabla_{(x, e)}^{2} \mathcal{L}\left(x^{\star}, e, \lambda, \mu\right) z=\left(\begin{array}{cc}
\nabla_{x}^{2} \mathcal{L}\left(x^{\star}, e, \lambda, \mu\right) & 0 \tag{8}\\
0 & \nabla_{e}^{2} \mathcal{L}\left(x^{\star}, e, \lambda, \mu\right)
\end{array}\right)
$$

and $\nabla_{x} \nabla_{e}^{T} \mathcal{L}\left(\boldsymbol{x}^{\star}, \boldsymbol{e}, \boldsymbol{\lambda}, \boldsymbol{\mu}\right)=\mathbf{0}$, moreover

$$
\begin{aligned}
& \nabla_{x}^{2} \mathcal{L}\left(\boldsymbol{x}^{\star}, \boldsymbol{e}, \boldsymbol{\lambda}, \boldsymbol{\mu}\right)=\nabla^{2} f\left(\boldsymbol{x}^{\star}\right)-\sum_{k=1}^{m} \lambda_{k} \nabla^{2} h_{k}\left(\boldsymbol{x}^{\star}\right)-\sum_{k=1}^{p} \mu_{k} \nabla^{2} g_{k}\left(\boldsymbol{x}^{\star}\right), \\
& \nabla_{e}^{2} \mathcal{L}\left(\boldsymbol{x}^{\star}, \boldsymbol{e}, \boldsymbol{\lambda}, \boldsymbol{\mu}\right)=2 \operatorname{diag}\left(\mu_{1}, \mu_{2}, \ldots, \mu_{p}\right) .
\end{aligned}
$$

Notice that $\mu_{k} e_{k}=0$ is equivalent of $\mu_{k} e_{k}^{2}=0$ and thus $\mu_{k} g_{k}\left(\boldsymbol{x}^{\star}\right)=0$. So that when $g_{k}\left(\boldsymbol{x}^{\star}\right)>0$ then $\mu_{k}=0$. Up to a reordering we split $\boldsymbol{g}(\boldsymbol{x})=\binom{\boldsymbol{g}^{(1)}(\boldsymbol{x})}{\boldsymbol{g}^{(2)}(\boldsymbol{x})}$ where

$$
\begin{array}{ll}
g_{k}\left(\boldsymbol{x}^{\star}\right)=e_{k}^{2}=0, & k=1,2, \ldots, r \\
g_{k}\left(\boldsymbol{x}^{\star}\right)=e_{k}^{2}>0, & k=r+1, r+2, \ldots, p
\end{array}
$$

and thus (7) becomes

$$
\left(\begin{array}{ccc}
\nabla_{x} \boldsymbol{h}\left(\boldsymbol{x}^{\star}\right) & \mathbf{0} & \mathbf{0} \tag{9}\\
\nabla_{x} \boldsymbol{g}^{(1)}\left(\boldsymbol{x}^{\star}\right) & \mathbf{0} & \mathbf{0} \\
\nabla_{x} \boldsymbol{g}^{(2)}\left(\boldsymbol{x}^{\star}\right) & \mathbf{0} & \boldsymbol{E}
\end{array}\right), \quad 2 \operatorname{diag}\left(e_{k+1}, \ldots, e_{p}\right)=\boldsymbol{E} .
$$

and

$$
\nabla_{e}^{2} \mathcal{L}\left(x^{\star}, e, \lambda, \mu\right)=\left(\begin{array}{cc}
M & 0 \tag{10}\\
0 & 0
\end{array}\right), \quad M=2 \operatorname{diag}\left(\mu_{1}, \mu_{2}, \ldots, \mu_{r}\right)
$$

The group of constraints $\boldsymbol{g}^{(1)}\left(\boldsymbol{x}^{\star}\right)$ that are zeros are the active constraints. The kernel of (9) can be written as

$$
\mathcal{K}=\left(\begin{array}{cc}
\boldsymbol{K} & \mathbf{0} \tag{11}\\
\mathbf{0} & \boldsymbol{I} \\
-\boldsymbol{E}^{-1} \nabla_{x} \boldsymbol{g}^{(2)}\left(\boldsymbol{x}^{\star}\right) \boldsymbol{K} & \mathbf{0}
\end{array}\right), \quad \boldsymbol{K} \text { is the kernel of }\binom{\nabla_{x} \boldsymbol{h}\left(\boldsymbol{x}^{\star}\right)}{\nabla_{x} \boldsymbol{g}^{(1)}\left(\boldsymbol{x}^{\star}\right)}
$$

where \boldsymbol{K} is the kernel of the matrix

$$
\binom{\nabla_{x} \boldsymbol{h}\left(x^{\star}\right)}{\nabla_{x} g^{(1)}\left(x^{\star}\right)}
$$

thus \boldsymbol{z} can be written as $\mathcal{K} \boldsymbol{d}$ and thus second order condition $\boldsymbol{z}^{T} \nabla_{(x, e)}^{2} \mathcal{L}\left(\boldsymbol{x}^{\star}, \boldsymbol{e}, \boldsymbol{\lambda}, \boldsymbol{\mu}\right) \boldsymbol{z} \geq 0$ become

$$
0 \leq \boldsymbol{d}^{T}\left[\mathcal{K}^{T} \nabla_{(x, e)}^{2} \mathcal{L}\left(\boldsymbol{x}^{\star}, \boldsymbol{e}, \boldsymbol{\lambda}, \boldsymbol{\mu}\right) \mathcal{K}\right] \boldsymbol{d}, \quad \boldsymbol{d} \in \mathbb{R}^{s}
$$

and using (11) with (8) and (10)

$$
\begin{aligned}
{\left[\mathcal{K}^{T} \nabla_{(x, e)}^{2} \mathcal{L}\left(\boldsymbol{x}^{\star}, \boldsymbol{e}, \boldsymbol{\lambda}, \boldsymbol{\mu}\right) \mathcal{K}\right] } & =\mathcal{K}^{T}\left(\begin{array}{ccc}
\nabla_{x}^{2} \mathcal{L}\left(\boldsymbol{x}^{\star}, \boldsymbol{e}, \boldsymbol{\lambda}, \boldsymbol{\mu}\right) & 0 & 0 \\
0 & \boldsymbol{M} & \mathbf{0} \\
\mathbf{0} & \mathbf{0} & \mathbf{0}
\end{array}\right) \mathcal{K}, \\
& =\left(\begin{array}{cc}
\boldsymbol{K}^{T} \nabla_{x}^{2} \mathcal{L}\left(\boldsymbol{x}^{\star}, \boldsymbol{e}, \boldsymbol{\lambda}, \boldsymbol{\mu}\right) \boldsymbol{K} & 0 \\
\mathbf{0} & \boldsymbol{M}
\end{array}\right)
\end{aligned}
$$

Using the solution algorithm of the equality constrained problem we have

- Necessary condition: the matrices

$$
\boldsymbol{K}^{T} \nabla_{x}^{2} \mathcal{L}\left(\boldsymbol{x}^{\star}, \boldsymbol{e}, \boldsymbol{\lambda}, \boldsymbol{\mu}\right) \boldsymbol{K}, \quad \text { and } \quad \boldsymbol{M}
$$

must be semi-positive defined. This imply that $\mu_{k} \geq 0$ for $k=1,2, \ldots, p$

- Sufficient condition: the matrices

$$
\boldsymbol{K}^{T} \nabla_{x}^{2} \mathcal{L}\left(\boldsymbol{x}^{\star}, \boldsymbol{e}, \boldsymbol{\lambda}, \boldsymbol{\mu}\right) \boldsymbol{K}, \quad \text { and } \quad \boldsymbol{M}
$$

must be positive defined. This imply that $\mu_{k}>0$ for the active constraints.

Constrained minima, NLP problem

Consider the constrained minimization problem

$$
\begin{array}{lll}
\operatorname{minimize}: & f(x) & \\
\text { subject to: } & h_{i}(x)=0 & i=1,2, \ldots, m \tag{12}\\
& g_{i}(x) \geq 0 & i=1,2, \ldots, p
\end{array}
$$

Solution algorithm

- Compute the Lagrangian function:

$$
\mathcal{L}(\boldsymbol{x}, \boldsymbol{\lambda}, \boldsymbol{\mu})=f(\boldsymbol{x})-\sum_{k=1}^{m} \lambda_{k} h_{k}(\boldsymbol{x})-\sum_{k=1}^{p} \mu_{k} g_{k}(\boldsymbol{x})
$$

- Solve the nonlinear system

$$
\begin{array}{rlrl}
\nabla_{x} \mathcal{L}(\boldsymbol{x}, \boldsymbol{\lambda}, \boldsymbol{\mu}) & =\mathbf{0}^{T} & & \\
h_{k}(\boldsymbol{x}) & =0 & k=1,2, \ldots, m \\
\mu_{k} g_{k}(\boldsymbol{x}) & =0 & & k=1,2, \ldots, p
\end{array}
$$

keep only the solutions with $\mu_{k}^{\star} \geq 0$ and $g_{k}\left(\boldsymbol{x}^{\star}\right) \geq 0$.

- For each solution points $\left(\boldsymbol{x}^{\star}, \boldsymbol{\lambda}^{\star}, \boldsymbol{\mu}^{\star}\right)$ compute $\nabla \boldsymbol{h}\left(\boldsymbol{x}^{\star}\right)$ with $\nabla g_{k}\left(\boldsymbol{x}^{\star}\right)$ where $g_{k}\left(\boldsymbol{x}^{\star}\right)=$ 0 are the active constraints with $\mu_{k}>0$ and check they are linearly independent.
- Compute matrix \boldsymbol{K} the kernel of $\nabla \boldsymbol{h}\left(\boldsymbol{x}^{\star}\right)$ with $\nabla g_{k}\left(\boldsymbol{x}^{\star}\right)$ where $g_{k}\left(\boldsymbol{x}^{\star}\right)=0$ are the active constraints with $\mu_{k}>0$.
- Compute the reduce Hessian

$$
\boldsymbol{H}=\boldsymbol{K}^{T} \nabla_{x}^{2} \mathcal{L}\left(\boldsymbol{x}^{\star}, \boldsymbol{\lambda}^{\star}\right) \boldsymbol{K}
$$

- Necessary condition: \boldsymbol{H} is semi-positive definite.
- Sufficient condition: \boldsymbol{H} is positive definite and $\mu_{k}>0$ for all the active constraints.

Definition 1 The set

$$
\mathcal{F}=\left\{\boldsymbol{x} \in \mathbb{R}^{n} \mid h_{k}(\boldsymbol{x})=0, \quad k=1,2, \ldots, m, \quad g_{k}(\boldsymbol{x}) \geq 0, \quad k=1,2, \ldots, p,\right\}
$$

is called the feasible region or set of feasible points.

Definition 2 (Active set) The set $\mathcal{A}(\boldsymbol{x})$ defined as

$$
\mathcal{A}(\boldsymbol{x})=\left\{k \mid g_{k}(\boldsymbol{x})=0\right\}
$$

is the set of active (unilateral) constraints.

Constrained minima general theorem and KKT

The following theorem (see [1]) give the necessary conditions for constrained minima. Notice that no condition on the constraints are necessary.

Theorem 2 (Fritz John) If the functions $f(\boldsymbol{x}), g_{1}(\boldsymbol{x}), \ldots, g_{p}(\boldsymbol{x})$, are differentiable, then a necessary condition that \boldsymbol{x}^{\star} be a local minimum to problem:

$$
\begin{array}{ll}
\text { minimize: } & f(\boldsymbol{x}) \\
\text { subject to: } & g_{i}(\boldsymbol{x}) \geq 0
\end{array} \quad i=1,2, \ldots, p
$$

is that there exist scalars $\mu_{0}^{\star}, \mu_{1}^{\star}, \mu_{p}^{\star}$, (not all zero) such that the following inequalities and equalities are satisfied:

$$
\begin{aligned}
\nabla_{x} \mathcal{L}\left(\boldsymbol{x}^{\star}, \boldsymbol{\mu}^{*}\right) & =\mathbf{0}^{T} \\
\mu_{k}^{*} g_{k}\left(\boldsymbol{x}^{\star}\right) & =0, \quad k=1,2, \ldots, p ; \\
\mu_{k}^{*} & \geq 0, \quad k=0,1,2, \ldots, p ;
\end{aligned}
$$

where

$$
\mathcal{L}(\boldsymbol{x}, \boldsymbol{\mu})=f(\boldsymbol{x})-\sum_{k=1}^{p} \mu_{k} g_{k}(\boldsymbol{x})
$$

In [2] Kuhn and Tucker showed that if a condition, called the first order constraint qualification, holds at $\boldsymbol{x}^{\star}, \boldsymbol{\lambda}^{\star}$ then λ_{0} can be taken equal to 1 .

Definition 3 (Constraints qualification LI) Let be the unilateral and bilateral constraints $\boldsymbol{g}(\boldsymbol{x})$ and $\boldsymbol{h}(\boldsymbol{x})$, the point \boldsymbol{x}^{\star} is admissible if

$$
g_{k}\left(\boldsymbol{x}^{\star}\right) \geq 0, \quad h_{k}\left(\boldsymbol{x}^{\star}\right)=0 .
$$

The constraints $\boldsymbol{g}(\boldsymbol{x})$ and $\boldsymbol{h}(\boldsymbol{x})$ are qualified at \boldsymbol{x}^{\star} if the point \boldsymbol{x}^{\star} is admissible and the vectors

$$
\left\{\nabla g_{k}\left(\boldsymbol{x}^{\star}\right): k \in \mathcal{A}\left(\boldsymbol{x}^{\star}\right)\right\} \bigcup\left\{\nabla h_{1}\left(\boldsymbol{x}^{\star}\right), \nabla h_{2}\left(\boldsymbol{x}^{\star}\right), \ldots, \nabla h_{m}\left(\boldsymbol{x}^{\star}\right)\right\}
$$

are linearly independent.

Definition 4 (Constraint qualification (Mangasarian-Fromovitz)) The constraints $\boldsymbol{g}(\boldsymbol{x})$ and $\boldsymbol{h}(\boldsymbol{x})$ are qualified at \boldsymbol{x}^{\star} if the point \boldsymbol{x}^{\star} is admissible and does not exists a linear combination

$$
\sum_{k \in \mathcal{A}\left(\boldsymbol{x}^{\star}\right)}^{m} \alpha_{k} \nabla g_{k}\left(\boldsymbol{x}^{\star}\right)+\sum_{k=1}^{m} \beta_{k} \nabla h_{k}\left(\boldsymbol{x}^{\star}\right)=\mathbf{0}
$$

with $\alpha_{k} \geq 0$ for $k \in \mathcal{A}\left(\boldsymbol{x}^{\star}\right)$ and α_{k} with β_{k} not all 0 . In other words, there not exists a non trivial linear combination of the null vector such that $\alpha_{k} \geq 0$ for $k \in \mathcal{A}\left(\boldsymbol{x}^{\star}\right)$.

The next theorems are taken from [3].

Theorem 3 (First order necessary conditions) Let $f \in C^{1}\left(\mathbb{R}^{n}\right)$ and the constraints $\boldsymbol{g} \in$ $C^{1}\left(\mathbb{R}^{n}, \mathbb{R}^{p}\right)$ and $\boldsymbol{h} \in C^{1}\left(\mathbb{R}^{n}, \mathbb{R}^{m}\right)$. Suppose that \boldsymbol{x}^{\star} is a local minima of (12) and that the constraints qualification LI holds at \boldsymbol{x}^{\star}. Then there are Lagrange multiplier vectors $\boldsymbol{\lambda}$ and $\boldsymbol{\mu}$ such that the following conditions are satisfied at $\left(\boldsymbol{x}^{\star}, \boldsymbol{\lambda}, \boldsymbol{\mu}\right)$

$$
\begin{aligned}
\nabla_{x} \mathcal{L}\left(\boldsymbol{x}^{\star}, \boldsymbol{\lambda}^{*}, \boldsymbol{\mu}^{*}\right) & =\mathbf{0}^{T} & & \\
h_{k}\left(\boldsymbol{x}^{\star}\right) & =0, & & k=1,2, \ldots, m \\
\mu_{k}^{*} g_{k}\left(\boldsymbol{x}^{\star}\right) & =0, & & k=1,2, \ldots, p \\
\mu_{k}^{*} & \geq 0, & & k=1,2, \ldots, p
\end{aligned}
$$

where

$$
\mathcal{L}(\boldsymbol{x}, \boldsymbol{\lambda}, \boldsymbol{\mu})=f(\boldsymbol{x})-\sum_{k=1}^{m} \lambda_{k} h_{k}(\boldsymbol{x})-\sum_{k=1}^{p} \mu_{k} g_{k}(\boldsymbol{x})
$$

Theorem 4 (Second order necessary conditions) Let $f \in C^{2}\left(\mathbb{R}^{n}\right)$ and the constraints $\boldsymbol{g} \in C^{2}\left(\mathbb{R}^{n}, \mathbb{R}^{p}\right)$ and $\boldsymbol{h} \in C^{2}\left(\mathbb{R}^{n}, \mathbb{R}^{m}\right)$. Let \boldsymbol{x}^{\star} satisfying the First order necessary conditions, a necessary condition for \boldsymbol{x}^{\star} be a local minima is that the $m+p$ scalars (Lagrange Multiplier) of the first order necessary condition satisfy:

$$
\boldsymbol{d}^{T} \nabla_{x}^{2} \mathcal{L}\left(\boldsymbol{x}^{\star}, \boldsymbol{\lambda}^{*}, \boldsymbol{\mu}^{*}\right) \boldsymbol{d} \geq 0
$$

for all \boldsymbol{d} such that

$$
\begin{array}{ll}
\nabla h_{k}\left(\boldsymbol{x}^{\star}\right) \boldsymbol{d}=0, & k=1,2, \ldots, m \\
\nabla g_{k}\left(x^{\star}\right) \boldsymbol{d}=0, & \text { if } k \in \mathcal{A}\left(x^{\star}\right) \text { and } \mu_{k}>0 \\
\nabla g_{k}\left(x^{\star}\right) d \geq 0, & \text { if } k \in \mathcal{A}\left(x^{\star}\right) \text { and } \mu_{k}=0
\end{array}
$$

Remark 1 The conditions

$$
\begin{array}{ll}
\nabla g_{k}\left(\boldsymbol{x}^{\star}\right) \boldsymbol{d}=0, & \text { if } k \in \mathcal{A}\left(\boldsymbol{x}^{\star}\right) \text { and } \mu_{k}>0 \\
\nabla g_{k}\left(\boldsymbol{x}^{\star}\right) \boldsymbol{d} \geq 0, & \text { if } k \in \mathcal{A}\left(\boldsymbol{x}^{\star}\right) \text { and } \mu_{k}=0
\end{array}
$$

restrict the space of direction to be considered. If changed with

$$
\nabla g_{k}\left(\boldsymbol{x}^{\star}\right) \boldsymbol{d}=0, \quad \text { if } k \in \mathcal{A}\left(\boldsymbol{x}^{\star}\right)
$$

theorems 4 is still valid cause necessary condition is tested in a smaller set.

Theorem 5 (Second order sufficient conditions) Let $f \in C^{2}\left(\mathbb{R}^{n}\right)$ and the constraints $\boldsymbol{g} \in C^{2}\left(\mathbb{R}^{n}, \mathbb{R}^{p}\right)$ and $\boldsymbol{h} \in C^{2}\left(\mathbb{R}^{n}, \mathbb{R}^{m}\right)$. Let \boldsymbol{x}^{\star} satisfying the First order necessary conditions, a sufficient condition for \boldsymbol{x}^{\star} be a local minima is that the $m+p$ scalars (Lagrange Multiplier) of the first order necessary condition satisfy:

$$
\boldsymbol{d}^{T} \nabla_{x}^{2} \mathcal{L}\left(\boldsymbol{x}^{\star}, \boldsymbol{\lambda}^{*}, \boldsymbol{\mu}^{*}\right) \boldsymbol{d}>0
$$

for all $\boldsymbol{d} \neq \mathbf{0}$ such that

$$
\begin{array}{ll}
\nabla h_{k}\left(\boldsymbol{x}^{\star}\right) \boldsymbol{d}=0, & k=1,2, \ldots, m \\
\nabla g_{k}\left(\boldsymbol{x}^{\star}\right) \boldsymbol{d}=0, & \text { if } k \in \mathcal{A}\left(\boldsymbol{x}^{\star}\right) \text { and } \mu_{k}>0 \\
\nabla g_{k}\left(x^{\star}\right) \boldsymbol{d} \geq 0, & \text { if } k \in \mathcal{A}\left(\boldsymbol{x}^{\star}\right) \text { and } \mu_{k}=0
\end{array}
$$

Remark 2 The condition

$$
\nabla g_{k}\left(\boldsymbol{x}^{\star}\right) \boldsymbol{d} \geq 0, \quad \text { if } k \in \mathcal{A}\left(\boldsymbol{x}^{\star}\right) \text { and } \mu_{k}=0
$$

restrict the space of direction to be considered. If omitted the theorems 5 is still valid cause sufficient condition is tested in a larger set.

References

[1] F. John. Extremum Problems with Inequalities as Subsidiary Conditions. In K. O. Friedrichs, O. E. Neugebauer, and J. J. Stoker, editors, Studies and Essays: Courant Anniversary Volume, pages 187-204. Wiley-Interscience, New York, 1948.
[2] H.W. Kuhn and A.W. Tucker. Nonlinear programming. In J. Neyman, editor, Proceedings of the Second Berkeley Symposium on Mathematical Statistics and Probability, pages 481-492. University of California Press, Berkeley, California, 1951.
[3] J.A. Nocedal and S.J. Wright. Numerical Optimization: With 85 Illustrations. Springer Series in Operations Research Series. Springer-Verlag GmbH, 1999.

