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Constrained minima and Lagrange multiplier

Consider the constrained minimization problem

minimize: f (x)

subject to: hi(x) = 0 i = 1, 2, . . . ,m

Solution algorithm

• Compute the Lagrangian function: L(x,λ) = f (x) −
m∑

k=1

λkhk(x)

• Solve the nonlinear system ∇xL(x,λ) = 0T with h(x) = 0.

• For each solution points (x?,λ?) compute ∇h(x?) and check it is full rank, or the
rows are linearly indiependent.

• Compute the matrixK the kernel of ∇h(x?), i.e. ∇h(x?)K = 0.

• Compute the reduce Hessian

H = KT
∇

2
xL(x?,λ?)K,

– Necessary condition: H is semi-positive definite.

– Sufficient condition: H is positive definite.

The following theorem prove the sufficient condition.

Theorem 1 (of Lagrange multiplier) Let f ∈ C2(Rn,R) a map and x? a local minima of
f (x) satisfying the constraints h ∈ C2(Rn,Rm), i.e. h(x?) = 0. If ∇h(x?) is full rank then
there exists m scalars λk such that

∇xL(x?,λ) = ∇ f (x?) −
m∑

k=1

λk∇hk(x?) = 0T (A)

moreover, for all z ∈ Rn which satisfy ∇h(x?)z = 0 it follows

zT
∇

2
xL(x?,λ)z = zT

∇2 f (x?) −
m∑

k=1

λk∇
2hk(x?)

 z ≥ 0 (B)

in other words the matrix ∇2
x( f (x?) − λ · h(x?)) is semi-SPD in the Kernel of ∇h(x?).
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Proof. Let x? a local minima, then there exists ε > 0 such that

f (x?) ≤ f (x), for all x ∈ B with h(x) = 0, (1)

where B = {x |
∥∥∥x − x?∥∥∥ ≤ ε}. Consider thus, the functions sequence

fk(x) = f (x) + k ‖h(x)‖2 + α
∥∥∥x − x?∥∥∥2

, α > 0 (2)

with the corresponding sequence of (unconstrained) local minima in B:

xk = argmin
x∈B

fk(x).

The sequence xk is contained in the compact ball B and from compactness there exists
a converging sub-sequence xk j → x̄ ∈ B. The rest of the proof to verify that x̄ = x? and
it a minimum.

Step 1: h(x̄) = 0. Notice that the sequence xk satisfy fk(xk) ≤ f (x?), in fact

fk(xk) ≤ fk(x?) = f (x?) + k
∥∥∥h(x?)

∥∥∥2
+ α

∥∥∥x? − x?∥∥∥2
= f (x?).

and by definition (2) we have

k j
∥∥∥h(xk j)

∥∥∥2
+ α

∥∥∥xk j − x
?
∥∥∥2
≤ f (x?) − f (xk j)

≤ f (x?) −min
x∈B

f (x) = C < +∞
(3)

so that

lim
j→∞

∥∥∥h(xk j)
∥∥∥ = 0 ⇒

∥∥∥∥∥∥h
(

lim
j→∞

xk j

)∥∥∥∥∥∥ = ‖h (x̄)‖ = 0 ⇒ h(x̄) = 0.

Step 2: x̄ = x?. From (3)

α
∥∥∥xk j − x

?
∥∥∥2
≤ f (x?) − f (xk j) − k j

∥∥∥h(xk j)
∥∥∥2
≤ f (x?) − f (xk j)

and taking the limit

α

∥∥∥∥∥∥ lim
j→∞

xk j − x
?

∥∥∥∥∥∥2

≤ α
∥∥∥x̄ − x?∥∥∥2

≤ f (x?) − lim
j→∞

f (xk j) ≤ f (x?) − f (x̄)

From ‖h(x̄)‖ = 0 it follows that from (1) that f (x?) ≤ f (x̄) and

α
∥∥∥x̄ − x?∥∥∥2

≤ f (x?) − f (x̄) ≤ 0

and, thus x̄ = x?.
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Step 3: Build multiplier. Cause xk j are unconstrained local minima for fk j(x) it follows

∇ fk j(xk j) = ∇ f (xk j) + k j∇
∥∥∥h(xk j)

∥∥∥2
+ α∇

∥∥∥xk j − x
?
∥∥∥2

= 0

remembering that

∇ ‖x‖2 = ∇(x · x) = 2xT,

∇ ‖h(x)‖2 = ∇(h(x) · h(x)) = 2h(x)T
∇h(x),

it follows (doing transposition)

∇ f (xk j)
T + 2k j∇h(xk j)

Th(xk j) + 2α(xk j − x
?) = 0. (4)

Left multiplying by ∇h(xk j)

∇h(xk j)
[
∇ f (xk j)

T + 2α(xk j − x
?)

]
+ 2k j∇h(xk j)∇h(xk j)

Th(xk j) = 0

Cause ∇h(x?) ∈ Rm×n is full rank for j large by continuity ∇h(xk j) is full rank and thus
∇h(xk j)∇h(xk j)

T
∈ R

m×m are nonsingular, thus

2k jh(xk j) = −
(
∇h(xk j)∇h(xk j)

T
)−1
∇h(xk j)

[
∇ f (xk j)

T + 2α(xk j − x
?)

]
taking the limit for j→∞

lim
j→∞

2k jh(xk j) = −
(
∇h(x?)∇h(x?)T

)−1
∇h(x?)∇ f (x?)T = −λ (5)

and taking the limit of (4) with (5) we have ∇ f (x?)T
− ∇h(x?)Tλ = 0.

Step 4: Build a special sequence of z j. We needs a sequence z j → z such that
∇h(xk j)z j = 0 for all j. The sequence z j is built as the projection of z into the Kernel of
∇h(xk j), i.e.

z j = z − ∇h(xk j)
T
[
∇h(xk j)∇h(xk j)

T
]−1
∇h(xk j)z

infact

∇h(xk j)z j = ∇h(xk j)z − ∇h(xk j)∇h(xk j)
T
[
∇h(xk j)∇h(xk j)

T
]−1
∇h(xk j)z

= ∇h(xk j)z − ∇h(xk j)z = 0

consider now the limit

lim
j→∞

z j = z − lim
j→∞
∇h(xk j)

T
[
∇h(xk j)∇h(xk j)

T
]−1
∇h(xk j)z

= z − ∇h(x?)T
[
∇h(x?)∇h(x?)T

]−1
∇h(x?)z
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and thus, if z is in the kernel of ∇h(x?), i.e. ∇h(x?)z = 0 we have

∇h(xk j)z j = 0 with lim
j→∞

z j = z.

Step 5: Necessary conditions. Cause xk j are unconstrained local minima for fk j(x) it
follows that matrices ∇2 fk j(xk j) are semi positive defined, i.e.

zT
∇

2 fk j(xk j)z ≥ 0, ∀z ∈ Rn

moreover

∇
2 fk j(xk j) = ∇2 f (xk j) + k∇2

∥∥∥h(xk j)
∥∥∥2

+ 2α∇(xk j − x
?)

= ∇2 f (xk j)
T + k∇2

m∑
i=1

hi(xk j)
2 + 2αI

(6)

using the identity

∇
2h(x)2 = ∇(2h(x)∇h(x)T) = 2∇h(x)T

∇h(x) + 2h(x)∇2h(x)

in (8)

∇
2 fk j(xk j) = ∇2 f (xk j) + 2k j

m∑
i=1

∇hi(xk j)
T
∇hi(xk j) + 2k j

m∑
i=1

hi(xk j)∇
2hi(xk j) + 2αI

Let z ∈ Rn then 0 ≤ zT
∇

2 fk j(xk j)z, i.e.

0 ≤ zT
∇

2 f (xk j)z +

m∑
i=1

(2k jhi(xk j))z
T
∇

2hi(xk j)z + 2k j
∥∥∥∇h(xk j)z

∥∥∥2
+ 2α ‖z‖2

Inequality is true for all z ∈ Rn and thus for any z in the kernel of ∇h(x?). Choosing z
in the kernel of ∇h(x?) from previous step the sequence z j satisfy

0 ≤ zT
j ∇

2 f (xk j)z j +

m∑
i=1

(2k jhi(xk j))z
T
j ∇

2hi(xk j)z j + 2α
∥∥∥z j

∥∥∥2

and taking the limit j→∞with (5)

0 ≤ zT
∇

2 f (x?)z +

m∑
i=1

λiz
T
∇

2hi(x?)z + 2α ‖z‖2
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cause α > 0 can be chosen arbitrarily it follows

0 ≤ zT
∇

2 f (x?)z −
m∑

i=1

λi

[
zT
∇

2hi(x?)z
]

which is the relation to be proved. �

Inequality constraints

It is possible to adapt theorem 1 for inequality constraints. Consider the NLP problem

minimize: f (x)

subject to: hi(x) = 0 i = 1, 2, . . . ,m

gi(x) ≥ 0 i = 1, 2, . . . , p

introducing the slack variables ei, i = 1, 2, . . . , p and yT = (xT, eT) the new problem

minimize: f(y) = f (x)

subject to: hi(y) = hi(x) = 0 i = 1, 2, . . . ,m

hi+m(y) = gi(x) − e2
i = 0 i = 1, 2, . . . , p

with the Lagrangian function:

L(x, e,λ,µ) = f (x) −
m∑

k=1

λkhk(x) −
p∑

k=1

µk

(
gk(x) − e2

k

)
The first order condition becomes

∇xL(x?, e,λ,µ) = ∇ f (x?) −
m∑

k=1

λk∇hk(x?) −
p∑

k=1

µk∇gk(x?) = 0T,

∇eL(x?, e,λ,µ) = 2(µ1e1, . . . , µpep) = 0T,

hk(x?) = 0,

gk(x?) = e2
k ≥ 0,

and second order condition become zT
∇

2
(x,e)L(x?, e,λ,µ)z ≥ 0 for z in the kernel of

matrix (
∇xh(x?) 0

∇xg(x?) 2 diag(e1, . . . , ep)

)
(7)
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where

∇
2
(x,e)L(x?, e,λ,µ)z =

(
∇

2
xL(x?, e,λ,µ) 0

0 ∇
2
eL(x?, e,λ,µ)

)
(8)

and ∇x∇
T
eL(x?, e,λ,µ) = 0, moreover

∇
2
xL(x?, e,λ,µ) = ∇2 f (x?) −

m∑
k=1

λk∇
2hk(x?) −

p∑
k=1

µk∇
2gk(x?),

∇
2
eL(x?, e,λ,µ) = 2 diag(µ1, µ2, . . . , µp).

Notice that µkek = 0 is equivalent of µke2
k = 0 and thus µkgk(x?) = 0. So that when

gk(x?) > 0 then µk = 0. Up to a reordering we split g(x) =
(
g(1)(x)
g(2)(x)

)
where

gk(x?) = e2
k = 0, k = 1, 2, . . . , r

gk(x?) = e2
k > 0, k = r + 1, r + 2, . . . , p

and thus (7) becomes
∇xh(x?) 0 0

∇xg
(1)(x?) 0 0

∇xg
(2)(x?) 0 E

 , 2 diag(ek+1, . . . , ep) = E. (9)

and

∇
2
eL(x?, e,λ,µ) =

(
M 0

0 0

)
, M = 2 diag(µ1, µ2, . . . , µr) (10)

The group of constraints g(1)(x?) that are zeros are the active constraints. The kernel of
(9) can be written as

K =


K 0

0 I

−E−1
∇xg

(2)(x?)K 0

 , K is the kernel of
(
∇xh(x?)

∇xg
(1)(x?)

)
(11)

whereK is the kernel of the matrix (
∇xh(x?)

∇xg
(1)(x?)

)
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thus z can be written asKd and thus second order condition zT
∇

2
(x,e)L(x?, e,λ,µ)z ≥ 0

become

0 ≤ dT
[
K

T
∇

2
(x,e)L(x?, e,λ,µ)K

]
d, d ∈ Rs

and using (11) with (8) and (10)

[
K

T
∇

2
(x,e)L(x?, e,λ,µ)K

]
= KT


∇

2
xL(x?, e,λ,µ) 0 0

0 M 0

0 0 0

K ,
=

(
KT
∇

2
xL(x?, e,λ,µ)K 0

0 M

)
Using the solution algorithm of the equality constrained problem we have

• Necessary condition: the matrices

KT
∇

2
xL(x?, e,λ,µ)K, and M

must be semi-positive defined. This imply that µk ≥ 0 for k = 1, 2, . . . , p

• Sufficient condition: the matrices

KT
∇

2
xL(x?, e,λ,µ)K, and M

must be positive defined. This imply that µk > 0 for the active constraints.
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Constrained minima, NLP problem

Consider the constrained minimization problem

minimize: f (x)

subject to: hi(x) = 0 i = 1, 2, . . . ,m

gi(x) ≥ 0 i = 1, 2, . . . , p

(12)

Solution algorithm

• Compute the Lagrangian function:

L(x,λ,µ) = f (x) −
m∑

k=1

λkhk(x) −
p∑

k=1

µkgk(x)

• Solve the nonlinear system

∇xL(x,λ,µ) = 0T

hk(x) = 0 k = 1, 2, . . . ,m

µkgk(x) = 0 k = 1, 2, . . . , p

keep only the solutions with µ?k ≥ 0 and gk(x?) ≥ 0.

• For each solution points (x?,λ?,µ?) compute∇h(x?) with∇gk(x?) where gk(x?) =
0 are the active constraints with µk > 0 and check they are linearly independent.

• Compute matrix K the kernel of ∇h(x?) with ∇gk(x?) where gk(x?) = 0 are the
active constraints with µk > 0.

• Compute the reduce Hessian

H = KT
∇

2
xL(x?,λ?)K,

– Necessary condition: H is semi-positive definite.

– Sufficient condition: H is positive definite and µk > 0 for all the active
constraints.

Definition 1 The set

F =
{
x ∈ Rn

| hk(x) = 0, k = 1, 2, . . . ,m, gk(x) ≥ 0, k = 1, 2, . . . , p,
}

is called the feasible region or set of feasible points.
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Definition 2 (Active set) The setA(x) defined as

A(x) =
{
k | gk(x) = 0

}
is the set of active (unilateral) constraints.

Constrained minima general theorem and KKT

The following theorem (see [1]) give the necessary conditions for constrained minima.
Notice that no condition on the constraints are necessary.

Theorem 2 (Fritz John) If the functions f (x), g1(x),. . . , gp(x), are differentiable, then a
necessary condition that x? be a local minimum to problem:

minimize: f (x)

subject to: gi(x) ≥ 0 i = 1, 2, . . . , p

is that there exist scalars µ?0 , µ?1 , µ?p , (not all zero) such that the following inequalities and
equalities are satisfied:

∇xL(x?,µ∗) = 0T

µ∗kgk(x?) = 0, k = 1, 2, . . . , p;

µ∗k ≥ 0, k = 0, 1, 2, . . . , p;

where

L(x,µ) = f (x) −
p∑

k=1

µk gk(x)

In [2] Kuhn and Tucker showed that if a condition, called the first order constraint
qualification, holds at x?, λ? then λ0 can be taken equal to 1.

Definition 3 (Constraints qualification LI) Let be the unilateral and bilateral constraints
g(x) and h(x), the point x? is admissible if

gk(x?) ≥ 0, hk(x?) = 0.

The constraints g(x) and h(x) are qualified at x? if the point x? is admissible and the vectors

{∇gk(x?) : k ∈ A(x?)}
⋃
{∇h1(x?),∇h2(x?), . . . ,∇hm(x?)}

are linearly independent.
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Definition 4 (Constraint qualification (Mangasarian-Fromovitz)) The constraints g(x)
and h(x) are qualified at x? if the point x? is admissible and does not exists a linear
combination

m∑
k∈A(x?)

αk∇gk(x?) +

m∑
k=1

βk∇hk(x?) = 0

with αk ≥ 0 for k ∈ A(x?) and αk with βk not all 0. In other words, there not exists a non trivial
linear combination of the null vector such that αk ≥ 0 for k ∈ A(x?).

The next theorems are taken from [3].

Theorem 3 (First order necessary conditions) Let f ∈ C1(Rn) and the constraints g ∈
C1(Rn,Rp) and h ∈ C1(Rn,Rm). Suppose that x? is a local minima of (12) and that the
constraints qualification LI holds at x?. Then there are Lagrange multiplier vectors λ and µ
such that the following conditions are satisfied at (x?,λ,µ)

∇xL(x?,λ∗,µ∗) = 0T

hk(x?) = 0, k = 1, 2, . . . ,m;

µ∗kgk(x?) = 0, k = 1, 2, . . . , p;

µ∗k ≥ 0, k = 1, 2, . . . , p;

where

L(x,λ,µ) = f (x) −
m∑

k=1

λk hk(x) −
p∑

k=1

µk gk(x)

Theorem 4 (Second order necessary conditions) Let f ∈ C2(Rn) and the constraints
g ∈ C2(Rn,Rp) and h ∈ C2(Rn,Rm). Let x? satisfying the First order necessary conditions, a
necessary condition for x? be a local minima is that the m + p scalars (Lagrange Multiplier)
of the first order necessary condition satisfy:

dT
∇

2
xL(x?,λ∗,µ∗)d ≥ 0

for all d such that

∇hk(x?)d = 0, k = 1, 2, . . . ,m

∇gk(x?)d = 0, if k ∈ A(x?) and µk > 0

∇gk(x?)d ≥ 0, if k ∈ A(x?) and µk = 0
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Remark 1 The conditions

∇gk(x?)d = 0, if k ∈ A(x?) and µk > 0

∇gk(x?)d ≥ 0, if k ∈ A(x?) and µk = 0

restrict the space of direction to be considered. If changed with

∇gk(x?)d = 0, if k ∈ A(x?)

theorems 4 is still valid cause necessary condition is tested in a smaller set.

Theorem 5 (Second order sufficient conditions) Let f ∈ C2(Rn) and the constraints
g ∈ C2(Rn,Rp) and h ∈ C2(Rn,Rm). Let x? satisfying the First order necessary conditions,
a sufficient condition for x? be a local minima is that the m+p scalars (Lagrange Multiplier)
of the first order necessary condition satisfy:

dT
∇

2
xL(x?,λ∗,µ∗)d > 0

for all d , 0 such that

∇hk(x?)d = 0, k = 1, 2, . . . ,m

∇gk(x?)d = 0, if k ∈ A(x?) and µk > 0

∇gk(x?)d ≥ 0, if k ∈ A(x?) and µk = 0

Remark 2 The condition

∇gk(x?)d ≥ 0, if k ∈ A(x?) and µk = 0

restrict the space of direction to be considered. If omitted the theorems 5 is still valid cause
sufficient condition is tested in a larger set.
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