Numerical Methods for Dynamic System and Control del 14/1/2014
\square Name \qquad Mat. number \square

Signature \qquad

1

Study the following constrained minimization problem.
minimize $f(x, y, z)=z^{2}-x-y, \quad$ subject to $\quad x+2 z=1, \quad x \geq 0, \quad y \leq 1$,
KKT system of first order condition:

$$
\left\{\begin{array}{r}
-\mu_{2}-\lambda-1=0 \\
-\mu_{1}-1=0 \\
-2 \lambda+2 z=0 \\
x+2 z-1=0 \\
\mu_{1}(1-y)=0 \\
\mu_{2} x=0
\end{array}\right.
$$

Solutions of KKT system:
$\left\{\begin{array}{l}x=0, \quad y=1, \quad z=1 / 2, \quad \lambda=1 / 2, \quad \mu_{1}=1, \quad \mu_{2}=-3 / 2 \quad \text { NO } \quad\left(\mu_{2}<0\right)\end{array}\right.$
$\left\{x=3, \quad y=1, \quad z=-1, \quad \lambda=-1, \quad \mu_{1}=1, \quad \mu_{2}=0 \quad\right.$ SI

Discussion of the stationary point: $x=3, \quad y=1, \quad z=-1, \quad \lambda=-1, \quad \mu_{1}=1, \quad \mu_{2}=0$
$\nabla\left[h, g_{1}\right]=\left(\begin{array}{ccc}1 & 0 & 2 \\ 0 & -1 & 0\end{array}\right) \quad \boldsymbol{K}=\left(\begin{array}{c}-2 \\ 0 \\ 1\end{array}\right) \quad \boldsymbol{K}^{T} \nabla^{2} \mathcal{L} \boldsymbol{K}=[2]$

Solve the following recurrence

$$
\begin{aligned}
x_{k+1} & =x_{k}-k, & x_{0}=1, \\
y_{k+1} & =x_{k}+y_{k}, & y_{0}=1,
\end{aligned}
$$

\mathcal{Z}-transform:

$$
\begin{aligned}
& (\zeta-1) x(\zeta)-\zeta=\frac{\zeta}{(\zeta-1)^{2}} \\
& (\zeta-1) y(\zeta)-\zeta=x(\zeta)
\end{aligned}
$$

Solution in \mathcal{Z} :

$$
\begin{aligned}
& x(\zeta)=\zeta^{2} \frac{\zeta-2}{(\zeta-1)^{3}} \\
& y(\zeta)=\zeta \frac{\zeta^{3}-2 \zeta^{2}+\zeta-1}{(\zeta-1)^{4}}
\end{aligned}
$$

$$
\begin{aligned}
& x_{k}=1-\frac{1}{2} k(k-1), \\
& y_{k}=1+\frac{2}{3} k+\frac{1}{2} k^{2}-\frac{1}{6} k^{3},
\end{aligned}
$$

Solve using Laplace transform the following boundary value problem

$$
\begin{aligned}
x^{\prime \prime}(t)+y^{\prime}(t) & =-1 \\
y^{\prime \prime}(t)-x^{\prime}(t) & =-1 \\
x(0) & =0, \quad y(0)=0, \quad x(1)=1, \quad y(1)=-1,
\end{aligned}
$$

Suggestion: Set $A=x^{\prime}(0)$ and $B=y^{\prime}(0)$ then using Laplace transform compute A and B which satisfy the boundary conditions.

The Laplace transform:

$$
\left\{\begin{aligned}
s^{2} x(s)-A+s y(s) & =-\frac{1}{s} \\
s^{2} y(s)-B-s x(s) & =-\frac{1}{s}
\end{aligned}\right.
$$

Solution in s with partial fraction expansion:

$$
\left\{\begin{array}{l}
x(s)=\frac{A s^{2}-B s-s+1}{s^{2}\left(s^{2}+1\right)}=\frac{1}{s^{2}}-\frac{1+B}{s}+\frac{B s+A+s-1}{s^{2}+1} \\
y(s)=\frac{B s^{2}+A s-s-1}{s^{2}\left(s^{2}+1\right)}=\frac{A-1}{s}-\frac{1}{s^{2}}+\frac{-A s+B+s+1}{s^{2}+1}
\end{array}\right.
$$

Value of A and B :

$$
A=1, \quad B=-1
$$

Solution in t :

$$
\left\{\begin{array}{l}
x(t)=t \\
y(t)=-t
\end{array}\right.
$$

Compute the coefficients of the Fourier series of the following function:

$$
f(x)= \begin{cases}0 & \text { for }-1 \leq x<0 \\ 1+x & \text { for } 0 \leq x<1 / 2 \\ 0 & \text { for } 1 / 2 \leq x<1\end{cases}
$$

defined for $x \in(-1,1)$ and extended periodically.

Coefficients a_{k} and b_{k} for the Fourier serie:
$a_{0}=\frac{5}{8}$
$a_{k}=\frac{3 \sin (k \pi / 2)}{2 k \pi}+\frac{\cos (k \pi / 2)}{k^{2} \pi^{2}}-\frac{1}{k^{2} \pi^{2}}=\frac{1}{2 k^{2} \pi^{2}} \begin{cases}0 & \text { for } k=4 m \\ 3 \pi k-2 & \text { for } k=4 m+1 \\ -2 & \text { for } k=4 m+2 \\ -3 \pi k-2 & \text { for } k=4 m+3\end{cases}$
$b_{k}=-\frac{3 \cos (k \pi / 2)}{2 k \pi}+\frac{\sin (k \pi / 2)}{k^{2} \pi^{2}}+\frac{1}{k \pi}$

