Numerical Methods for Dynamic System and Control del 7/2/2014
\square Name \qquad MAT. NUMBER \square

Signature \qquad

1

Study the following constrained minimization problem.

$$
\text { minimize } f(x, y, z)=z-y z^{2}, \quad \text { subject to } \quad x=y, \quad 0 \leq y \leq 1,
$$

KKT system of first order condition:

$$
\left\{\begin{aligned}
-\lambda & =0 \\
-z^{2}+\lambda-\mu_{1}+\mu_{2} & =0 \\
-2 y z+1 & =0 \\
x-y= & 0 \\
\mu_{1} y= & 0 \\
\mu_{2}(1-y) & =0
\end{aligned}\right.
$$

Solutions of KKT system:

$$
\left\{x=1, \quad y=1, \quad z=1 / 2, \quad \lambda=0, \quad \mu_{1}=0, \quad \mu_{2}=1 / 4 \quad\right. \text { SI }
$$

Discussion of the stationary point: $x=1, \quad y=1, \quad z=1 / 2, \quad \lambda=0, \quad \mu_{1}=0, \quad \mu_{2}=1 / 4$

$$
\nabla\left[h, g_{1}\right]=\left(\begin{array}{ccc}
1 & -1 & 0 \\
0 & -1 & 0
\end{array}\right) \quad \boldsymbol{K}=\left(\begin{array}{l}
0 \\
0 \\
1
\end{array}\right) \quad \boldsymbol{K}^{T} \nabla^{2} \mathcal{L} \boldsymbol{K}=[-2]
$$

Solve the following recurrence

$$
\begin{array}{lll}
x_{k+1} & =x_{k}+y_{k+1}, & x_{0}=1 \\
y_{k+1} & =x_{k}+k, & y_{0}=0,
\end{array}
$$

\mathcal{Z}-transform:

$$
\begin{aligned}
(\zeta-1) x(\zeta)-\zeta & =\zeta y(\zeta) \\
\zeta y(\zeta) & =x(\zeta)+\frac{\zeta}{(\zeta-1)^{2}}
\end{aligned}
$$

Solution in \mathcal{Z} :

$$
\begin{aligned}
& x(\zeta)=-\frac{\zeta}{(\zeta-1)^{3}} \\
& y(\zeta)=\zeta \frac{\zeta^{3}-3 \zeta^{2}+2 \zeta-1}{(\zeta-1)^{4}}
\end{aligned}
$$

$$
\begin{aligned}
& x_{k}=2^{k+1}-k-1, \\
& y_{k}=2^{k}-1
\end{aligned}
$$

Solve using Laplace transform the following boundary value problem

$$
\begin{aligned}
x^{\prime \prime}(t)+y^{\prime}(t) & =-\sin t \\
y^{\prime \prime}(t)-y(t) & =-2 \cos t \\
x(0) & =0, \quad y(0)=1, \quad x(1)=1, \quad y(1)=\cos (1)
\end{aligned}
$$

Suggestion: Set $A=x^{\prime}(0)$ and $B=y^{\prime}(0)$ then using Laplace transform compute A and B which satisfy the boundary conditions.

The Laplace transform:

$$
\left\{\begin{aligned}
s^{2} x(s)-A-1+s y(s) & =-\frac{1}{s^{2}+1} \\
s^{2} y(s)-B-s-y(s) & =-\frac{2 s}{s^{2}+1}
\end{aligned}\right.
$$

Solution in s with partial fraction expansion:

$$
\left\{\begin{array}{l}
x(s)=\frac{A s^{2}-B s-A}{s^{2}\left(s^{2}-1\right)}=\frac{A}{s^{2}}+\frac{B}{s}-\frac{B}{2(s+1)}-\frac{B}{2(s-1)} \\
y(s)=\frac{B s^{2}+s^{3}+B-s}{s^{4}-1}=\frac{s}{s^{2}+1}-\frac{B}{2(s+1)}+\frac{B}{2(s-1)}
\end{array}\right.
$$

Value of A and B :

$$
A=1, \quad B=0
$$

Solution in t :

$$
\left\{\begin{array}{l}
x(t)=t \\
y(t)=\cos t
\end{array}\right.
$$

Compute the coefficients of the Fourier series of the following function:

$$
f(x)= \begin{cases}1 & \text { for }-2 \leq x<0 \\ 1-x / 2 & \text { for } 0 \leq x<2\end{cases}
$$

defined for $x \in(-2,2)$ and extended periodically.

Coefficients a_{k} and b_{k} for the Fourier serie:
$a_{0}=\frac{3}{2}$
$a_{k}=\frac{\sin (k \pi)}{k \pi}+\frac{1}{k^{2} \pi^{2}}-\frac{\cos (k \pi)}{k^{2} \pi^{2}}=\frac{1-(-1)^{k}}{k^{2} \pi^{2}}$
$b_{k}=\frac{\cos (k \pi)}{k \pi}-\frac{\sin (k \pi)}{k^{2} \pi^{2}}=\frac{(-1)^{k}}{k \pi}$

