Numerical Methods for Dynamic System and Control del 7/7/2014
\square Name \square MAT. NUMBER \square

Signature \qquad

1

Solve the following optimal control problem

$$
\left\{\begin{array}{l}
\text { Minimize: } \quad \int_{0}^{1} u(t)^{2} \mathrm{~d} t \\
\int_{0}^{1} x(t) \mathrm{d} t=0 \\
x^{\prime}(t)=x(t)+u(t) \\
x(0)=0,
\end{array}\right.
$$

The Boundary Value Problem (BVP):

The optimal control $u(t)$:

The solution of the BVP:

Study the following constrained minimization problem.

$$
\operatorname{minimize} \quad f(x, y, z)=z+y^{2}-x^{2}, \quad \text { subject to } \quad x=z, \quad x \geq 0, \quad x \leq 1,
$$

KKT system of first order condition:

$$
\left\{\begin{aligned}
&-\mu_{1}+\mu_{2}-\lambda-2 x=0 \\
& 2 y=0 \\
& \lambda+1=0 \\
& x-z= 0 \\
& x \mu_{1}=0 \\
&(1-x) \mu_{2}=0
\end{aligned}\right.
$$

Solutions of KKT system:

$$
\left\{\begin{array}{l}
x=0, \quad y=0, \quad z=0, \quad \lambda=-1, \quad \mu_{1}=1, \quad \mu_{2}=0 \\
x=1, \quad y=0, \quad z=1, \quad \lambda=-1, \quad \mu_{1}=0, \quad \mu_{2}=1 \\
x=1 / 2, \quad y=0, \quad z=1 / 2, \quad \lambda=-1, \quad \mu_{1}=0, \quad \mu_{2}=0
\end{array}\right.
$$

Discussion of the stationary point: $x=0, \quad y=0, \quad z=0, \quad \lambda=-1, \quad \mu_{1}=1, \quad \mu_{2}=0$
$\nabla\left[h, g_{1}\right]=\left(\begin{array}{ccc}1 & 0 & -1 \\ 1 & 0 & 0\end{array}\right) \quad \boldsymbol{K}=\left(\begin{array}{l}0 \\ 1 \\ 0\end{array}\right) \quad \boldsymbol{K}^{T} \nabla^{2} \mathcal{L} \boldsymbol{K}=[2]$

Solve the following recurrence

$$
\begin{array}{ll}
x_{k+1}=y_{k}+1, & x_{0}=0, \\
y_{k+1}=2 x_{k}-1, & y_{0}=1,
\end{array}
$$

\mathcal{Z}-transform:

$$
\begin{aligned}
\zeta x(\zeta) & =y(\zeta)+\frac{\zeta}{\zeta-1} \\
\zeta y(\zeta)-\zeta & =2 x(\zeta)-\frac{\zeta}{\zeta-1}
\end{aligned}
$$

Solution in \mathcal{Z} :

$$
\begin{aligned}
& x(\zeta)=\frac{2 \zeta}{\zeta^{2}-2} \\
& y(\zeta)=\zeta \frac{\zeta^{2}-2 \zeta+2}{\left(\zeta^{2}-2\right)(\zeta-1)}=\frac{2 \zeta^{2}}{\zeta^{2}-2}-\frac{\zeta}{\zeta-1}
\end{aligned}
$$

$$
\begin{aligned}
& x_{k}=\frac{1}{2}(-\sqrt{2})^{k+1}+\frac{1}{2}(\sqrt{2})^{k+1} \\
& y_{k}=(-\sqrt{2})^{k}+(\sqrt{2})^{k}-1
\end{aligned}
$$

Solve using Laplace transform the following boundary value problem

$$
\begin{aligned}
x^{\prime \prime}(t)+y(t) & =1-\cos t \\
y^{\prime \prime}(t)-x^{\prime \prime}(t) & =\cos t \\
x(0) & =1, \quad y(0)=1, \quad x(\pi / 2)=0, \quad y(\pi / 2)=1,
\end{aligned}
$$

Suggestion: Set $A=x^{\prime}(0)$ and $B=y^{\prime}(0)$ then using Laplace transform compute A and B which satisfy the boundary conditions.

The Laplace transform:

$$
\left\{\begin{aligned}
s^{2} x(s)-A-s+y(s) & =\frac{1}{s}-\frac{s}{s^{2}+1} \\
s^{2} y(s)-B-s^{2} x(s)+A & =\frac{s}{s^{2}+1}
\end{aligned}\right.
$$

Solution in s with partial fraction expansion:

$$
\left\{\begin{array}{l}
x(s)=\frac{s^{3}+A s^{2}+A-B}{s^{2}\left(s^{2}+1\right)}=\frac{B+s}{s^{2}+1}+\frac{A-B}{s^{2}} \\
y(s)=\frac{s^{2}+B s+1}{s^{2}\left(s^{2}+1\right)}=\frac{B}{s^{2}+1}+\frac{1}{s}
\end{array}\right.
$$

$$
A=0, \quad B=0
$$

Solution in t :

$$
\left\{\begin{array}{l}
x(t)=\cos t \\
y(t)=1
\end{array}\right.
$$

Compute the coefficients of the Fourier series of the following function:

$$
f(x)= \begin{cases}1 & \text { for }-1 \leq x<0 \\ 0 & \text { for } 0 \leq x<1 / 2 \\ 1 / 2 & \text { for } 1 / 2 \leq x<1\end{cases}
$$

defined for $x \in(-1,1)$ and extended periodically.

Coefficients a_{k} and b_{k} for the Fourier serie:
$a_{0}=\frac{5}{4}$
$a_{k}=-\frac{\sin (k \pi / 2)}{2 k \pi}=\frac{1}{2 k \pi} \begin{cases}0 & \text { for } k=4 m \\ -1 & \text { for } k=4 m+1 \\ 0 & \text { for } k=4 m+2 \\ 1 & \text { for } k=4 m+3\end{cases}$
$b_{k}=-\frac{\cos (k \pi)+\cos (k \pi / 2)-2}{2 k \pi}=\frac{1}{2 k \pi} \begin{cases}0 & \text { for } k=4 m \\ -3 & \text { for } k=4 m+1 \\ -2 & \text { for } k=4 m+2 \\ -3 & \text { for } k=4 m+3\end{cases}$

