$1 \quad \boldsymbol{y}_{n+1}=\boldsymbol{y}_{n}+h \boldsymbol{f}_{n+1}$

$$
-\frac{h^{2}}{2} \boldsymbol{y}^{\prime \prime}(\eta)
$$

$2 \quad \boldsymbol{y}_{n+2}=\boldsymbol{y}_{n+1}+\frac{h}{2}\left[\boldsymbol{f}_{n+2}+\boldsymbol{f}_{n+1}\right]$

$$
-\frac{h^{3}}{12} \boldsymbol{y}^{\prime \prime \prime}(\eta)
$$

$$
3 \quad \boldsymbol{y}_{n+3}=\boldsymbol{y}_{n+2}+\frac{h}{12}\left[5 \boldsymbol{f}_{n+3}+8 \boldsymbol{f}_{n+2}-\boldsymbol{f}_{n+1}\right]
$$

$$
-\frac{h^{4}}{24} \boldsymbol{y}^{(4)}(\eta)
$$

$$
4 \quad \boldsymbol{y}_{n+4}=\boldsymbol{y}_{n+3}+\frac{h}{24}\left[9 \boldsymbol{f}_{n+4}+19 \boldsymbol{f}_{n+3}-5 \boldsymbol{f}_{n+2}+\boldsymbol{f}_{n+1}\right]
$$

$$
-\frac{19 h^{5}}{720} \boldsymbol{y}^{(5)}(\eta)
$$

$$
5 \quad \boldsymbol{y}_{n+5}=\boldsymbol{y}_{n+4}+\frac{h}{720}\left[251 \boldsymbol{f}_{n+5}+646 \boldsymbol{f}_{n+4}-264 \boldsymbol{f}_{n+3}+106 \boldsymbol{f}_{n+2}-19 \boldsymbol{f}_{n+1}\right]-\frac{3 h^{6}}{160} \boldsymbol{y}^{(6)}(\eta)
$$

