
Order Formula LTE

1 yn+1 = yn + hfn+1 �h2

2 y00(⌘)

2 yn+2 = yn+1 + h
2 [fn+2 + fn+1] �h3

12 y000(⌘)

3 yn+3 = yn+2 + h
12 [5fn+3 + 8fn+2 � fn+1] �h4

24 y(4)(⌘)

4 yn+4 = yn+3 + h
24 [9fn+4 + 19fn+3 � 5fn+2 + fn+1] � 19h5

720 y(5)(⌘)

5 yn+5 = yn+4 + h
720 [251fn+5 + 646fn+4 � 264fn+3 + 106fn+2 � 19fn+1] � 3h6

160 y(6)(⌘)

Table 2: Adams-Moulton formulas of di↵erent order. Notation: f
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), m = 0, 1, . . . , 5, LTE stands for local truncation error.

We start with the predictor — in our case the second-order AB method. However,
we treat its output only as a temporary answer, i.e.,
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Next we correct this value by using it on the right-hand side of the second-order AM
method, i.e.,
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While this approach provides a simple realization of an implicit method, it can also
be used to create a scheme that uses a variable stepsize h. The basic idea is to use the
di↵erence |ỹ

n+2

�y
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| to judge the accuracy of the method. The following algorithm
describes the general idea:
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if  is relatively large, then

h h/2 (i.e., reduce the stepsize)
repeat

else if  is relatively small, then

h 2h (i.e., increase the stepsize)

else

continue (i.e., keep h)

end
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