
Metodi Matematici e Calcolo per Ingegneria

del 20 febbraio 2006

Cognome	Nome	Matricola

[Esercizio 1 - punti 5] Sia data la seguente funzione:

Usando le regole di trasformazione calcolare le trasformate di Laplace delle funzioni in tabella:

Funzione	Trasformata
f(t)	
$f\left(\frac{t}{3}\right)$	
$f\left(\frac{t}{2}\right)e^{-2t}$	
f(t)'	

[Esercizio 2 - punti 6] Sia data la seguente equazione differenziale:

$$y'(t) = \begin{cases} -t & \text{per } t < 1 \\ t - 1 & \text{per } t \ge 1 \end{cases}$$

con dato iniziale y(0)=10. Usando la trasformata Laplace calcolare la soluzione del problema.

Trasformata della	
equazione	
differenziale	
Soluzione y(s)	
della equazione	
differenziale	
Soluzione y(x)	
della equazione	
differenziale	

[Esercizio 3 - punti 7] Usando la trasformata Laplace calcolare la soluzione del problema:

$$4y'(t) - z'(t) - w'(t) = 0,$$

$$-y'(t) + 4z'(t) - w'(t) = \exp(-t),$$

$$-y'(t) - z'(t) + 4w'(t) = 0,$$

con dato iniziale y(0)=3, $\,z(0)=2$ e $\,w(0)=1$.

Trasformata del	
sistema di	
equazioni	
differenziali	
Soluzione y(s), z(s)	
del sistema di	
equazioni	
differenziali	
Soluzione y(x), z(x)	
del sistema di	
equazioni	
differenziali	

[Esercizio 4 - punti 7] Usando la Z-trasformata calcolare la soluzione della seguente relazione di ricorrenza: $f_{n+2}=2\,f_{n+1}+3\,f_n-n$ con dato iniziale $f_0=0$, e $f_1=1$.

Z-trasformata	
della ricorrenza	
Soluziono f/z)	
Soluzione f(z)	
della ricorrenza	
Soluzione f _n della	
ricorrenza	
1	

[Esercizio 5 - punti 5] Sia dato il seguente sistema di equazioni non lineare:

$$f(x,y) = 4x - y + xy + 1$$

$$g(x,y) = x + 2y - xy - 2$$

Scrivere il procedimento iterativo di Newton-Raphson per questo particolare sistema.

Calcolare due iterate del metodo a partire da $x_0=1\,,\,\,y_0=2\,.$

Procedimento		
iterativo		
Prima iterata		
Seconda iterata		

[Esercizio 6 - punti 7] Minimizzare: $f(x,y,z) = (x-y)^2 + (x-z)^2 + (y-z)^2$ soggetta ai vincoli $h_1(x,y,z) = (x+y)(y+z) - 1$ e $h_1(x,y,z) = x-z-1$.

Sistema non lineare da risolvere	
Soluzioni del sistema non lineare	
Classificazione dei punti stazionari	

[Esercizio 7 - punti 12] Dato il seguente problema:

 $\text{minimizzare:} \int_0^1 y(x) \left(1 + y'(x)^2\right) d\, x \quad \text{ soggetta ai vincoli} \quad y(0) = 1 \ \, \text{e} \,\, y(1) = 1.$

- Discretizzare l'integrale con il metodo dei trapezi e 4 intervalli.
- . Scrivere la funzione in più variabili $F(y_1,y_2,y_3)$ che rappresenta la approssimazione discreta del problema differenziale originario (le condizioni al contorno sono già inglobate).
- . Fare il gradiente di $F(y_1,y_2,y_3)$ ottenendo un sistema non lineare.
- Scrivere il metodo di Newton per questo particolare sistema non lineare.
- . Fare 3 iterate del metodo di Newton a partire da $(y_1,y_2,y_3)=(1,1,1)$.

$F(y_1,y_2,y_3)$	
Metodo di Newton	
per il sistema	
non lineare	
non inleare	
Tre iterate del	
metodo di Newton	