Metodi Matematici e Calcolo per Ingegneria

del 7 settembre 2007

Cognome	Nome	Matricola
Bartolomeo	Pestalozzi	123007

[Esercizio 1 - punti 10] Calcolare le seguenti anti trasformate di Laplace.

Trasformata	Anti Trasformata	
$\frac{s}{(s^2 + 2s + 2)(s - 2)}$	$\frac{1}{5}e^{2t} + \frac{1}{5}(2\sin(t) - \cos(t))e^{-t}$	
$\frac{e^{-s}}{(s-2)^2}$	$H(t-1)(t-1)e^{2t-2}$	
$(s-2)^{-1} + \frac{s}{(s-2)^2}$	$2e^{2t}\left(1+t\right)$	

[Esercizio 2 - punti 10] Sia dato il seguente sistema di equazioni differenziali ordinarie:

$$\begin{cases} \frac{d}{dx}y(x) - \frac{d}{dx}z(x) = 1\\ \frac{d}{dx}y(x) - z(x) + y(x) = 0 \end{cases}$$

con dato iniziale $y_0=1\quad {\rm e}\quad z_0=0.$ Usando la trasformata Laplace calcolare la soluzione del problema.

Trasformata della	
equazione	$\int sy(s) - 1 - sz(s) = s^{-1}$
differenziale	$\begin{cases} sy(s) - 1 - z(s) + y(s) = 0 \end{cases}$

Soluzione y(s), z(s) nello spazio delle trasformate	$y(s) = \frac{s^2 - s - 1}{s^3}$	
	$z(s) = -\frac{2s+1}{s^3}$	
Soluzione y(x), z(x)	$y(x) = 1 - x - \frac{1}{2}x^2$	
	$z(x) = -\frac{1}{2}x(x+4)$	

[Esercizio 3 - punti 10] Usando la Z-trasformata calcolare la soluzione della seguente relazione di ricorrenza:

$$\begin{cases} f(k+1) + g(k) = k \\ g(k+1) + f(k) = 1 \end{cases}$$

con dato iniziale f(0) = 1 e g(0) = -1.

Z-trasformata della ricorrenza	$\int zf(z) - z + g(z) = \frac{z}{(z-1)^2}$
	$\int zg(z) + z + f(z) = \frac{z}{z-1}$
Soluzione f(z), g(z) della ricorrenza	$f(z) = \frac{(z^3 - z^2 - z + 2)z}{(z+1)(z-1)^3}$
	$g(z) = -\frac{z(-2z^2+2+z^3)}{(z+1)(z-1)^3}$
Soluzione f(n), g(n) della ricorrenza	$f(k) = \frac{9}{8} + \frac{k^2}{4} - \frac{k}{2} + \frac{1}{8} (-1)^{k+1}$
	$g(k) = -\frac{7}{8} - \frac{k^2}{4} + k + \frac{1}{8} (-1)^{k+1},$