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The problem

Definition (Global minimum)

Given a function ¢ : [a,b] — R, a point z* € [a,b] is a global
minimum if

¢(z") < ¢(x),  Vx € [a,b].

Definition (Local minimum)

Given a function ¢ : [a,b] — R, a point x* € [a,b] is a local
minimum if there exist a 6 > 0 such that

o(x*) < o(x), V € [a,b] N (z* =, 2" +9).

Finding a global minimum is generally not an easy task even in the
1D case. The algorithms presented in the following approximate

local minima. &
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Interval of Searching

@ In many practical problem, ¢(z) is defined in the interval
(—00,00); if ¢(z) is continuous and coercive (i.e.
limg, 100 f(2) = +00), then there exists a global minimum.

@ A simple algorithm can determine an interval [a, b] which
contains a local minimum. The method searches 3 consecutive
points a, 7, b such that ¢(a) > ¢(n) and ¢(b) > ¢(n) in this
way the interval [a, b] certainly contains a local minima.

@ In practice the method start from a point a and a step-length
h > 0; if ¢(a) > ¢(a + h) then the step-length k > h is
increased until we have ¢(a + k) > ¢(a + h).

e if ¢(a) < ¢(a+ h), then the step-length k& > h is increased
until we have ¢(a +h — k) > ¢(a).

@ This method is called forward-backward method. &
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Interval of Search

Algorithm (forward-backward method)

@ Let us be given a and h > 0 and a multiplicative factort > 1
(usually 2).

Q If p(a) > ¢p(a+ h) goto forward step
otherwise goto backward step
© forward step: a «— a; n<— a+h;
@ h<—ht; b—a-+h;
@ if ¢(b) > ¢(n) then return [a,b];
@ a—mn n<b
@ goto step 1;
©Q backward step: n «— a; b«— a+ h;
@ h<—ht; a<b—h;
@ if ¢(a) > ¢(n) then return [a,b];
@ b—mn n—a
@ goto step 1; &

One-Dimensional Minimization 5/33



Unimodal function

Definition (Unimodal function)

A function ¢(z) is unimodal in [a,b] if there exists an x* € (a,b)
such that ¢(x) is strictly decreasing on [a,x*) and strictly
increasing on (z*,b].

Another equivalent definition is the following one

Definition (Unimodal function)

A function ¢(x) is unimodal in [a,b] if there exists an x* € (a,b)
such that for all a < oo < 3 < b we have:

e if B < x* then ¢(a) > &(5);

e if > x* then ¢(a) < ¢(f3);

5
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Unimodal function

Golden search and Fibonacci search are based on the following
theorem

Theorem (Unimodal function)

Let ¢(x) unimodal in [a,b] and let be a < aw < 3 < b. Then
Q if p(a) < ¢(B) then ¢(zx) is unimodal in [a, (]
Q if ¢(a) > ¢(B) then ¢(x) is unimodal in [c, b]

Proof.
@ From definition ¢(x) is strictly decreasing over [a, z*), since
¢(a) < ¢(f) then z* € (a, §).
@ From definition ¢(x) is strictly increasing over (x*, b], since

d(a) > ¢(B) then z* € (a,b).

In both cases the function is unimodal in the respective
intervals. [] &
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Golden Section minimization
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Golden Section minimization

Golden Section minimization

Let ¢(x) an unimodal function on [a, b], the golden section scheme
produce a series of intervals [a, bx| where

° [ag, bo] = [a,b];
© [agi1,brt1] C [ak, bil;
o limg oo b = limy oo ag =

Algorithm (Generic Search Algorithm)

Q Letag=a, bp=0>
Q@ fork—=0,1,2,...
choose aj < A\, < pg < bg;

(1) Ifgf)()\k) < gb(,uk) then apr1 = Qg and bk+1 = Wk,
Q If¢()\k) > ¢(,U,k) then apy1 = A\ and by = by;

5
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Golden Section minimization

Golden Section minimization

@ When an algorithm for choosing the observations Ax and gy, is
defined, the generic search algorithm is determined.

@ Apparently the previous algorithm needs the evaluation of
d(Ag) and ¢(uy) at each iteration.

@ In the golden section algorithm, a fixed reduction of the
interval 7 is used, i.e:

b1 — ags1 = (b — ag)
@ Due to symmetry the observations are determined as follows
A = b — 7(bg — ag)
e = ag + 7 (b — a)

@ By a carefully choice of 7, golden search algorithm permits to
evaluate only one observation per step. &
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Golden Section minimization

Golden Section minimization

Consider case 1 in the generic search: then,
Ao = b — 7(b — ag), g = ap + 7(bg — ag)
and
af4+1 = Ak, brt1 = pk = a + 7(bk — ax)
Now, evaluate
Net1 = b1 — T(bpg1 — app1) = ag + (1 — 72) (b — ak)

Pkl = Qg1 + T(bpp1 — apyr1) = ap + 72(bk — ay)

The only value that can be reused is A\; so that we try Ag11 = Mg
and g1 = Ak

5
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Golden Section minimization

Golden Section minimization

o If Ag11 = Ag, then

bk—T(bk—ak) :ak+(7—72)(bk —ak)
andl—7=17—72 = 7 = 1. In this case there is no

reduction so that Ap;; must be computed.
o If ppy1 = Ag, then
bk—T(bk—ak) :ak+7'2<bk —ak)
and

1—7=12 = Tiz_lzg\/g

By choosing the positive root, we have
7= (/5 —1)/2 2 0.618. In this case, ji; 41 does not need to
be computed. &
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Golden Section minimization

Golden Section minimization

Graphical structure of the Golden Section algorithm.
@ White circles are the extrema of the successive
@ Yellow circles are the newly evaluated values;

@ Red circles are the already evaluated values;

5
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Golden Section minimization

Algorithm (Golden Section Algorithm)

Let ¢(x) be an unimodal function in [a,b],

Q@ Setk=0,6>0andt=(v5—1)/2. Evaluate
A=b—7(b—a), p=a+7(b—a), ¢ = é(a), ¢, = ¢(b),
ox = ¢(A), du = o(p).

Q If o\ > ¢, go to step 3, else go to step 4

Q@ Ifb— X\ <4 stop and output p;
otherwise, set a «— X\, A < u, ¢ < ¢, and evaluate
p=a+7(b—a)and ¢, = ¢(1).

Go to step 5

Q If u—a <6 stop and output \;
otherwise, set b < i, < A, ¢, < ¢ and evaluate
A=b—7(b—a) and ¢y = P()).

Go to step 5

©Q k< k+1 goto step 2. &
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Golden Section minimization Convergence Rate

Golden Section convergence rate

@ At each iteration the interval length containing the minimum
of ¢(z) is reduced by 7 so that by — ax = 7% (by — ag).
@ Due to the fact that z* € [ag, by] for all k then we have:

(by — 2*) < (b — ax) < 7" (bo — ap)
(x* —ag) < (b —a) < Tk(bo — ap)

@ This means that {ax} and {by} are r-linearly convergent
sequence with coefficient 7 ~ 0.618.

5
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Fibonacci Search Method
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Fibonacci Search Method

Fibonacci Search Method

@ In the Golden Search Method, the reduction factor 7 is
unchanged during the search.

o If we allow to change the reduction factor at each step we
have a chance to produce a faster minimization algorithm.
@ In the next slides we see that there are only two possible
choice of the reduction factor:
o The first choice is 7, = (v/5 — 1)/2 and gives the golden
search method.
e The second choice takes 7, as the ratio of two consecutive

Fibonacci numbers and gives the so-called Fibonacci search
method.

5
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Fibonacci Search Method

Fibonacci Search Method

Consider case 1 in the generic search: the reduction step 73 can
vary with respect to the index k as

Ak = b — Ti(bk —a), k= ap + 7e(bk — ax)
and
apt1 = Qg, brt+1 = pur = ax + 1 (b, — ax)
Now, evaluate
M1 = b1 — Tey1 (kg1 — arr1) = ag + (Th — oo 1) (b — ag)

Pyl = eyt + Thop1 (kg1 — ary1) = a + 771 (bk — ar)

The only value that can be reused is Ak, so that we try A1 = g
and Hea1 = Ak &
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Fibonacci Search Method

Fibonacci Search Method

o If A1 = Ag, then

b — 1 (br — ar) = ag + (7% — Tk Th11) (bk — ax)

and 1 — 7, = 7, — T, Tx+1. By searching a solution of the form
Tk = Zk+1/%k, we have the recurrence relation:

2k —22k41 + 242 =0
which has a generic solution of the form
zp=c1+ca(k+1)

In general, we have limg, .o, 7 = 1, so that reduction is
asymptomatically worse than golden section.

5
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Fibonacci Search Method

Fibonacci Search Me

o If ug11 = Ak, then
b, — (b — ar) = ag + TETE+1 (b — ak)

and 1 — 7, = 7;T;11. By searching a solution of the form
Tk = Zk+1/%2k, We have the recurrence relation:

Zk = Zk+1 + Zky2

which is a reverse Fibonacci succession. The computation of
z;. involves complex number.
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Fibonacci Search Method

Fibonacci Search Method

@ A simpler way to compute zj is to take the length of the
reduction step constant, say n and compute the Fibonacci
sequence up to n as follows

Fy=F =1, Fry1 = Fip + Fr

then, set 2z = Fj, k41 so that 7, = Fy i/ Fp_k11-

@ In the Fibonacci search we evaluate reduction factor 73, by
choosing the number of reductions before starting the
algorithm

@ A way to evaluate this number is to choose a tolerance § so
that

by —an <9

5
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Fibonacci Search Method

Fibonacci Search Method

© From the definition of the reduction factor 7, it is easy to
evaluate b,, — a,:

bn —anp = E(bn—l - CLn—l) = Eg(bn—2 - an—2)
B F1 FQ Fn . b() — ap
== (bo — ag) = ———
B Fy B Fri1

@ In this way the number of reductions n is deduced from:

bo — ag

Fn+1 Z
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Fibonacci Search Method

Algorithm (Fibonacci Search Algorithm)

Let ¢(x) be an unimodal function in [a, b]

Q Set k=0,6 >0 andn such that F,, 1 > (by — ag)/0.
Evaluate 1 = Fp,/Fpi1, A\=b—1(b—a), p=a+7(b—a),
ba = ¢(a), dp = d(b), dr = d(A), P = P(n).

Q If o\ > ¢, go to step 3, else go to step 4

©Q Ifb— X\ < stop and output u;
otherwise set a «— X\, A < p, ¢\ < ¢, evaluate
p=a+7(b—a)and ¢, = ¢(1).
Go to step 5

Q If u—a < 6 stop and output \;
otherwise set b « i, i < A, ¢, < ¢ evaluate
A=b—7(b—a) and ¢\ = p()).
Go to step 5

Q setk—k+1and T — F,_i/F, ki1 goto step 2. &
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Fibonacci Search Method Convergence Rate

Fibonacci Search convergence rate

@ At each iteration, the interval length containing the minimum

of ¢(x) is
b, — ar, = (bo — ao) (Fn—k+1/Fn+1)
@ Due to the fact that z* € [ag, bg] for all k, we have:
(bg — %) < (b — ax) < (Fo—g+1/Fnt1)(bo — ao)

(2" —ax) < (b, — ax) < (Fn—gt+1/Fnt1)(bo — ao)

5
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Fibonacci Search Method Convergence Rate

Fibonacci Search convergence rate

@ To estimate convergence rate we need the expression of Fj,
k+1 k+1
1 1+5 1-5
F,=— —
V5 2 2

@ and for large k
k+1
poo L (15

@ in this way we can approximate

Fr k1 ~ (14-\[) (\/5—1>
Fn+1 2 2
K«
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Fibonacci Search Method Convergence Rate

Fibonacci Search convergence rate

@ This means that {a;} and {by} are r-linearly convergent
sequences with coefficient 7 =~ 0.618.

@ So, golden search and Fibonacci search perform similarly for
large n. Golden search is easier, for this reason, normally
Golden search is preferre to Fibonacci search.

5
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Polynomial Interpolation
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Polynomial Interpolation
Polynomial Interpolation

e Fibonacci and golden search are r-linearly convergent
methods.

@ Approximating the function ¢(z) with a polynomial model
and minimizing the polynomial result in algorithms which are
normally superior to Fibonacci and golden search.
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Polynomial Interpolation
Polynomial Interpolation

@ Suppose that an initial guess xg is known, and the interval
[0, zp] contains a minimum.
@ We can form the quadratic approximation p(z) to ¢(x) by
interpolating ¢(0), ¢(zo) and ¢'(0).
_ _ /
o(z) = P(z0) — ¢(0) — 20¢'(0)

" 2+ ¢'(0)z + ¢(0).
0

The new trial minimum is defined as the minimum of the
polynomial approximation g(x), an takes the value:

¢'(0)x3
2[¢(x0) — ¢(0) — ¢(0)xo]

rl = —

5
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Polynomial Interpolation
Polynomial Interpolation

o If ¢/(x1) is small enough (we are near a stationary point) we
can stop the iteration, otherwise we can construct a cubic
polynomial that interpolates ¢(0), ¢'(0), ¢(xg) and ¢(x1).

c(x) = Aya® + Biz® + ¢/ (0)z + 6(0).
where
<A1> _ 1 ( g —w?) <¢(w1) — ¢(0) — ¢’(0)w1>
By x%x%(wl — .730) —338 x:f (;5(.1:()) - ¢(0) - (ZS/(O)Q:O
The new trial minimum is defined as the minimum of the
polynomial approximation ¢(x).

5
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Polynomial Interpolation
Polynomial Interpolation

e By differentiating ¢(z) and taking the root nearest the 0
values we obtain:

T =

—B1 ++/B? —341¢/(0)
Ay

—¢'(0)
B1 +/B? —3414/(0)

where for stability reason we use the first expression when
B < 0, the second expression when By > 0.

o If the new trial minimum is not accepted, we repeat the
procedure with ¢(0), ¢'(0), ¢(x1) and ¢(x2).

5
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Polynomial Interpolation
Polynomial Interpolation

@ In general we can approximate the minimum by the procedure

—By + /B — 344/ (0)

Th+1 = AL
—¢'(0)

By, + /BE — 34;,¢/(0)

2 2
By, ap oy (vk — op—1) \"Tp_1 T

" ( ¢(xx) — ¢(0) — ¢'(0)xy, )
¢(rk-1) — ¢(0) — ¢’ (0) k1

@ where

5
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