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Definition (Global minimum)

Given a function ¢ : [a,b] — R, a point =* € [a,b] is a global
minimum if

#(a*) < ¢(x),  Vax € [a,b].

Definition (Local minimum)

Given a function ¢ : [a,b] — R, a point z* € [a,b] is a local
minimum if there exist a § > 0 such that

Va € [a,0] 0 (2% = 6,2% + ).

*) < ola),

Finding a global minimum is generally not an easy task even in the
1D case. The algorithms presented in the following approximate
local minima.
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Interval of Searchi

o In many practical problem, ¢(z) is defined in the interval
(—o0,00); if ¢(x) is continuous and coercive (i.e

limg, 400 f(2) = 400), then there exists a global minimum.
A simple algorithm can determine an interval [a, b] which
contains a local minimum. The method searches 3 consecutive
points a, 1, b such that ¢(a) > ¢(n) and ¢(b) > ¢(n) in this
way the interval [a, b] certainly contains a local minima.

o In practice the method start from a point a and a step-length
h > 0;if ¢(a) > ¢(a+ h) then the step-length k > h is
increased until we have ¢(a + k) > ¢(a + h).

if ¢(a) < ¢(a + h), then the step-length k > h is increased
until we have ¢(a + h — k) > ¢(a)

This method is called forward-backward method. b

One-Dimensions! Minimization




Interval of Search

Algorithm (forwar

ackward method)

Q@ Let us be given o and h > 0 and a multiplicative factor t > 1
(usually 2).
Q If¢(a) > ¢(a + h) goto forward step
otherwise goto backward step
Q@ forward step: a — a; 7 — a+ h;
©® heht; b—a+h;
@ if o(b) > ¢(n) then return [a,b];
Q@ a—n neb;
@ goto step I;
@ backward step:  — o; b a+h;
© h—ht; a—b—h;
@ if ¢(a) > ¢(n) then return [a.b];
@ ben nea
@ goto step I;

nimodal functiol

Golden search and Fibonacci search are based on the following
theorem
Theorem (Unimodal function)
Let ¢(x) unimodal in [a,b] and let be a < o < 3 <b. Then
Q@ if p(a) < ¢(B) then ¢(x) is unimodal in [a, 3]
Q@ if ¢(a) > ¢(B) then ¢(x) is unimodal in [cx, b]

Proof.

@ From definition ¢(x) is strictly decreasing over [a, z*), since
6(a) < $(8) then z* € (a,3).

@ From definition ¢(x) is strictly increasing over (z*,], since
¢(a) > ¢(3) then z* € (e, b).

In both cases the function is unimodal in the respective
intervals.

I
Unimodal function

Definition (Unimodal function)

A function ¢() is unimodal in [a, b] if there exists an a* € (a, b)
such that ¢(x) is strictly decreasing on [a,x*) and strictly
increasing on (z*,b].

Another equivalent definition is the following one

Definition (Unimodal function)

A function ¢(x) is unimodal in [a,b] if there exists an x* € (a,b)
such that for all a < a < 8 < b we have:

o if B < a* then ¢(a) > ¢(B);
o ifa > a* then ¢(a) < ¢(8);

@ Golden Section minimization
o Convergence Rate
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Golden Section minimization Golden Section minimization

o When an algorithm for choosing the observations A and . is

Let ¢(x) an unimodal function on [a,b], the golden section scheme defined, the generic search algorithm is determined.

produce a series of intervals [ay, by] where o Apparently the previous algorithm needs the evaluation of
o [ag, bo] = [a,b]; &(Ar) and ¢(py) at each iteration.
o (a1, ] © lak, byl

0 Timp oo by = limyp oo ag =

@ In the golden section algorithm, a fixed reduction of the
interval 7 is used, i.e:

Algorithm (Generic Search Algorithm)
Q Letag=a,bp=0b
Q fork=0,1,2,...
choose aj, < A\, < pk < b,
@ if p(Ak) < @(pux) then ariy = ax and bryy = pux;
@ if ¢(Ar) > o(ux) then aji1 = Ay and briy = by

b1 — appr = 7(be — ax)
o Due to symmetry the observations are determined as follows
Mo = b — (b — az)

B = ag + 7(bk — ax)

o By a carefully choice of 7, golden search algorithm permits to
evaluate only one observation per step. “

Golden Section minimization Golden Section minimizati

) o If g1 = Mg, then
Consider case 1 in the generic search: then,

b — (b — ar) = ay + (r — 72) (b — az)

Ak = b — 7(b — ag). pie = ag + 7(by — ag) .
andl—7=7—172 = 7 = 1. In this case there is no
and reduction so that A\;.q must be computed
Gt = ap bper = e = ag -+ (b — ag) o If py = g, then
_ 2
Now, evaluate b= 7l = an) = ap 7 (0 - ar)
d
o1 = bypr = 7(bpin — arpr) = a + (7 — 77) (b — ag) an
—1+V5
Mt = Qg+ T(bpsr — pr) = ag + 72 (b — ag) = [ A

The only value that can be reused is Ay so that we try Ags1 = Mg

By choosing the positive root, we have
and i1 = A

7= (V5—1)/2~0.618. In this case, p.4 does not need to
“ be computed }




Golden Section minimization

Algorithm (Golden Section Algorithm)

Graphical structure of the Golden Section algorithm. Let ¢(x) be an unimodal function in (a,b],
o White circles are the extrema of the successive @ Setk=0,0>0and 7= (V/5—1)/2. Evaluate
o Yellow circles are the newly evaluated values; A=b-r7(b—a), p=a+7(b—a), ¢a = é(a), $ = (b),

Ox = 0(N), ¢ = (1)
Q Ifgx > ¢, go to step 3; else go to step 4
Q

o Red circles are the already evaluated values;

Ifb— X < 6 stop and output j1;

otherwise, set a «— A\, X < i, ¢\ — ¢,, and evaluate
o——o—o— n=a+7(b—a) and ¢, = 6(u)-

Go to step 5

O O

o—e——0—=0 .
@ Ifpu—a <4 stop and output A;
o—e—0—0 otherwise, set b «— p, j — X, ¢, < ¢ and evaluate
A=b—71(b— d oy = d(A).
= 50 aanin=e
R 0 to step 5
} Q@ k< k+1 goto step 2 5‘

Golden Secti ergence rate

o At each iteration the interval length containing the minimum
of ¢(x) is reduced by 7 so that by, — aj = 7¥(by — ag)
o Due to the fact that z* € [ay, by] for all k then we have:

(b — *) < (b, — ag) < 7 (bo — ag) @ Fibonacci Search Method

(=" = ay) < (b — ax) < 7"(by — ag) o Convergence Rate

o This means that {ay} and {by} are r-linearly convergent
sequence with coefficient 7 ~ 0.618.




Fibonacci Search Method

Fibonacci Search Metho

Fibonac

i Search Methad

Fibonacci Search Method

@ In the Golden Search Method, the reduction factor 7 is
unchanged during the search
o If we allow to change the reduction factor at each step we
have a chance to produce a faster minimization algorithm.
o In the next slides we see that there are only two possible
choice of the reduction factor:
o The first choice is 7. = (v/5 — 1)/2 and gives the golden
search method
@ The second choice takes 7. as the ratio of two consecutive
Fibonacci numbers and gives the so-called Fibonacci search
method.

o If Ajs1 = Ay, then

b — 7k — ax) = ag + (7% — Tim1) (bk — ax)

Tk — TkTh+1. By searching a solution of the form
, we have the recurrence relation:

2k — 2241 + 242 =0
which has a generic solution of the form

2=+ eolk+1)

In general, we have limy, .. 7 = 1, so that reduction is
asymptomatically worse than golden section

Consider case 1 in the generic search: the reduction step 73 can
vary with respect to the index k as
e = b — melbg — ax), e = ag + 7 (b — ag)
and
A1 = s b1 = pr = ag + (b — ay)
Now, evaluate

Net1 = b1 = T (b1 — ak1) = ag + (7 — Th7h1) (g — ax)

Pt = @it + Tror (rsr — akpr) = ak + TeTip (b — ax)

The only value that can be reused is A, so that we try A1 = Ay
and igsr = A B

o If st = Ap, then
by = Te(bi — ax) = a + TiThs1 (bk — ax)

and 1 — 7, = 74741. By searching a solution of the form
Tk = 2j+1/ 2, we have the recurrence relation:

2k = 241 + 242

which is a reverse Fibonacci succession. The computation of
24 involves complex number.




Fibonacci Search Method

Fibonacci Search Method

@ A simpler way to compute z is to take the length of the
reduction step constant, say n and compute the Fibonacci
sequence up to n as follows

F=rn=1 Frp1 = Fi+ Fr

then, set zj, = F,_j41 so that 7, = F,_/F, i1

o In the Fibonacci search we evaluate reduction factor 75, by
choosing the number of reductions before starting the
algorithm

o A way to evaluate this number is to choose a tolerance § so
that

bp—an <6

‘One-Dimensional Minimization

Fibonacci Search Method

ithm (
Let ¢(x) be an unimodal function in [a,b]

Q@ Setk =0, >0 andn such that Fy,.1 > (by — ag)/d.
Evaluate T = Fy/Fpi1, A\=b—7(b—a), g = a+7(b—a),
Sa = p(a), o = 6(b), r = ¢(\), Sy = b(n)

If g5 > ¢, go to step 3; else go to step 4
Ifb— X < § stop and output yi;

otherwise set a «— X\, X < i, ¢\ < ¢, evaluate
p=a+7(b—a) and ¢, = ¢().

Go to step 5

bonacci Search Algorithm)

© 0

Q Ifpu—a <6 stop and output \;
otherwise set b «— 1, p1 < A, ¢, — ¢ evaluate
A=b—1(b—a) and 65 = 6()).
Go to step 5

Q@ seth— k+1andr— F, /F, 1 goto step 2 B

@ From the definition of the reduction factor 7y, it is easy to
evaluate by, — a,:

F F P
by —an = T,l(bn—l —an 1) = b2 —an2)
) 3
P Fy by —ag
— L2 () = 2
P Pt 07 = T

@ In this way the number of reductions 7 is deduced from:

bo —ag
Fop1 2 ———
[

@ At each iteration, the interval length containing the minimum
of ¢(x) is

by = ag = (bo — a0) (Fn—p+1/Frs1)

o Due to the fact that 2* € [ay. b] for all k, we have:

(b — 2%) < (b — ax) < (Fo—gs1/Fp+1)(bo — ao)

(" = a) < (br — ar) < (Fu-rs1/Fas1)(bo — ao)




Fibonacci Search Method

Fibonacci Search convergence rate

convergence rate

o To estimate convergence rate we need the expression of Fj

1+\/5 k+1 17‘/5 k41
2 - 2

Fy

@ and for large k

o in this way we can approximate

—
Fogp (1415 _
Fon S\ 2

© Polynomial Interpolation

o This means that {a;} and {b;} are r-linearly convergent
sequences with coefficient 7 ~ 0.618

@ So, golden search and Fibonacci search perform similarly for
large n. Golden search is easier, for this reason, normally
Golden search is preferre to Fibonacci search

Polynomial Interpolatios

o Fibonacci and golden search are r-linearly convergent
methods.

o Approximating the function ¢(x) with a polynomial model
and minimizing the polynomial result in algorithms which are
normally superior to Fibonacci and golden search.




Polynomia Interpolation

Polynomial Interpolation

o Suppose that an initial guess xq is known, and the interval
[0, ] contains a minimum

o We can form the quadratic approximation p(x) to ¢(x) by

interpolating ¢(0), ¢(zq) and ¢'(0).

20) = 208'(0) 12 (01 + 6(0).

The new trial minimum is defined as the minimum of the
polynomial approximation ¢(x), an takes the value:
9/(0)zf

T T3 0w0) — 0(0) — & (0)0)

nial Interpolation

By differentiating c(z) and taking the root nearest the 0
values we obtain:

B+ /BI=3A4,¢(0)
A

_ #(0)

Bi + /BZ - 34,4/(0)

where for stability reason we use the first expression when
By < 0, the second expression when By > 0.

To =

If the new trial minimum is not accepted, we repeat the
procedure with ¢(0), ¢'(0), ¢(x1) and ¢(z2)

Pobnomal Interpoaton
Polynomial Interpolation

o If ¢/(x1) is small enough (we are near a stationary point) we
can stop the iteration, otherwise we can construct a cubic
polynomial that interpolates ¢(0), ¢(0), ¢(z0) and ¢(1).

c(x) = Az® + Biz? + ¢'(0)z + ¢(0).
where
A _ 1 2} —a}\ (d(x1) — 6(0) — ¢'(0)a1
Bi) ~ afad(zy —wo) \~xf 2} ) \é(z0) — 6(0) — & (0)ao
The new trial minimum is defined as the minimum of the
polynomial approximation c(z)

5

Polynomial Interpolatios

o In general we can approximate the minimum by the procedure

e~
~Bi+/ B} — 3A4,/(0)
L1 = Ar

—4(0)

By + \//BL2 — 34,¢'(0)

o where

(/u. B 1 (
Bi) 2wl —we)

o) — 9(0) — (0)z
) <¢< )

1) = 6(0) = ¢'(0)z—1
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