

Proof.

The condition $\nabla f(x_*)^T = 0$ comes from first order necessary conditions. Consider now a generic direction d, and the finite difference:

$$\frac{f(\boldsymbol{x}_{\star} + \lambda \boldsymbol{d}) - 2f(\boldsymbol{x}_{\star}) + f(\boldsymbol{x}_{\star} - \lambda \boldsymbol{d})}{\lambda^{2}} \ge 0$$

by using Taylor expansion for f(x)

$$\mathsf{f}(\boldsymbol{x}_{\star} \pm \lambda \boldsymbol{d}) = \mathsf{f}(\boldsymbol{x}_{\star}) \pm \nabla \mathsf{f}(\boldsymbol{x}_{\star}) \lambda \boldsymbol{d} + \frac{\lambda^2}{2} \boldsymbol{d}^T \nabla^2 \mathsf{f}(\boldsymbol{x}_{\star}) \boldsymbol{d} + o(\lambda^2)$$

and from the previous inequality

$$d^T \nabla^2 f(x_\star) d + 2o(\lambda^2)/\lambda^2 \ge 0$$

taking the limit $\lambda \to 0$ and form the arbitrariness of d we have that $\nabla^2 f(x_*)$ must be semi-definite positive.

Proof.

Consider now a generic direction $d_{\rm r}$ and the Taylor expansion for $f({\boldsymbol{x}})$

$$\begin{split} \mathsf{f}(\boldsymbol{x}_{\star} + \boldsymbol{d}) &= \mathsf{f}(\boldsymbol{x}_{\star}) + \nabla \mathsf{f}(\boldsymbol{x}_{\star}) \boldsymbol{d} + \frac{1}{2} \boldsymbol{d}^T \nabla^2 \mathsf{f}(\boldsymbol{x}_{\star}) \boldsymbol{d} + o(\|\boldsymbol{d}\|^2) \\ &\geq \mathsf{f}(\boldsymbol{x}_{\star}) + \frac{1}{2} \lambda_{min} \|\boldsymbol{d}\|^2 + o(\|\boldsymbol{d}\|^2) \\ &\geq \mathsf{f}(\boldsymbol{x}_{\star}) + \frac{1}{2} \lambda_{min} \|\boldsymbol{d}\|^2 \left(1 + o(\|\boldsymbol{d}\|^2) / \|\boldsymbol{d}\|^2\right) \end{split}$$

choosing d small enough we can write

$$\mathsf{f}(\boldsymbol{x}_{\star} + \boldsymbol{d}) \geq \mathsf{f}(\boldsymbol{x}_{\star}) + \frac{1}{4} \lambda_{\min} \|\boldsymbol{d}\|^2 > \mathsf{f}(\boldsymbol{x}_{\star}), \qquad \boldsymbol{d} \neq \boldsymbol{0}, \ \|\boldsymbol{d}\| \leq \delta.$$

0.1.041.1.21.1.21.2

i.e. x_{+} is a strict minimum.

Second order sufficient condition

Lemma (Second order sufficient condition for local minimum)

Given $f \in C^2(\mathbb{R}^n)$ if a point $x_* \in \mathbb{R}^n$ satisfy:

◊ ∇f(x_{*})^T = 0;
 ◊ ∇²f(x_{*}) is definite positive; i.e.

$$d^T \nabla^2 f(\mathbf{x}_*) d > 0, \quad \forall d \in \mathbb{R}^n \setminus \{\mathbf{x}_*\}$$

then $x_{\star} \in \mathbb{R}^n$ is a strict local minimum.

Remark

Because $\nabla^2 f(x_\star)$ is symmetric we can write

$$\lambda_{\min} \boldsymbol{d}^T \boldsymbol{d} \leq \boldsymbol{d}^T \nabla^2 \mathsf{f}(\boldsymbol{x}_\star) \boldsymbol{d} \leq \lambda_{\max} \boldsymbol{d}^T \boldsymbol{d}$$

If $\nabla^2 f(\mathbf{x}_{\star})$ is positive definite we have $\lambda_{\min} > 0$.

General iterative scheme

Outline

B

General iterative scheme

- Global convergence of backtracking Armijo line-search
- Global convergence of steepest descent

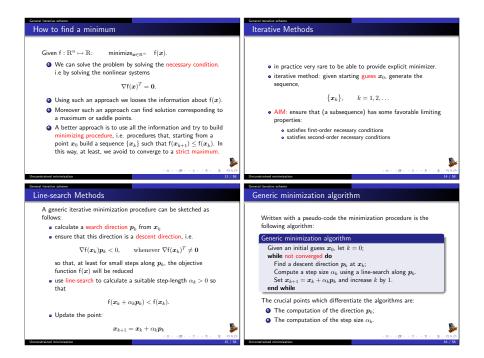
Wolfe–Zoutendijk global convergence

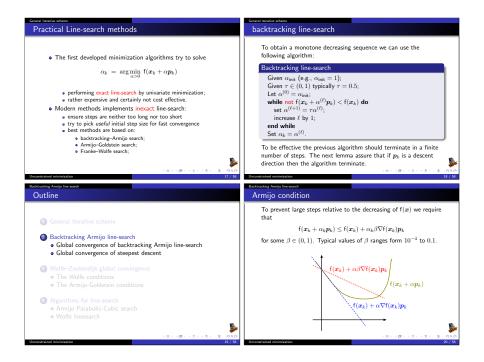
- The Wolfe conditions
- The Armijo-Goldstein conditions

Algorithms for line-search

- Armijo Parabolic-Cubic search
- Wolfe linesearch

11/5





Backtracking Armijo line-search

Given α_{init} (e.g., $\alpha_{init} = 1$); Given $\tau \in (0, 1)$ typically $\tau = 0.5$; Let $\alpha^{(0)} = \alpha_{\text{init}}$; while not $f(\mathbf{x}_k + \alpha^{(\ell)}\mathbf{p}_k) \le f(\mathbf{x}_k) + \alpha^{(\ell)}\beta \nabla f(\mathbf{x}_k)\mathbf{p}_k$ do set $\alpha^{(\ell+1)} = \tau \alpha^{(\ell)}$. increase ℓ by 1: end while Set $\alpha_{\ell} = \alpha^{(\ell)}$.

- · Backtracking Armijo line-search prevents the step from getting too large.
- . Now the question is: will the backtracking Armijo line-search terminate in a finite number of steps ?

constrained minimization Backtracking Armijo line-search

Finite termination of Armijo line-search

To prove finite termination we need the following Taylor expansion due to the regularity assumption:

$$f(\boldsymbol{x} + \alpha \boldsymbol{p}) = f(\boldsymbol{x}) + \alpha \nabla f(\boldsymbol{x}) \boldsymbol{p} + E \text{ where } |E| \leq \frac{\gamma}{2} \alpha^2 \|\boldsymbol{p}\|$$

Proof

If $\alpha \le \omega_k$ we have $\alpha \gamma ||\mathbf{p}_k||^2 \le 2(\beta - 1)\nabla f(\mathbf{x}_k)\mathbf{p}_k$ and by using Taylor expansion $f(\boldsymbol{x}_{k} + \alpha \boldsymbol{p}_{k}) \leq f(\boldsymbol{x}_{k}) + \alpha \nabla f(\boldsymbol{x}_{k})\boldsymbol{p}_{k} + \frac{\gamma}{2}\alpha^{2} \|\boldsymbol{p}_{k}\|^{2}$

 $< f(\boldsymbol{x}_k) + \alpha \beta \nabla f(\boldsymbol{x}_k) \boldsymbol{p}_k$

$$\leq f(\boldsymbol{x}_k) + \alpha \nabla f(\boldsymbol{x}_k) \boldsymbol{p}_k + \alpha (\beta - 1) \nabla f(\boldsymbol{x}_k) \boldsymbol{p}_k$$

Backtracking Armijo line-search Finite termination of Armiio line-search Theorem (Finite termination of Armijo linesearch) Suppose that f(x) satisfy the standard assumptions and $\beta \in (0, 1)$ and that p_{1} is a descent direction at x_{1} . Then the Armijo condition $f(\mathbf{x}_k + \alpha_k \mathbf{p}_k) \le f(\mathbf{x}_k) + \alpha_k \beta \nabla f(\mathbf{x}_k) \mathbf{p}_k$ is satisfied for all $\alpha_k \in [0, \omega_k]$ where $\omega_k = \frac{2(\beta - 1)\nabla f(\boldsymbol{x}_k)\boldsymbol{p}_k}{\gamma \|\boldsymbol{x}_k\|^2}$ Assumption (Regularity assumption) We assume $f \in C^1(\mathbb{R}^n)$ with Lipschitz continuous gradient, i.e. there exists $\gamma > 0$ such that $\|\nabla f(\boldsymbol{x}) - \nabla f(\boldsymbol{y})\| \le \gamma \|\boldsymbol{x} - \boldsymbol{y}\|, \quad \forall \boldsymbol{x}, \boldsymbol{y} \in \mathbb{R}^{n}$ Finite termination of Armiio line-search Corollary (Finite termination of Armijo linesearch)

Suppose that f(x) satisfy the standard assumptions and $\beta \in (0, 1)$ and that p_{i} is a descent direction at x_{i} . Then the step-size generated by then backtracking-Armiio line-search terminates with

 $\alpha_k \ge \min \{\alpha_{init}, \tau \omega_k\}, \quad \omega_k = 2(\beta - 1)\nabla f(\mathbf{x}_k)\mathbf{p}_k/(\gamma ||\mathbf{p}_k||^2)$

Proof.

121 121 2 040

23 / 5

Line-search will terminate as soon as $\alpha^{(\ell)} \leq \omega_{\ell}$:

- May be that α_{init} satisfies the Armito condition $\Rightarrow \alpha_t = \alpha_{init}$.
- Otherwise in the last line-search iteration we have

$$\alpha^{(\ell-1)} > \omega_k$$
, $\alpha_k = \alpha^{(\ell)} = \tau \alpha^{(\ell-1)} > \tau \omega_k$.

Combining these 2 cases gives the required result.

Backtracking Armijo line-search

Backtracking-Armijo line-search

- The previous analysis permit to say that Backtracking-Armijo line-search ends in a finite number of steps.
- The line-search produce a step length not too long due to the condition

 $f(\mathbf{x}_k + \alpha_k \mathbf{p}_k) \le f(\mathbf{x}_k) + \alpha_k \beta \nabla f(\mathbf{x}_k) \mathbf{p}_k$

- The line-search produce a step length not too short due to the finite termination theorem.
- Armijo line-search can be improved by adding some further requirements on the step length acceptance criteria.

Global convergence

Backtracking Armiio line-search

Theorem (Global convergence)

Suppose that f(x) satisfy the standard assumptions, then, for the iterates generated by the Generic minimization algorithm with backtracking Armijo line-search either:

- O ∇f(x_k)^T = 0 for some k ≥ 0;
- \bigcirc or $\lim_{k\to\infty} f(x_k) = -\infty$;
- or $\lim_{k\to\infty} |\nabla f(\boldsymbol{x}_k)\boldsymbol{p}_k| \min \left\{1, \|\boldsymbol{p}_k\|^{-1}\right\} = 0.$

Remark

If the theorem, point 1 means that we found a stationary point in a finite number of steps. Point 2 means that function $f(\mathbf{x})$ is unbounded below, so that a minimum does not exists. Point 3 alone do not imply convergence, but $|\nabla V(t\mathbf{x}_k)| = nd p_k do not become orthogonal and <math display="inline">\|p_k\| \not \neq 1$ of then $\|\nabla V(t\mathbf{x}_k)\| = 0$.

Unconstrained minimization Backtracking Armijo line-search

Backtracking Armijo line-sear

Global convergence of backtracking Armijo line-search

D1 (A) (2) (2) (2) 2 000

Proof.

Assume points 1 and 2 are not satisfied, then we prove point 3. Consider

$$f(\boldsymbol{x}_{k+1}) \le f(\boldsymbol{x}_k) + \alpha_k \beta \nabla f(\boldsymbol{x}_k) \boldsymbol{p}_k \le f(\boldsymbol{x}_0) + \sum_{j=0}^k \alpha_j \beta \nabla f(\boldsymbol{x}_j) \boldsymbol{p}_j$$

by the fact that p_k is a descent direction we have that the series:

$$\sum_{j=0}^{\infty} \alpha_j |\nabla f(\boldsymbol{x}_j) \boldsymbol{p}_j| \le \beta^{-1} \lim_{k \to \infty} [f(\boldsymbol{x}_0) - f(\boldsymbol{x}_{k+1})] < \infty$$

and then

$$\lim_{j \to \infty} \alpha_j |\nabla f(\boldsymbol{x}_j) \boldsymbol{p}_j| = 0$$

Proof.

Recall that

$$\alpha_k \ge \min \{\alpha_{init}, \tau \omega_k\}, \quad \omega_k = 2(\beta - 1)\nabla f(\boldsymbol{x}_k)\boldsymbol{p}_k/(\gamma \|\boldsymbol{p}_k\|^2)$$

and consider the two index set:

$$\mathcal{K}_1 = \{k \mid \alpha_k = \alpha_{init}\}, \quad \mathcal{K}_2 = \{k \mid \alpha_k < \alpha_{init}\},\$$

Obviously $N = \mathcal{K}_1 \cup \mathcal{K}_2$ and from $\lim_{k\to\infty} \alpha_k |\nabla f(\boldsymbol{x}_k)\boldsymbol{p}_k| = 0$ we have

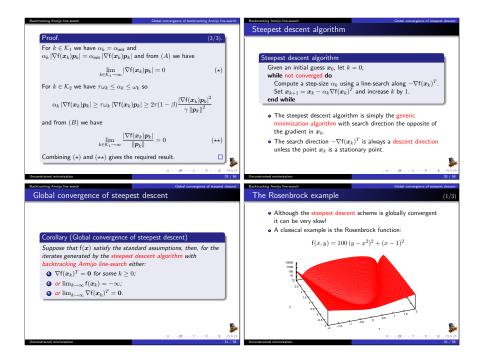
$$\lim_{k \in \mathcal{K}_1 \to \infty} \alpha_k |\nabla f(\mathbf{x}_k)\mathbf{p}_k| = 0, \quad (A)$$

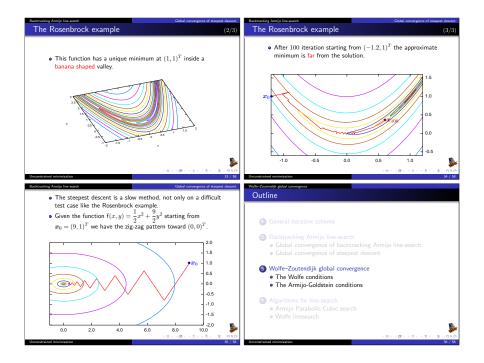
Global convergence of backtracking Armijo line-search

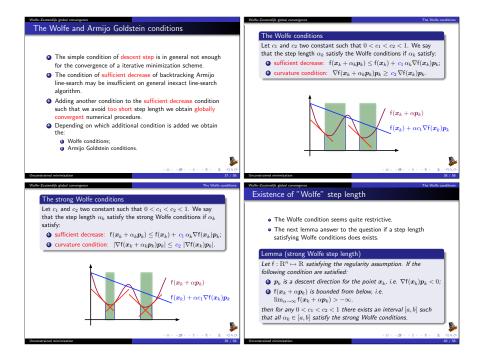
$$\lim_{k \in \mathcal{K}_2 \to \infty} \alpha_k |\nabla f(\boldsymbol{x}_k)\boldsymbol{p}_k| = 0, \qquad (1)$$

27 / 58 Uncomit

nconstrained minimizatio







fe-Zoutendiik global convergence

011001121121

41 / 58 The Wolfe conditions

The Wolfe condition

Proof.

Define $\ell(\alpha) = f(\mathbf{x}_k) + \alpha c_1 \nabla f(\mathbf{x}_k) \mathbf{p}_k$ and $g(\alpha) = f(\mathbf{x}_k + \alpha \mathbf{p}_k)$. From $\lim_{\alpha \to \infty} \ell(\alpha) = -\infty$ and from condition 1 it follows that there exists $\alpha_+ > 0$ such that

 $\ell(\alpha_{+}) = q(\alpha_{+})$ and $\ell(\alpha) > q(\alpha), \quad \forall \alpha \in (0, \alpha_{+})$

so that all step length $\alpha \in (0, \alpha_*)$ satisfy strong Wolfe condition 1. Because $\ell(0) = g(0)$ form Cauchy-Rolle theorem there exists $\alpha_{++} \in (0, \alpha_{+})$ such that

$$g'(\alpha_{\star\star}) = \ell'(\alpha_{\star\star}) = =$$

$$0 > \nabla f(\mathbf{x}_k + \alpha_{\star\star}\mathbf{p}_k)\mathbf{p}_k = c_1 \nabla f(\mathbf{x}_k)\mathbf{p}_k > c_2 \nabla f(\mathbf{x}_k)\mathbf{p}_k$$

by continuity we find an interval around α_{**} with step lengths satisfying strong Wolfe conditions.

Proof.

Using the second condition of Wolfe

$$\nabla f(\boldsymbol{x}_k + \alpha_k \boldsymbol{p}_k) \boldsymbol{p}_k \ge c_2 \nabla f(\boldsymbol{x}_k) \boldsymbol{p}_k$$

$$(\nabla f(\mathbf{x}_k + \alpha_k \mathbf{p}_k) - \nabla f(\mathbf{x}_k))\mathbf{p}_k \ge (c_2 - 1)\nabla f(\mathbf{x}_k)\mathbf{p}_k$$

by using Lipschitz regularity

$$\|\nabla f(\mathbf{x}_k + \alpha_k \mathbf{p}_k) - \nabla f(\mathbf{x}_k) \mathbf{p}_k\| \le \gamma \|\mathbf{x}_{k+1} - \mathbf{x}_k\| \|\mathbf{p}_k\|$$

= $\alpha_k \gamma \|\mathbf{p}_k\|^2$

and using both inequality we obtain the estimate for α_k :

$$\alpha_k \ge \frac{c_2 - 1}{\gamma \|\boldsymbol{p}_k\|^2} \nabla f(\boldsymbol{x}_k) \boldsymbol{p}$$

43 / 5

Let $\{x_k\}, k = 0, 1, ..., \infty$ generated by a generic minimization algorithm where line-search satisfy Wolfe conditions, then $\sum_{k=1}^{\infty} (\cos \theta_k)^2 \|\nabla f(\boldsymbol{x}_k)^T\|^2 < +\infty$

Let $f : \mathbb{R}^n \mapsto \mathbb{R}$ satisfying the regularity assumption and bounded

 $\inf_{x \in \mathbb{R}^n} f(x) > -\infty$

where

Wolfe-Zoutendijk global convergence

from below i.e.

The Zoutendiik condition

Theorem (Zoutendijk)

$$\cos \theta_k = \frac{-\nabla f(\boldsymbol{x}_k)\boldsymbol{p}_k}{\|\nabla f(\boldsymbol{x}_k)^T\|} \|\boldsymbol{p}_k\|$$

Wolfe-Zoutendijk global convergence

Proof.

Using the first condition of Wolfe and estimate of α_k

$$egin{aligned} & (\mathbf{x}_k) + lpha_k c_1
abla \mathbf{f}(oldsymbol{x}_k) & = \mathbf{f}(oldsymbol{x}_k) + lpha_k c_1 (1 - c_2) \ & (\nabla \mathbf{f}(oldsymbol{x}_k) oldsymbol{p}_k) & = \mathbf{f}(oldsymbol{x}_k) - rac{c_1 (1 - c_2)}{\gamma \left\|oldsymbol{p}_k
ight\|^2} ig(
abla \mathbf{f}(oldsymbol{x}_k) & = \mathbf{f}(oldsymbol{x}_k) + rac{c_1 (1 - c_2)}{\gamma \left\|oldsymbol{p}_k
ight\|^2} ig(
abla \mathbf{f}(oldsymbol{x}_k) & = \mathbf{f}(oldsymbol{x}_k) + rac{c_1 (1 - c_2)}{\gamma \left\|oldsymbol{p}_k
ight\|^2} ig(
abla \mathbf{f}(oldsymbol{x}_k) & = \mathbf{f}(oldsymbol{x}_k) + \mathbf{f}(olds$$

setting $A = c_1(1 - c_2)/\gamma$ and using the definition of $\cos \theta_k$

$$(\boldsymbol{x}_{k+1}) = f(\boldsymbol{x}_k + \alpha_k \boldsymbol{p}_k) \le f(\boldsymbol{x}_k) - A(\cos \theta_k)^2 \|\nabla f(\boldsymbol{x}_k)^T\|^2$$

and by induction

 $f(x_k)$

$$f(\boldsymbol{x}_{k+1}) \leq f(\boldsymbol{x}_1) - A \sum_{j=1}^{k} (\cos \theta_j)^2 \|\nabla f(\boldsymbol{x}_j)^T\|^2$$

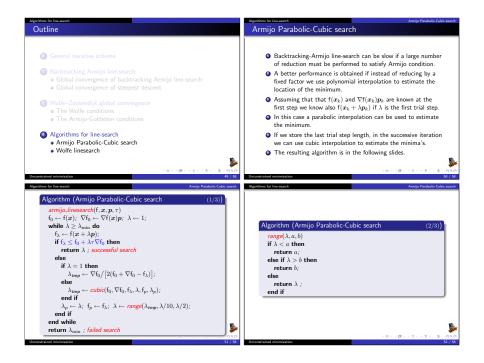
101 101 121 121 21 000

Wolfe-Zoutendijk global convergence

The Wolfe conditions

Wolfe-Zoutendijk global convergence

Corollary (Zoutendijk condition) Proof The function f(x) is bounded from below. i.e. Let $f : \mathbb{R}^n \mapsto \mathbb{R}$ satisfying the regularity assumption and bounded from below. Let $\{x_k\}, k = 0, 1, \dots, \infty$ generated by a generic $\inf_{x \to \infty} f(x) > -\infty$ minimization algorithm where line-search satisfy Wolfe conditions, then so that $\cos \theta_k \|\nabla f(\boldsymbol{x}_k)^T\| \to 0$ where $\cos \theta_k = \frac{-\nabla f(\boldsymbol{x}_k)\boldsymbol{p}_k}{\|\nabla f(\boldsymbol{x}_k)^T\| \|\boldsymbol{p}_k\|}$ $A\sum_{j=1}^{k} (\cos \theta_j)^2 \left\| \nabla \mathsf{f}(\boldsymbol{x}_j)^T \right\|^2 \le \mathsf{f}(\boldsymbol{x}_1) - \mathsf{f}(\boldsymbol{x}_{k+1})$ Remark and If $\cos \theta_k \ge \delta \ge 0$ for all k from the Zoutendijk condition we have: $A\sum_{i=1}^{\infty} (\cos \theta_j)^2 \left\| \nabla \mathsf{f}(\boldsymbol{x}_j)^T \right\|^2 \leq \mathsf{f}(\boldsymbol{x}_1) - \lim_{k \to \infty} \mathsf{f}(\boldsymbol{x}_{k+1}) < +\infty$ $\|\nabla f(\mathbf{x}_k)^T\| \rightarrow 0$ i.e. the generic minimization algorithm where line-search satisfy Wolfe conditions converge to a stationary point. 0.00 5 15 15 15 000 0.1.001.021.021 The Armijo-Goldstein condition Wolfe-Zoutendijk global convergence The Armijo-Goldstein conditions The Armijo-Goldstein conditions Let c_1 and c_2 two constant such that $0 < c_1 < c_2 < 1$. We say Armijo-Goldstein conditions has very similar theoretical that the step length α_k satisfy the Wolfe conditions if α_k satisfy: properties like the Wolfe conditions. $(\mathbf{x}_{k} + \alpha_{k} \mathbf{p}_{k}) \leq \mathbf{f}(\mathbf{x}_{k}) + \mathbf{c}_{1} \alpha_{k} \nabla \mathbf{f}(\mathbf{x}_{k}) \mathbf{p}_{k};$ Global convergence theorems can be established. $(\mathbf{x}_{k} + \alpha_{k} \mathbf{p}_{k}) \geq f(\mathbf{x}_{k}) + \mathbf{o}_{k} \alpha_{k} \nabla f(\mathbf{x}_{k}) \mathbf{p}_{k};$ The weakness of Armito-Goldstein conditions respect to Wolfe conditions is that the former can exclude local minima's from the step length as you can see in the figure below. $f(\boldsymbol{x}_k) + \alpha c_1 \nabla f(\boldsymbol{x}_k) \boldsymbol{p}_k$ $\int \mathbf{f}(\boldsymbol{x}_k) + \alpha c_1 \nabla \mathbf{f}(\boldsymbol{x}_k) \boldsymbol{p}_k \left| \begin{array}{c} \mathbf{f}(\boldsymbol{x}_k) + \alpha p_k \end{array} \right|$ $f(\boldsymbol{x}_k + \alpha \boldsymbol{p}_k)$ $f(\boldsymbol{x}_k) + \alpha c_2 \nabla f(\boldsymbol{x}_k)$ $f(\boldsymbol{x}_k) + \alpha c_2 \nabla f(\boldsymbol{x}_k) \boldsymbol{p}_k$ (A) (2) (3) 2 000



rithm (Armijo Parabolic-Cubic search (3/3)) $bic(f_0, \nabla f_0, f_\lambda, \lambda, f_p, \lambda_p)$ <i>aluate:</i> $\binom{a}{b} = \frac{1}{\lambda^2 \lambda_p^2 (\lambda - \lambda_p)} \left(\frac{\lambda_p^2}{-\lambda_p^3}, \lambda^3\right) \left(\frac{f_\lambda - f_0 - \lambda \nabla f_0}{f_p - f_0 - \lambda_p \nabla f_0}\right)$ a = 0 then $return - \nabla f_0/(2b)$; <i>cubic is a quadratic</i> $d - b^2 - 3a \nabla f_0$; <i>discriminant</i> $return (-b + \sqrt{d})/(3a)$; <i>legitimate cubic</i> dif	n is found. /olfe search t s satisfied. rged until it
$ \begin{array}{l} \text{valuate:} \\ \begin{pmatrix} a_b \\ b \end{pmatrix} = \frac{1}{\lambda^2 \lambda_p^2 (\lambda - \lambda_p)} \begin{pmatrix} \lambda_p^2 & -\lambda^2 \\ -\lambda_p^2 & \lambda^3 \end{pmatrix} \begin{pmatrix} f_\lambda - f_0 - \lambda \nabla f_0 \\ f_p - f_0 - \lambda_p \nabla f_0 \end{pmatrix} \\ \text{sect. until a point satisfying the first condition \\ \text{sect. until a point satisfying the first condition \\ \text{sect. until a point satisfying the first condition \\ \text{set. b^2 - 3a} \nabla f_0; \\ \text{det } b^2 - 3a \nabla f_0; \\ \text{return } (-b + \sqrt{d})/(3a); \\ \end{array} $	n is found. /olfe search t s satisfied. rged until it
$ \begin{array}{l} \text{valuate:} \\ \begin{pmatrix} a_b \\ b \end{pmatrix} = \frac{1}{\lambda^2 \lambda_p^2 (\lambda - \lambda_p)} \begin{pmatrix} \lambda_p^2 & -\lambda^2 \\ -\lambda_p^2 & \lambda^3 \end{pmatrix} \begin{pmatrix} f_\lambda - f_0 - \lambda \nabla f_0 \\ f_p - f_0 - \lambda_p \nabla f_0 \end{pmatrix} \\ \text{sect. until a point satisfying the first condition \\ \text{sect. until a point satisfying the first condition \\ \text{sect. until a point satisfying the first condition \\ \text{set. b^2 - 3a} \nabla f_0; \\ \text{det } b^2 - 3a \nabla f_0; \\ \text{return } (-b + \sqrt{d})/(3a); \\ \end{array} $	n is found. /olfe search t s satisfied. rged until it
$ \begin{pmatrix} a \\ b \end{pmatrix} = \frac{1}{\lambda^2 \lambda_p^2 (\lambda - \lambda_p)} \begin{pmatrix} \lambda_p^2 & -\lambda^2 \end{pmatrix} \begin{pmatrix} f_\lambda - f_0 - \lambda \nabla f_0 \\ -\lambda_p^3 & \lambda^3 \end{pmatrix} \begin{pmatrix} f_\lambda - f_0 - \lambda \nabla f_0 \\ f_p - f_0 - \lambda_p \nabla f_0 \end{pmatrix} $ search, until a point satisfying the first condition $ a = 0 \text{ then} $ return $-\nabla f_0/(2b);$ cubic is a quadratic set $ d - b^2 - 3a \nabla f_0;$ the set of the set	n is found. /olfe search t s satisfied. rged until it
$ \begin{pmatrix} a \\ b \end{pmatrix} = \frac{1}{\lambda^2 \lambda_p^2 (\lambda - \lambda_p)} \begin{pmatrix} -\lambda_p^3 & \lambda^3 \end{pmatrix} \begin{pmatrix} \lambda & a \\ f_p - f_0 - \lambda_p \nabla f_0 \end{pmatrix} $ <i>a</i> = 0 then return $-\nabla f_0/(2b)$; <i>cubic is a quadratic</i> se <i>d</i> $-b^2 - 3a \nabla f_0$; <i>d</i> $-b^2 - 3a \nabla f_0$; <i>legitimate cubic</i> <i>d</i> $-b^2 - 3a \nabla f_0$; <i>d</i> $-b^2 - 3a \nabla f_0$; <i>legitimate cubic</i> <i>d</i> $-b^2 - 3a \nabla f_0$; <i>d</i> $-b^2 - 3a \nabla f_0$; <i>legitimate cubic</i> <i>d</i> $-b^2 - 3a \nabla f_0$; <i>l</i> $-b^2 - 3a \nabla f_0$; <i>d</i> $-b^2 -$	/olfe search t s satisfied. ged until it
$a = 0$ then to refine the search until the second condition is return $-\nabla f_0/(2b)$; cubic is a quadratic se $d \leftarrow b^2 - 3a \nabla f_0$; discriminant $d \leftarrow b^2 - 3a \nabla f_0$; legitimate cubic	satisfied. ged until it
$a = 0$ then • If the step estimated is too short then is is enlar contains a minimum. return $-\nabla f_0/(2b)$; cubic is a quadratic step estimated is too short then is is enlar contains a minimum. se $d \leftarrow b^2 - 3a \nabla f_0$; discriminant condition is satisfied. return $(-b + \sqrt{d})/(3a)$; legitimate cubic ondition is satisfied.	ged until it
return $(-b + \sqrt{d})/(3a);$ cubic is a quadratic stream cubic se contains a minimum. $d - b^2 - 3a \nabla f_0;$ discriminant return $(-b + \sqrt{d})/(3a);$ legitimate cubic	- -
se $d \leftarrow b^2 - 3a \nabla f_0$: discriminant return $(-b + \sqrt{d})/(3a)$; legitimate cubic legitimate cubic legitimate cubic legitimate cubic	til the secor
return $(-b + \sqrt{d})/(3a)$; legitimate cubic condition is satisfied.	in the secor
return $(-b + \sqrt{a})/(3a);$ regulate cubic	
rithm (Wolfe linesearch (1/3)) Algorithm (Wolfe linesearch <u>olfe_linesearch(f, x, p, c_1, c_2)</u> ZOOM;	(2/3
$\leftarrow \mathbf{f}(\boldsymbol{x}); \ \nabla \mathbf{f}_0 \leftarrow \nabla \mathbf{f}(\boldsymbol{x}) \boldsymbol{p}; \ \lambda \leftarrow 1; \qquad \nabla \mathbf{f}_\lambda \leftarrow \nabla \mathbf{f}(\boldsymbol{x} + \lambda \boldsymbol{p}) \boldsymbol{p};$	
hile $\lambda \ge \lambda_{\min}$ do if $\nabla f_{\lambda} \ge c_2 \nabla f_0$ then return λ ; four	d Wolfe poir
$f_{\lambda} \leftarrow f(x + \lambda p);$ if $\lambda = 1$ then	
$ \begin{aligned} \mathbf{f}_{\lambda} \leftarrow \mathbf{f}(\mathbf{x} + \lambda \mathbf{p}); \\ \text{if } f_{\lambda} \leq \mathbf{f}_0 + \lambda c_1 \nabla f_0 \text{ then} \end{aligned} \qquad $	num
$ \begin{array}{c} \mathbf{f}_{\lambda} \leftarrow \mathbf{f}(x+\lambda p); \\ \mathbf{i} \mathbf{f}_{\lambda} \leq \mathbf{f}_{0} + \lambda c_{1} \nabla \mathbf{f}_{0} \text{ then} \\ \mathbf{g} \text{ to } ZOOM; found a \lambda satisfying condition 1 \\ \end{array} \right. \qquad $	
$ \begin{aligned} &f_{\lambda} \leftarrow f(x+\lambda p); \\ &\text{if } \lambda \leq 5(p+\lambda c_1 \nabla f_0 \text{ then} \\ &\text{go to } ZOOM; \text{ found } a \ \lambda \text{ satisfying condition } 1 \\ &\text{else} \end{aligned} \qquad $	num save valu
$ \begin{aligned} &f_{\lambda} \leftarrow f(x+\lambda p); \\ &\text{if } \lambda \leq 5(p+\lambda c_1 \nabla f_0 \text{ then} \\ &\text{go to } ZOOM; \text{ found } a \ \lambda \text{ satisfying condition } 1 \\ &\text{else} \end{aligned} \qquad $	
$ \begin{array}{llllllllllllllllllllllllllllllllllll$	
$ \begin{split} & f_\lambda \leftarrow f(x+\lambda p); \\ & \text{if } \lambda \leq f_0 + \lambda c_1 \nabla f_0 \text{ then} \\ & \text{go to } ZOOM; \text{ found } a \lambda \text{ satisfying condition } 1 \\ & \text{else} \\ & \text{if } \lambda = 1 \text{ then} \\ & \lambda_{anp} \leftarrow \nabla f_0 / [2(f_0 + \nabla f_0 - f_\lambda)]; \\ & \text{else} \\ & \text{else} \\ & \lambda_{anp} \leftarrow \nabla f_0 / [2(f_0 - \nabla f_0 - f_\lambda)]; \\ & \text{else} \\ & \lambda_{anp} \leftarrow \text{cubic}(f_0, \nabla f_0, f_\lambda, \lambda, f_p, \lambda_p); \\ \end{split} $	save valu
$\begin{split} &f_{\lambda} \leftarrow \widehat{f}(x + \lambda p); \\ &\text{if } \lambda = 1 \text{ then } \\ &\text{go to } ZOOM; \text{ found a } \lambda \text{ satisfying condition } 1 \\ &\text{else } \\ &\text{if } \lambda = 1 \text{ then } \\ &\text{forward search of an interval bracketing a minim } \\ &\text{while } \lambda \leq x_{hmax} \text{ do } \\ &\{\lambda_p, f_p\} \leftarrow \{\lambda, f_\lambda\}; \\ &\lambda_{cmp} \leftarrow \nabla f_0/[2(f_0 + \nabla f_0 - f_\lambda)]; \\ &\text{else } \\ &\lambda_{tmp} \leftarrow cubic(f_0, \nabla f_0, f_\lambda, \lambda, f_p, \lambda_p); \\ &\text{end if } \\ &\text{otherwise } \\ &\nabla f_0 \leftarrow \nabla f(x + \lambda p)p; \end{split}$	save valu swap valu
$\begin{split} & f_{\lambda} \leftarrow f(x + \lambda p); \\ & \text{if } \lambda \leq f_0 + \lambda_c \nabla f_0 \text{ then} \\ & \text{go to ZOOM}; \text{ found a } \lambda \text{ satisfying condition 1} \\ & \text{else} \\ & \text{go to ZOOM}; \text{ found a } \lambda \text{ satisfying condition 1} \\ & \text{else} \\ & \lambda_{tmp} \leftarrow \nabla f_0 / [2(f_0 + \nabla f_0 - f_\lambda)]; \\ & \text{else} \\ & \lambda_{tmp} \leftarrow \text{cubic}(f_0, \nabla f_0, f_\lambda, \lambda, f_p, \lambda_p); \\ & \text{end if} \\ & \text{Ap} \leftarrow \lambda; f_p - f_\lambda; \ \lambda - \text{range}(\lambda_{tmp}, \lambda/10, \lambda/2); \end{split} \qquad $	save valu
$\begin{split} &f_{\lambda} \leftarrow \widehat{f}(x + \lambda p); \\ &\text{if } \lambda = 1 \text{ then } \\ &\text{go to } ZOOM; \text{ found a } \lambda \text{ satisfying condition } 1 \\ &\text{else } \\ &\text{if } \lambda = 1 \text{ then } \\ &\text{forward search of an interval bracketing a minim } \\ &\text{while } \lambda \leq x_{hmax} \text{ do } \\ &\{\lambda_p, f_p\} \leftarrow \{\lambda, f_\lambda\}; \\ &\lambda_{cmp} \leftarrow \nabla f_0/[2(f_0 + \nabla f_0 - f_\lambda)]; \\ &\text{else } \\ &\lambda_{tmp} \leftarrow cubic(f_0, \nabla f_0, f_\lambda, \lambda, f_p, \lambda_p); \\ &\text{end if } \\ &\text{otherwise } \\ &\nabla f_0 \leftarrow \nabla f(x + \lambda p)p; \end{split}$	save valu swap valu

