La Trasformata di Fourier

(Metodi Matematici e Calcolo per Ingegneria)

Enrico Bertolazzi

DIMS - Università di Trento

anno accademico 2007/2008

200

La Trasformata di Fourier

Outline

- La trasformata di Fourier
- Proprietà della trasformata di Fourier
 - Trasformata dell'impulso rettangolare
 - Trasformata del pettine di Dirac
 - Prodotto di convoluzione
 - Trasformata della distribuzione normale
 - Trasformata della funzione segno
- Tabella delle trasformate

Jean Baptiste Joseph Fourier (1768-1830)

http://www-groups.dcs.st-and.ac.uk/~history/Biographies/Fourier.htm

La Trasformata di Fourier

Costruzione della trasformata di Fourier

(1/4)

• La serie di Fourier per una funzione periodica g(t) di periodo 2ℓ é la sequente

$$S_{\infty}(t) = \sum_{l=1}^{\infty} c_k e^{i\frac{k\pi t}{l}}$$
 $c_k = \frac{1}{2\ell} \int_{-\ell}^{\ell} g(t)e^{-i\frac{k\pi t}{\ell}} dt$,

- Possiamo immaginare di mandare il semi-periodo $\ell \to \infty$ per trattare funzioni generali.
- Il problema è che in questo caso i coefficienti c_k non sono calcolabili.

• Tenendo fisso is semiperiodo ℓ , se denotiamo con $\lambda = \frac{k\pi}{\ell}$ allora possiamo scrivere:

$$S_\infty(t) = \sum_{\lambda=0,\pm\frac{\pi}{2},\pm\frac{2\pi}{2}} c(\lambda) e^{i\lambda t} \qquad c(\lambda) = \frac{1}{2\ell} \int_{-\ell}^\ell g(t) e^{-i\lambda t} \, \mathrm{d}t,$$

 moltiplicando e dividendo la sommatoria precedente per possiamo interpretare la sommatoria come una approssimazione numerica di un integrale:

$$S_{\infty}(t) = \frac{\pi}{\ell} \sum_{\lambda=0,\pm\frac{\pi}{2},\pm\frac{2\pi}{\ell}} \frac{\ell}{\pi} c(\lambda) e^{i\lambda t} \approx \int_{-\infty}^{\infty} \frac{\ell}{\pi} c(\lambda) e^{i\lambda t} d\lambda$$

La Trasformata di Fourie

Costruzione della trasformata di Fourier

(4/4)

Viste le considerazioni precedenti si può definire per una funzione f(t)

Trasformata di Fourier

$$\mathcal{F}\{f(t)\}(\lambda) = \tilde{f}(\lambda) = \frac{1}{2\pi} \int_{-\infty}^{\infty} f(t)e^{-i\lambda t} dt,$$

Anti Trasformata di Fourier

$$\mathcal{F}^{-1}\left\{f(\lambda)\right\}(t)=f(t)=\int_{-\infty}^{\infty}\tilde{f}(\lambda)e^{i\lambda t}d\lambda$$

in generale bisogna stabilire sotto quali condizioni le formule determinate in modo euristico sono realmente valide

Chiamando ḡ(λ) la sequente funzione

$$\tilde{g}(\lambda) = \frac{\ell}{\pi}c(\lambda) = \frac{1}{2\pi} \int_{-\epsilon}^{\ell} g(t)e^{-i\lambda t} dt,$$

allora possiamo scrivere

$$S_{\infty}(t) \approx \int_{-\infty}^{\infty} \bar{g}(\lambda)e^{i\lambda t}d\lambda$$

ullet A questo punto possiamo mandare il semi-periodo $\ell
ightarrow \infty$ per trattare funzioni generali, e se la sommatoria converge all'integrale otteniamo

$$S_{\infty}(t) = \int_{-\infty}^{\infty} \bar{g}(\lambda)e^{i\lambda t}d\lambda$$
 $\bar{g}(\lambda) = \frac{1}{2\pi}\int_{-\infty}^{\infty} g(t)e^{-i\lambda t}dt$

La Trasformata di Fourie

Vari modi di scrivere la trasformata di Fourier

A seconda degli autori e delle preferenze la trasformata di Fourier (con la sua antitrasformata) si può scrivere in modi diversi

Modo 1

$$\tilde{f}(\lambda) = \frac{1}{c_1} \int_{-\infty}^{\infty} f(t) e^{-i\lambda t} \, \mathrm{d}t, \qquad f(t) = \frac{1}{c_2} \int_{-\infty}^{\infty} \tilde{f}(\lambda) e^{i\lambda t} d\lambda$$

dove $c_1 c_2 = 2\pi$. Ad esempio

$$c_1 = 1$$
, $c_2 = 2\pi$

$$c_1 = 2\pi$$
, $c_2 = 1$

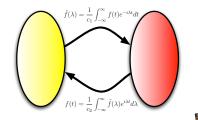
$$c_1 = \sqrt{2\pi}, \quad c_2 = \sqrt{2\pi}$$

Mode 2

$$\bar{f}(\omega) = \int^{\infty} f(t) e^{-i2\pi\omega t} \, \mathrm{d}t, \qquad f(t) = \int^{\infty} \bar{f}(\omega) e^{i2\pi\omega t} d\omega$$

La Trasformata di Fourier

Alcuni teoremi sulla trasformabilità



La Trasformata di Fourie

Alcuni teoremi sulla trasformabilità

Questo teorema è stato dimostrato nel caso di funzioni a quadrato integrabile per un intervallo finito.

Teorema (Riemann-Lebesque)

Sia $f \in L_1(\mathbb{R})$ (cioè assolutamente integrabile) allora vale

$$\lim_{|\lambda| \to \infty} \int_{-\infty}^{\infty} f(t)e^{-i\lambda t} dt = \lim_{|\lambda| \to \infty} \tilde{f}(\lambda) = 0$$

Se inoltre f(t) è derivabile k volte con $f^{(j)} \in L_1(\mathbb{R})$ per $i = 0, 1, \dots, k$ allora vale

$$\lim_{|\lambda| \to \infty} \tilde{f}(\lambda) \lambda^k = 0$$

come consequenza se f(t) è assolutamente integrabile la sua trasformata $\tilde{f}(\lambda)$ è infinitesima per $\lambda \to \pm \infty$.

Alcuni teoremi sulla trasformabilità

Teorema (fondamentale sulla trasformata di Fourier)

Sia f(t) regolare a tratti e assolutamente integrabile (cioè $\int_{-\infty}^{\infty} |f(t)| dt < +\infty$) allora la trasformata di Fourier

 $\tilde{f}(\lambda) = \frac{1}{\pi} \int_{-\infty}^{\infty} f(t)e^{-i\lambda t} dt$, è definita per ogni λ . Inoltre

f(λ) è una funzione continua:

 $\lim_{\lambda \to +\infty} \tilde{f}(\lambda) = 0$;

nei punti di discontinuità.

 $f^{\star}(t) = \frac{1}{C_{0}} \int_{-\infty}^{\infty} \tilde{f}(\lambda)e^{i\lambda t}d\lambda.$

dove $f^*(t) = f(t)$ se f(t) è continua in t altrimenti

$$f^{\star}(t) = \lim_{\varepsilon \to 0} \frac{f(t + \varepsilon) + f(t - \varepsilon)}{2}$$

Linearità

La trasformata di Fourier come la serie di Fourier è lineare

$$\begin{split} \mathcal{F}\left[\alpha f(t) + \beta g(t)\right](\lambda) &= \frac{1}{c_1} \int_{-\infty}^{\infty} (\alpha f(t) + \beta g(t)) e^{-i\lambda t} \, \mathrm{d}t, \\ &= \frac{\alpha}{c_1} \int_{-\infty}^{\infty} f(t) e^{-i\lambda t} \, \mathrm{d}t + \frac{\beta}{c_1} \int_{-\infty}^{\infty} g(t) e^{-i\lambda t} \, \mathrm{d}t, \\ &= \alpha \mathcal{F}\left[f(t)\right](\lambda) + \beta \mathcal{F}\left[g(t)\right](\lambda) \end{split}$$

La Trasformata di Fourie

La Trasformata di Fourier

(2/2)

Traslazione nel tempo

$$\begin{split} \mathcal{F}\{f(t-a)\}(\lambda) &= \frac{1}{c_1} \int_{-\infty}^{\infty} f(t-a) e^{-i\lambda t} \, \mathrm{d}t, \\ &= \frac{1}{c_1} \int_{-\infty}^{\infty} f(z) e^{-i\lambda t_1^* + a} \, \mathrm{d}z, \\ &= \frac{e^{-i\lambda a}}{c_1} \int_{-\infty}^{\infty} f(z) e^{-i\lambda z} \, \mathrm{d}z, \\ &= e^{-i\lambda a} \mathcal{F}\{f(t)\}(\lambda) \end{split}$$

La Trasformata di Fourier

Description della terrata consta di Const

Dilatazione

$$\begin{split} \mathcal{F}\{f(\alpha t)\}(\lambda) &= \frac{1}{c_1} \int_{-\infty}^{\infty} f(\alpha t) e^{-ikt} \, \mathrm{d}t, \\ &= \frac{1}{c_1} \int_{-\infty}^{\infty} f(z) e^{-i\frac{kz}{a}} \, \mathrm{d}z, \\ &= \frac{1}{a} f\left(\frac{\lambda}{a}\right) \end{split}$$

Proprietà della trasformata di Fourier

Traslazione nelle frequenze

$$\begin{split} \mathcal{F}\left\{e^{iat}f(t)\right\}(\lambda) &= \frac{1}{c_1}\int_{-\infty}^{\infty}e^{iat}f(t)e^{-i\lambda t}\,\mathrm{d}t, \\ &= \frac{1}{c_1}\int_{-\infty}^{\infty}f(t)e^{-i(\lambda-a)t}\,\mathrm{d}t, \\ &= \mathcal{F}\left\{f(t)\right\}(\lambda-a) \end{split}$$

La Trasformata di Fourie

181 121 121 2 900

Derivazione nel tempo

Assumendo che $\lim_{t \to \infty} f(t) = 0$

$$\begin{split} \mathcal{F}\{f'(t)|(\lambda) &= \frac{1}{c_1} \int_{-\infty}^{\infty} f'(t)e^{-i\lambda t} \, dt, \\ &= \frac{1}{c_1} \left[f(t)e^{-i\lambda t} \right]_{-\infty}^{\infty} + \frac{i\lambda}{c_1} \int_{-\infty}^{\infty} f(t)e^{-i\lambda t} \, dt, \\ &= (i\lambda) \mathcal{F}(f(t)|(\lambda) \end{split}$$

applicando la formula ripetutamente

$$\mathcal{F}\left\{f^{(n)}(t)\right\}(\lambda) = (i\lambda)^n \mathcal{F}\left\{f(t)\right\}(\lambda)$$

Derivazione nelle frequenze

Assumendo che $\lim_{|t|\to\infty} f(t) = 0$

$$\mathcal{F}\{(-it)f(t)\}(\lambda) = \frac{1}{c_1} \int_{-\infty}^{\infty} (-it)f(t)e^{-i\lambda t} dt,$$

$$= \frac{1}{c_1} \int_{-\infty}^{\infty} f(t) \frac{de^{-i\lambda t}}{d\lambda} dt,$$

$$= \frac{1}{c_1} \frac{d}{d\lambda} \int_{-\infty}^{\infty} f(t)e^{-i\lambda t} dt,$$

$$= \frac{d}{d\lambda} \mathcal{F}\{f(t)\}(\lambda)$$

applicando la formula ripetutamente

$$\mathcal{F}\left\{(-it)^n f(t)\right\}(\lambda) = \frac{\mathrm{d}^n}{\mathrm{d}\lambda^n} \mathcal{F}\left\{f(t)\right\}(\lambda)$$

La Trasformata di Fourie

Trasformata dell'impulso rettangolare

$$\chi_{[-a,a]}(t) = \begin{cases} 1 & \text{se } t \in [-a,a] \\ 0 & \text{altrimenti} \end{cases}$$

$$\begin{split} \mathcal{F}\left[X_{[-a,a]}(t)\right](\lambda) &= \frac{1}{c_1}\int_{-\infty}^{\infty}X_{[-a,a]}(t)e^{-ikt}\,\mathrm{d}t = \frac{1}{c_1}\int_{-a}^{a}e^{-ikt}\,\mathrm{d}t, \\ &= \frac{1}{c_1}\left[\frac{e^{-ikt}}{-i\lambda}\right]_{-a}^{a} = \frac{1}{c_1}\frac{e^{-ia\lambda}-e^{ia\lambda}}{-i\lambda} \\ &= \frac{1}{c_2}\frac{2\sin(a\lambda)}{a} \end{split}$$

. . . 3

La Trasformata di Fourier

Trasformata della constante 1

Trasformata dell'impulso rettangola

(1/4)

la funzione constante f(t) = 1 è il limite dell'impulso rettangolare per $a \to \infty$ cioè

$$\lim \chi_{[-a,a]}(t) = 1, \quad \forall t$$

però il limite

$$\lim_{a \to \infty} \mathcal{F} \left\{ \chi_{[-a,a]}(t) \right\} (\lambda) = \lim_{a \to \infty} \frac{1}{c_1} \frac{2 \sin(a\lambda)}{\lambda}$$

non esiste per nessun λ . Come Fare ?

La Trasformata di Fourie

(2/4)

Trasformata della constante 1

Vediamo allora come si comporta $\mathcal{F}\{\chi_{[-a,a]}(t)\}(\lambda)$ integrato con un'altra funzione $f(\lambda)$ per $a\to\infty$ cioè:

$$\lim_{a\to\infty}\int_{-\infty}^{\infty}\mathcal{F}\left\{\chi_{[-a,a]}(t)\right\}(\lambda)f(\lambda)d\lambda=\frac{1}{c_1}\lim_{a\to\infty}\int_{-\infty}^{\infty}\frac{2\sin(a\lambda)}{\lambda}f(\lambda)d\lambda$$

Se $f(\lambda)$ è regolare a tratti e integrabile allora possiamo scrivere

$$\frac{f(\lambda)}{\lambda} = \frac{f(\lambda) - f(0)}{\lambda} + \frac{f(0)}{\lambda} = g(\lambda) + \frac{f(0)}{\lambda}$$

e quindi decomporre l'integrale nella somma di integrali più semplici

$$\begin{split} &\lim_{a\to\infty}\int_{-\infty}^{\infty}\mathcal{F}\left\{\chi_{[-a,a]}(t)\right\}(\lambda)f(\lambda)d\lambda = \\ &\frac{1}{c_1}\lim_{a\to\infty}\int_{-1}^{1}2\sin(a\lambda)g(\lambda)d\lambda + \frac{1}{c_1}\lim_{a\to\infty}\int_{-1}^{1}\frac{2\sin(a\lambda)}{\lambda}f(0)d\lambda \\ &+ \frac{1}{c_1}\lim_{a\to\infty}\int_{-1}^{\infty}2\sin(a\lambda)\frac{f(\lambda)}{\lambda}d\lambda + \frac{1}{c_1}\lim_{a\to\infty}\int_{-1}^{1}2\sin(a\lambda)\frac{f(\lambda)}{\lambda}d\lambda \end{split}$$

Per il teorema di Riemann-Lebesgue il primo il terzo e il guarto integrale sono nulli, quindi vale

$$\lim_{a\to\infty}\int_{-\infty}^{\infty} \mathcal{F}\left\{\chi_{[-a,a]}(t)\right\}(\lambda)f(\lambda)d\lambda = \frac{f(0)}{c_1}\lim_{a\to\infty}\int_{-1}^{1}\frac{2\sin(a\lambda)}{\lambda}d\lambda$$

Trasformata della constante 1 funzione pari otteniamo:

Proprietà della trasformata di Fourier

Facendo la sostituzione $z = a\lambda$ e osservando che $\sin(x)/x$ è una

 $\lim_{a \to \infty} \int_{-a}^{\infty} \mathcal{F} \{\chi_{[-a,a]}(t)\}(\lambda) f(\lambda) d\lambda = \frac{2f(0)}{c} \lim_{a \to \infty} \int_{-a}^{a} \frac{\sin(z)}{z} dz$ $=\frac{4f(0)}{c}\int_{-\infty}^{\infty}\frac{\sin(z)}{z}dz$

Quest'ultimo integrale non è esprimibile tramite primitive ma usando ad esempio il calcolo con i residui si trova:

$$\int_{0}^{\infty} \frac{\sin(z)}{z} dz = \frac{\pi}{2}$$

mettendo tutto assieme

$$\lim_{a\to\infty}\int_{-\infty}^{\infty}\mathcal{F}\left\{\chi_{\left[-a,a\right]}(t)\right\}(\lambda)f(\lambda)d\lambda=\frac{2\pi}{c_{1}}f(0)$$

La Trasformata di Fourie

Trasformata del pettine di Dirac

1 1 2 1 1 2 1 2 190

consideriamo ora la seguente distribuzione:

$$s(t) = \sum_{-\infty}^{\infty} \delta(t - k)$$

cioè è la "funzione" che fa la seguente cosa

$$\int_{-\infty}^{\infty} f(t)s(t) dt = \sum_{k=-\infty}^{\infty} \int_{-\infty}^{\infty} f(t)\delta(t-k) dt = \sum_{k=-\infty}^{\infty} f(k)$$

se applichiamo formalmente la trasformata di Fourier al pettine e di Dirac otteniamo

$$\tilde{s}(\lambda) = \int_{-\infty}^{\infty} s(t)e^{-i\lambda t} dt = \sum_{k=-\infty}^{\infty} e^{-i\lambda k}$$

ma questa non è una sertie convergente!.

Trasformata del pettine di Dirac

La Trasformata di Fourie

(2/5)

Come nel caso della trasformata della costante vediamo come si comporta questa trasformata integrata con un'altra funzione

$$\int_{-\infty}^{\infty} f(\lambda) \, \bar{s}(\lambda) d\lambda = \lim_{n \to \infty} \frac{1}{c_1} \int_{-\infty}^{\infty} f(\lambda) \sum_{k=-n}^{n} e^{-i\lambda k} d\lambda$$

osserviamo che

$$\begin{split} \sum_{k=-n}^n e^{-i\lambda k} &= 1 + \sum_{k=1}^n (e^{-i\lambda k} + e^{i\lambda k}) \\ &= 1 + 2\sum_{k=1}^n \cos(\lambda k) \end{split}$$

(3/5)

Abbiamo già incontrato questa funzione nello studio della convergenza della serie di Fourier e vale

$$\sum_{k=-n}^{n} e^{-i\lambda k} = 2D_n(\lambda) = \frac{\sin((n+1/2)\lambda)}{\sin(\lambda/2)}$$

poiché

$$\sin(\theta + \pi) = \sin \theta \cos \pi + \cos \theta \sin \pi = -\sin \theta$$

abbiamo

$$D_n(\lambda + 2\pi) = D_n(\lambda)$$

cioè $D_n(\lambda)$ è periodica di periodo 2π .

Trasformata del pettine di Dirac

Sfruttando il teorema di convergenza delle serie di Fourier possiamo scrivere

$$\int_{-\infty}^{\infty} f(\lambda) \, \tilde{s}(\lambda) d\lambda = \lim_{n \to \infty} \frac{2}{c_1} \int_{-\infty}^{\infty} f(\lambda) D_n(\lambda) d\lambda$$

$$= \sum_{m = -\infty}^{\infty} \lim_{n \to \infty} \frac{2\pi}{c_1} \frac{1}{\pi} \int_{(2m-1)\pi}^{(2m+1)\pi} f(\lambda) D_n(\lambda) d\lambda$$

$$= \sum_{m = -\infty}^{\infty} \lim_{n \to \infty} \frac{2\pi}{c_1} \frac{1}{\pi} \int_{-\pi}^{\pi} f(2m\pi + \lambda) D_n(\lambda) d\lambda$$

$$= \frac{2\pi}{c_1} \sum_{m = -\infty}^{\infty} f(2m\pi)$$

La Trasformata di Fourier

asformata del pettine d

Trasformata del pettine di Dirac

rmaa on petine o

(5/5)

Quindi essendo

$$\int_{-\infty}^{\infty} f(\lambda) \, \bar{s}(\lambda) d\lambda = \lim_{n \to \infty} \frac{2}{c_1} \int_{-\infty}^{\infty} f(\lambda) D_n(\lambda) d\lambda = \frac{2\pi}{c_1} \sum_{m=-\infty}^{\infty} f(2m\pi)$$

possiamo scrivere

$$\bar{s}(\lambda) = \frac{2\pi}{c_1} \sum_{m=-\infty}^{\infty} \delta(\lambda - 2m\pi)$$

cioè $\bar{s}(\lambda)$ è ancora un pettine di Dirac (con maglia più larga).

La Trasformata di Fourier

allo di convoluzioni

(1/2)

Definizione

Date due funzioni $f,g\in L^1(\mathbb{R})$ si definisce prodotto di convoluzione $(f\star g)(t)$ la funzione:

Trasformata del prodotto di convoluzione

$$(f \star g)(t) = \int_{-\infty}^{\infty} f(t-z)g(z) dz$$

Teorema

Date due funzioni $f, g \in L^1(\mathbb{R})$ la trasformata del prodotto di convoluzione ($f \star g$)(t) esiste e vale:

$$\mathcal{F}\{(f \star g)(t)\}(\lambda) = c_1\tilde{f}(\lambda)\tilde{g}(\lambda)$$

La Trasformata di Fourier

$$\mathcal{F}\{(f \star g)(t)\}(\lambda) = \frac{1}{c_1} \int_{-\infty}^{\infty} \left(\int_{-\infty}^{\infty} f(t-z)g(z) dz \right) e^{-ikt} dt$$

$$= \int_{-\infty}^{\infty} \left(\frac{1}{c_1} \int_{-\infty}^{\infty} f(t-z)e^{-ikt} dt \right) g(z) dz$$

$$= \frac{c_1}{c_1} \int_{-\infty}^{\infty} f(\lambda)e^{-ikz} g(z) dz$$

$$= c_1 \tilde{f}(\lambda) \frac{1}{c_1} \int_{-\infty}^{\infty} e^{-ikz} g(z) dz$$

$$= c_1 \tilde{f}(\lambda) \frac{1}{c_1} \int_{-\infty}^{\infty} e^{-ikz} g(z) dz$$

$$= c_2 \tilde{f}(\lambda) \frac{1}{c_1} \int_{-\infty}^{\infty} e^{-ikz} g(z) dz$$

Attenzione che nel fare la dimostrazione abbiamo invertito l'ordine di integrazione. Non sempre si può fare (teorema di Fubini) ma in questo caso si.

Trasformata della distribuzione normale

Consideriamo la funzione

$$f(t) = e^{-\alpha t^2}, \quad \alpha > 0$$

e la sua trasformata

$$\bar{f}(t) = \frac{1}{c_1} \int_{-\infty}^{\infty} e^{-\alpha t^2} e^{-i\lambda t} dt$$
$$= \frac{1}{c_1} \int_{-\infty}^{\infty} e^{-\alpha t^2 - i\lambda t} dt$$

completiamo $\frac{\alpha}{2}t^2 + i\lambda t$ ad un quadrato

$$\alpha t^2 + i \lambda t = \left(\sqrt{\alpha} t + \frac{i \lambda}{2 \sqrt{\alpha}} \right)^2 + \frac{\lambda^2}{4 \alpha}$$

La Trasformata di Fourie

a Trasformata di Fourier

Trasformata della distribuzione normale (2/4)

$$\begin{split} \tilde{f}(t) &= \frac{1}{c_1} \int_{-\infty}^{\infty} e^{-\left(\sqrt{\alpha}t + \frac{2t}{2\sqrt{\alpha}}\right)^2 - \frac{k^2}{4\alpha}} \, dt \\ &= \frac{e^{-\frac{k^2}{4\alpha}}}{C_1} \int_{-\infty}^{\infty} e^{-\left(\sqrt{\alpha}t + \frac{2k}{2\sqrt{\alpha}}\right)^2} \, dt \end{split}$$

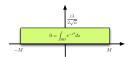
facciamo il cambio di variabile $\sqrt{\alpha}t = z$

$$\tilde{f}(t) = \frac{e^{-\frac{\lambda^2}{4\alpha}}}{2\sqrt{\alpha}} \int_{-\infty}^{\infty} e^{-\left(z + \frac{\lambda \lambda}{2\sqrt{\alpha}}\right)^2} dz$$

vogliamo ora sfruttare il fatto che $\int_{0}^{\infty} e^{-x^2} dx = \sqrt{\pi}$

Trasformata della distribuzione normale

(3/4)



Sfruttando il fatto che e^{-z^2} è analitica intera

$$\int_{-M}^{M} e^{-x^2} dx + \int_{0}^{\frac{1}{2\sqrt{n}}} e^{-(M+ix)^2} dx$$

$$- \int_{-\infty}^{M} e^{-\left(x + \frac{i\lambda}{2\sqrt{n}}\right)^2} dx - \int_{-\frac{1}{2\sqrt{n}}}^{\frac{1}{2\sqrt{n}}} e^{-(M+ix)^2} dx = 0$$

(4/4)

$$\lim_{M \to \infty} \int_{0}^{\frac{\lambda}{2\sqrt{\alpha}}} e^{-(\pm M + ix)^2} dx = 0$$

allora avremo

$$\int_{M}^{M} e^{-x^{2}} dx = \int_{M}^{M} e^{-\left(x + \frac{i\lambda}{2\sqrt{\alpha}}\right)^{2}} dx = \sqrt{\pi}$$

e quindi

$$\tilde{f}(t) = \frac{1}{c_1} \sqrt{\frac{\pi}{\alpha}} e^{-\frac{\hat{x}^2}{4\alpha}}$$

La Trasformata di Fourie

Trasformata dell'esponenziale

(2/2)

Integrando per parti un paio di volte otteniamo
$$\int e^{-at}\cos(\lambda t)\,\mathrm{d}t = \frac{e^{-at}\left(-\alpha\,\cos\left(\lambda\,t\right) + \sin\left(\lambda\,t\right)\lambda\right)}{\alpha^2 + \lambda^2}$$

e auindi

$$\tilde{f}(t) = \frac{1}{c_1} \frac{2\alpha}{\alpha^2 + \lambda^2}$$

Proprietà della trasformata di Fourier

Trasformata dell'esponenziale

Consideriamo la funzione

$$f(t) = e^{-\alpha|t|}$$
, $\alpha > 0$

e la sua trasformata

$$\tilde{f}(t) = \frac{1}{\alpha} \int_{-\infty}^{\infty} e^{-\alpha|t|} e^{-i\lambda t} dt$$

poiché f(t) è pari allora essendo $e^{-i\lambda t} = \cos(\lambda t) - i\sin(\lambda t)$

$$\begin{split} \bar{f}(t) &= \frac{1}{c_1} \int_{-\infty}^{\infty} e^{-\alpha |t|} \cos(\lambda t) \, \mathrm{d}t \\ &= \frac{2}{c_1} \int_{0}^{\infty} e^{-\alpha t} \cos(\lambda t) \, \mathrm{d}t \end{split}$$

La Trasformata di Fourie

Consideriamo la funzione

$$\operatorname{sign}(t) = \begin{cases} -1 & \text{se } x < 0 \\ 0 & \text{se } x = 0 \\ +1 & \text{se } x > 0 \end{cases}$$

poiché è una funzione dispari allora vale

Trasformata della funzione segno

e una funzione dispara autora vale
$$\begin{split} \widetilde{\text{sign}}(t) &= \frac{1}{c_1} \lim_{M \to \infty} \int_{-M}^{M} \text{sign}(t) e^{-i\lambda t} \, \mathrm{d}t \\ &= \frac{2}{c_1} \lim_{M \to \infty} \int_{0}^{M} (-i\sin(\lambda t)) \, \mathrm{d}t \\ &= \frac{2i}{c_1} \lim_{M \to \infty} \left[\frac{\cos(\lambda t)}{\lambda} \right]_{0}^{M} = \frac{2i}{c_1} \lim_{M \to \infty} \frac{\cos(\lambda M) - 1}{\lambda} \end{split}$$

$$cos(\lambda M) = 1$$

integrata con un'altra funzione $f(\lambda)$ per $M \to \infty$ cioè:

$$\lim_{M \to \infty} \int_{-\infty}^{\infty} \frac{\cos(-i\lambda M) - 1}{\lambda} f(\lambda) d\lambda$$

Assumendo $f(\lambda)/\lambda$ regolare a tratti e integrabile possiamo scrivere

$$\lim_{M \to \infty} \int_{-\infty}^{\infty} \frac{\cos(-i\lambda M) - 1}{\lambda} f(\lambda) d\lambda =$$

$$\lim_{M \to \infty} \int_{-\infty}^{\infty} \cos(-i\lambda M) \frac{f(\lambda)}{\lambda} d\lambda - \int_{-\infty}^{\infty} \frac{f(\lambda)}{\lambda} d\lambda$$

Trasformata della funzione segno

per il teorema di Riemann-Lebesque

$$\lim_{M\to\infty}\int_{-\infty}^{\infty}\cos(-i\lambda M)\frac{f(\lambda)}{\lambda}d\lambda=0$$

e guindi

$$\lim_{M \to \infty} \int_{-\infty}^{\infty} \frac{\cos(-i\lambda M) - 1}{\lambda} f(\lambda) d\lambda = - \int_{-\infty}^{\infty} \frac{f(\lambda)}{\lambda} d\lambda$$

mettendo tutto assieme

$$\widetilde{\text{sign}}(t) = -\frac{2i}{c_1 \lambda}$$

La Trasformata di Fourier Tabella delle trasformate

TABELLA DELLE TRASFORMATE (1/4)		
f(t-a)	$e^{-i\lambda a}\tilde{f}(\lambda)$	
$e^{iat}f(t)$	$\tilde{f}(\lambda - a)$	
f(at)	$\frac{1}{\alpha}\tilde{f}\left(\frac{\lambda}{\alpha}\right)$	
f'(t)	$(i\lambda)\tilde{f}(\lambda)$	
(-it)f(t)	$\frac{d\tilde{f}(\lambda)}{d\lambda}$	
$(f \star g)(t)$	$c_1 \tilde{f}(\lambda) \tilde{g}(\lambda)$	

La Trasformata di Fourier Tabella delle trasformate

TABELLA DELLE TRASFORMATE (2/4)	
$\chi_{[-a,a]}(t)$	$\frac{1}{c_1} \frac{2 \sin(a\lambda)}{\lambda}$
1	$\frac{2\pi}{c_1}\delta(\lambda)$
sign(t)	$-\frac{2i}{c_1\lambda}$
$\sum_{k=-\infty}^{\infty} \delta(t-k)$	$\frac{2\pi}{c_1} \sum_{m=-\infty}^{\infty} \delta(\lambda - 2m\pi)$
$e^{-\alpha t^2}$	$\frac{1}{c_1}\sqrt{\frac{\pi}{\alpha}}e^{-\frac{j^2}{4\alpha}}$
$e^{-\alpha t }$	$\frac{1}{c_1} \frac{2\alpha}{\alpha^2 + \lambda^2}$

Tabella delle trasformate

Tabella delle Trasformate (3/4)	
$sin(\alpha t)$	$\pi i \Big(\delta(\lambda + \alpha) - \delta(\lambda - \alpha) \Big)$
$\cos(\alpha t)$	$\pi \Big(\delta(\lambda + \alpha) + \delta(\lambda - \alpha)\Big)$
1 t	$i\pi - \log(-\lambda^2)$
$\frac{i}{\pi t}$	$\operatorname{sign}(\lambda)$
$\chi_{[-a,a]}(t)\sin(\alpha t)$	$i\left(\frac{\sin(a(\lambda+\alpha))}{\lambda+\alpha}-\frac{\sin(a(\lambda-\alpha))}{\lambda-\alpha}\right)$
$\chi_{[-a,a]}(t)\cos(\alpha t)$	$\frac{\sin(a(\lambda+\alpha))}{\lambda+\alpha} + \frac{\sin(a(\lambda-\alpha))}{\lambda-\alpha}$

La Trasformata di Fourier

Riferimenti Riferimenti

- Kiyoshi Morita
 Applied Fourier Transform
 Cambridge University Press, 1988.
- T.W.körner Fourier Analysis IOS Press, 1995.

Tabella delle trasformate

TABELLA	Tabella delle Trasformate (4/4)	
$u(t)\sin(\alpha t)$	$i\pi \frac{\delta(\lambda + \alpha) - \delta(\lambda - \alpha)}{2} + \frac{\alpha}{\alpha^2 - \lambda^2}$	
$u(t)\cos(\alpha t)$	$\pi \frac{\delta(\lambda + \alpha) + \delta(\lambda - \alpha)}{2} + \frac{i\lambda}{\alpha^2 - \lambda^2}$	
$u(t)e^{-at}\sin(\alpha t)$	$\frac{\alpha}{a^2 + 2ia\lambda + \alpha^2 - \lambda^2}$	
$u(t)e^{-at}\cos(\alpha t)$	$\frac{a + i\lambda}{a^2 + 2ia\lambda + \alpha^2 - \lambda^2}$	
$u(t)e^{-at}$	$\frac{1}{a+i\lambda}$	
$u(t)t e^{-at}$	$\frac{1}{(a+i\lambda)^2}$	
$u(t)t^k e^{-at}$	$\frac{k!}{(a+i\lambda)^{k+1}}$	
i Fourier		

La Trasformata di

