
One Dimensional Non-Linear Problems
Lectures for PHD course on

Non-linear equations and numerical optimization

Enrico Bertolazzi

DIMS – Università di Trento
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Introduction

In this lecture some classical numerical

scheme for the approximation of the zeroes

of nonlinear one-dimensional equations are

presented.

The methods are exposed in some details,

moreover many of the ideas presented in this

lecture can be extended to the

multidimensional case.

One Dimensional Non-Linear Problems 3 / 63



The problem we want to solve

Formulation

Given f : [a, b] 7→ R

Find α ∈ [a, b] for which f(α) = 0.

Example

Let

f(x) = log(x)− 1

which has f(α) = 0 for α = exp(1).
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Some example

Consider the following three one-dimensional problems

1 f(x) = x4 − 12x3 + 47x2 − 60x;

2 g(x) = x4 − 12x3 + 47x2 − 60x + 24;

3 h(x) = x4 − 12x3 + 47x2 − 60x + 24.1;

The roots of f(x) are x = 0, x = 3, x = 4 and x = 5 the real
roots of g(x) are x = 1 and x ≈ 0.8888; h(x) has no real roots.

So in general a non linear problem may have

One or more then one solutions;

No solution.
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Plotting of f(x), g(x) and h(x)
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Plotting of f(x), g(x) and h(x) (zoomed)
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The Newton–Raphson method
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The Newton–Raphson method

The original Newton procedure

Isaac Newton (1643-1727) used the following arguments

Consider the polynomial f(x) = x3 − 2x− 5 and take x ≈ 2
as approximation of one of its root.

Setting x = 2 + p we obtain f(2 + p) = p3 + 6p2 + 10p− 1, if
2 is a good approximation of a root of f(x) then p is a small
number (p � 1) and p2 and p3 are very small numbers.

Neglecting p2 and p3 and solving 10p− 1 = 0 yields p = 0.1.

Considering
f(2 + p + q) = f(2.1 + q) = q3 + 6.3q2 + 11.23q + 0.061,
neglecting q3 and q2 and solving 11.23q + 0.061 = 0, yields
q = −0.0054.

Analogously considering f(2 + p + q + r) yields
r = 0.00004863.
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The Newton–Raphson method

The original Newton procedure

Further considerations

The Newton procedure construct the approximation of the
real root 2.094551482... of f(x) = x3 − 2x− 5 by successive
correction.

The corrections are smaller and smaller as the procedure
advances.

The corrections are computed by using a linear approximation
of the polynomial equation.

One Dimensional Non-Linear Problems 10 / 63



The Newton–Raphson method

The Newton procedure: a modern point of view (1/2)

Consider the following function f(x) = x3/2 − 2 and let
x ≈ 1.5 an approximation of one of its root.

Setting x = 1.5 + p yields
f(1.5 + p) = −0.1629 + 1.8371p +O(p2), if 1.5 is a good
approximation of a root of f(x) then O(p2) is a small number.

Neglecting O(p2) and solving −0.1629 + 1.8371p = 0 yileds
p = 0.08866.

Considering
f(1.5+p+q) = f(1.5886+q) = 0.002266+1.89059q+O(q2),
neglecting O(q2) and solving 0.002266 + 1.89059q = 0 yields
q = −0.001198.
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The Newton–Raphson method

The Newton procedure: a modern point of view (2/2)

The previous procedure can be resumed as follows:

1 Consider the following function f(x). We known an
approximation of a root x0.

2 Expand by Taylor series
f(x) = f(x0) + f ′(x0)(x− x0) +O((x− x0)

2).

3 Drop the term O((x− x0)
2) and solve

0 = f(x0) + f ′(x0)(x− x0). Call x1 this solution.

4 Repeat 1− 3 with x1, x2, x3, . . .

Algorithm (Newton iterative scheme)

Let x0 be assigned, then for k = 0, 1, 2, . . .

xk+1 = xk −
f(xk)

f ′(xk)
.
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The Newton–Raphson method

The Newton procedure: a geometric point of view

Let f ∈ C1(a, b) and x0 be an
approximation of a root of f(x).
We approximate f(x) by the tangent
line at (x0, f(x0))

T .

y = f(x0) + (x− x0)f
′(x0). (?)

The intersection of the line (?) with the x axis, that is x = x1, is
the new approximation of the root of f(x),

0 = f(x0) + (x1 − x0)f
′(x0), ⇒ x1 = x0 −

f(x0)

f ′(x0)
.
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The Newton–Raphson method Standard Assumptions

Standard Assumptions

Definition (Lipschitz function)

a function g : [a, b] 7→ R is Lipschitz if there exists a constant γ
such that

|g(x)− g(y)| ≤ γ |x− y|

for all x, y ∈ (a, b) satisfy

Example (Continuous non Lipschitz function)

Any Lipschitz function is continuous, but the converse is not true.
Consider g : [0, 1] 7→ R, g(x) =

√
x. This function is not Lipschitz,

if not we have ∣∣∣√x−
√

0
∣∣∣ ≤ γ |x− 0|

but limx 7→0+

√
x/x = ∞.
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The Newton–Raphson method Standard Assumptions

Standard Assumptions

In the study of convergence of numerical scheme, some standard
regularity assumptions are assumed for the function f(x).

Assumption (Standard Assumptions)

The function f : [a, b] 7→ R is continuous, derivable with Lipschitz
derivative f ′(x). i.e.∣∣f ′(x)− f ′(y)

∣∣ ≤ γ |x− y| . ∀x, y ∈ [a, b]

Lemma (Taylor like expansion)

Let f(x) satisfy the standard assumptions, then∣∣f(y)− f(x)− f ′(x)(y − x)
∣∣ ≤ γ

2
|x− y|2 . ∀x, y ∈ [a, b]
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The Newton–Raphson method Standard Assumptions

Proof of Lemma

From basic Calculus:

f(y)− f(x)− f ′(x)(y − x) =

∫ y

x
[f ′(z)− f ′(x)] dz

making the change of variable z = x + t(y − x) we have

f(y)− f(x)− f ′(x)(y − x) =

∫ 1

0
[f ′(x + t(y − x))− f ′(x)](y − x) dt

and∣∣f(y)− f(x)− f ′(x)(y − x)
∣∣ ≤ ∫ 1

0
γt |y − x| |y − x| dt =

γ

2
|y − x|2
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The Newton–Raphson method Local Convergence of the Newton–Raphson method

Theorem (Local Convergence of Newton method)

Let f(x) satisfy standard assumptions, and α be a simple root (i.e.
f ′(α) 6= 0). If |x0 − α| ≤ δ with Cδ ≤ 1 where

C =
γ

|f ′(α)|

then, the sequence generated by the Newton method satisfies:

1 |xk − α| ≤ δ for k = 0, 1, 2, 3, . . .

2 |xk+1 − α| ≤ C |xk − α|2 for k = 0, 1, 2, 3, . . .

3 limk 7→∞ xk = α.
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The Newton–Raphson method Local Convergence of the Newton–Raphson method

proof of local convergence

Consider a Newton step with |xk − α| ≤ δ and

xk+1 − α = xk − α− f(xk)− f(α)

f ′(xk)
=

f(α)− f(xk)− f ′(xk)(α− xk)

f ′(xk)

taking absolute value and using the Taylor expansion like lemma

|xk+1 − α| ≤ γ |xk − α|2 /(2
∣∣f ′(xk)

∣∣)
f ′ ∈ C1(a, b) so that there exist a δ such that 2 |f ′(x)| > |f ′(α)|
for all |xk − α| ≤ δ. Choosing δ such that γδ ≤ |f ′(α)| we have

|xk+1 − α| ≤ C |xk − α|2 ≤ |xk − α| , C = γ/
∣∣f ′(α)

∣∣
By induction we prove point 1. Point 2 and 3 follow trivially.
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The Newton–Raphson method Stopping criteria

Stopping criteria

An iterative scheme generally does not find the solution in a finite
number of steps. Thus, stopping criteria are needed to interrupt
the computation. The major ones are:

1 |f(xk+1)| ≤ τ

2 |xk+1 − xk| ≤ τ |xk+1|
3 |xk+1 − xk| ≤ τ max{|xk| , |xk+1|}
4 |xk+1 − xk| ≤ τ max{typ x, |xk+1|}

Typ x is the typical size of x and τ ≈
√

ε where ε is the machine
precision.
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Convergence order
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Convergence order

Convergence of a sequence of real number

The inequality |xk+1 − α| ≤ C |xk − α|2 permits to say that
Newton scheme is locally a second order scheme. We need a
precise definition of convergence order; first we define a convergent
sequence

Definition (Convergent sequence)

Let α ∈ R and xk ∈ R, k = 0, 1, 2, . . . Then, the sequence {xk} is
said to converge to α if

lim
k 7→∞

|xk − α| = 0.

One Dimensional Non-Linear Problems 21 / 63



Convergence order Q-order of convergence

Definition (Q-order of a convergent sequence)

Let α ∈ R and xk ∈ R, k = 0, 1, 2, . . . Then {xk} is said:

1 q-linearly convergent if there exists a constant C ∈ (0, 1) and
an integer m > 0 such that for all k ≥ m

|xk+1 − α| ≤ C |xk − α|

2 q-super-linearly convergent if there exists a sequence {Ck}
convergent to 0 such that

|xk+1 − α| ≤ Ck |xk − α|

3 convergent sequence of q-order p (p > 1) if there exists a
constant C and an integer m > 0 such that for all k ≥ m

|xk+1 − α| ≤ C |xk − α|p
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Convergence order Q-order of convergence

Quotient order of convergence

The prefix q in the q-order of convergence is a shortcut for
quotient, and results from the quotient criteria of convergence of a
sequence.

Remark

Let α ∈ R and xk ∈ R, k = 0, 1, 2, . . . Then {xk} is said:

1 q-quadratic if is q-convergent of order p with p = 2

2 q-cubic if is q-convergent of order p with p = 3

another useful generalization of q-order of convergence:

Definition (j-step q-order convergent sequence)

Let α ∈ R and xk ∈ R, k = 0, 1, 2, . . . Then {xk} is said j-step
q-convergent of order p if there exists a constant C and an integer
m > 0 such that for all k ≥ m

|xk+j − α| ≤ C |xk − α|p
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Convergence order R-order of convergence

Root order of convergence

There may exists convergent sequence that do not have a q-order
of convergence.

Example (convergent sequence without a q-order)

Consider the following sequence

xk =

{
1 + 2−k if k is not prime

1 otherwise

it is easy to show that limk 7→∞ xk = 1 but {xk} cannot be q-order
convergent.
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Convergence order R-order of convergence

Root order convergence

A weaker definition of order of convergence is the following

Definition (R-order convergent sequence)

Let α ∈ R and {xk}∞k=0 ⊂ R. Let {yk}∞k=0 ⊂ R be a dominating
sequence, i.e. there exists m and C such that

|xk − α| ≤ C |yk − α| , k ≥ m.

Then {xk} is said at least:

1 r-linearly convergent if {yk} is q-linearly convergent.

2 r-super-linearly convergent if {yk} is q-super-linearly
convergent.

3 convergent sequence of r-order p (p > 1) if {yk} is a
convergent sequence of q-order p.
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Convergence order R-order of convergence

Convergent sequences without a q-order of converge but with an
r-order of convergence.

Example

Consider again the sequence

xk =

{
1 + 2−k if k is not prime

1 otherwise

it is easy to show that the sequence

{yk} = {1 + 2−k}

is q-linearly convergent and that

|xk − 1| ≤ |yk − 1|

for k = 0, 1, 2, . . ..
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Convergence order R-order of convergence

The q-order and r-order measure the speed of convergence of a
sequence. A sequence may be convergent but cannot be measured
by q-order or r-order.

Example

The sequence {xk} = {1 + 1/k} may not be q-linearly convergent,
unless C < 1 becomes

|xk+1 − 1| ≤ C |xk − 1| ⇒ 1

k + 1
≤ C

k

also implies

k(1− C)− C

k(k + 1)
≤ 0

have that for k > C/(1− C) the inequality is not satisfied.
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The Secant method

Secant method

Newton method is a fast (q-order 2) numerical scheme to
approximate the root of a function f(x) but needs the knowledge
of the first derivative of f(x). Sometimes first derivative is not
available or not computable, in this case a numerical procedure to
approximate the root which does not use derivative is required.
A simple modification of the Newton–Raphson scheme where the
first derivative is approximated by a finite difference produces the
secant method:

xk+1 = xk −
f(xk)

ak
, ak =

f(xk)− f(xk−1)

xk − xk−1
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The Secant method

The secant method: a geometric point of view

Let us take f ∈ C(a, b) and x0 and x1 be
different approximations of a root of f(x). We
can approximate f(x) by the secant line for
(x0, f(x0))

T and (x1, f(x1))
T .

y =
f(x0)(x1 − x) + f(x1)(x− x0)

x1 − x0
. (?)

The intersection of the line (?) with the x axes at x = x2 is the
new approximation of the root of f(x),

0 =
f(x0)(x1 − x2) + f(x1)(x2 − x0)

x1 − x0
, ⇒ x2 = x1 −

f(x1)

f(x1)− f(x0)

x1 − x0

.
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The Secant method

Algorithm (Secant scheme)

Let x0 6= x1 assigned, for k = 1, 2, . . ..

xk+1 = xk −
f(xk)

f(xk)− f(xk−1)

xk − xk−1

=
xk−1f(xk)− xkf(xk−1)

f(xk)− f(xk−1)

Remark

In the secant method near convergence we have f(xk) ≈ f(xk−1),
so that numerical cancellation problem may arise. In this case we
must stop the iteration before such a problem is encountered, or
we must modify the secant method near convergence.
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The Secant method Local convergence of the the Secant Method

Local convergence of the Secant Method

Theorem

Let f(x) satisfy standard assumptions, and α be a simple root (i.e.
f ′(α) 6= 0); then, there exists δ > 0 such that Cδ ≤ exp(−p) < 1
where

C =
γ

|f ′(α)|
and p =

1 +
√

5

2
= 1.618034 . . .

For all x0, x1 ∈ [α− δ, α + δ] with x0 6= x1 we have:

1 |xk − α| ≤ δ for k = 0, 1, 2, 3, . . .

2 the sequence {xk} is convergent to α with r-order at least p.
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The Secant method Local convergence of the the Secant Method

Proof of Local Convergence (1/5)

Subtracting α on both side of secant scheme

xk+1 − α = (xk − α)(xk−1 − α)

f(xk)

xk − α
− f(xk−1)

xk−1 − α

f(xk)− f(xk−1)
.

Moreover, because f(α) = 0

f(xk)

xk − α
− f(xk−1)

xk−1 − α

f(xk)− f(xk−1)
=

f(xk)− f(α)

xk − α
− f(xk−1)− f(α)

xk−1 − α

f(xk)− f(xk−1)
,

=

f(xk)− f(α)

xk − α
− f(xk−1)− f(α)

xk−1 − α

xk − xk−1

(
f(xk)− f(xk−1)

xk − xk−1

)−1
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The Secant method Local convergence of the the Secant Method

Proof of Local Convergence (2/5)

From Lagrange 1 theorem and divided difference properties (see
next lemma):

f(xk)− f(xk−1)

xk − xk−1
= f ′(ηk), ηk ∈ I[xk−1, xk],∣∣∣∣(f(xk)− f(α))/(xk − α)− (f(xk−1)− f(α))/(xk−1 − α)

xk − xk−1

∣∣∣∣ ≤ γ

2

where I[a, b] is the smallest interval containing a, b By using these
equations, we can write

|xk+1 − α| ≤ |xk − α| |xk−1 − α| γ

2 |f ′(ηk)|
, ηk ∈ I[xk−1, xk]

1Joseph-Louis Lagrange 1736—1813
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The Secant method Local convergence of the the Secant Method

Proof of Local Convergence (3/5)

As α is a simple root, there exists δ > 0 such that for all
x ∈ [α− δ, α + δ] we have 2 |f ′(x)| ≥ |f ′(α)|; if xk and xk−1 are in
x ∈ [α− δ, α + δ] we have

|xk+1 − α| ≤ C |xk − α| |xk−1 − α|

by reducing δ, we obtain Cδ ≤ exp(−p) < 1, and by induction, we
can show that xk ∈ [α− δ, α + δ] for k = 1, 2, 3, . . .

To prove r-order, we set ei = C |xi − α| so that

|xk+1 − α| ≤ C |xk − α| |xk−1 − α| ⇒ ei+1 ≤ eiei−1
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The Secant method Local convergence of the the Secant Method

Proof of Local Convergence (4/5)

Now we build a majoring sequence {Ek} defined as
E1 = max{e0, e1}, E0 ≥ E1 and Ek+1 = EkEk−1. It is easy to
show that ek ≤ Ek, in fact

ek+1 ≤ ekek−1 ≤ EkEk−1 = Ek+1.

By searching a solution of the form Ek = E0 exp(−zk) we have

exp(−zk+1) = exp(−zk) exp(−zk−1) = exp(−zk − zk−1),

so that z must satisfy:

z2 = z + 1, ⇒ z1,2 =
1±

√
5

2
=

{
1.618034 . . .

−0.618034 . . .
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The Secant method Local convergence of the the Secant Method

Proof of Local Convergence (5/5)

In order to have convergence we must choose the positive root so
that Ek = E0 exp(−pk) where p = (1 +

√
5)/2. Finally

E0 ≥ E1 = E0 exp(−p). In this way we have produced a majoring
sequence Ek such that

|xk − α| ≤ MEk = ME0 exp(−pk)

let us now compute the q-order of {Ek}.

Ek+1

Er
k

=
ME0 exp(−pk+1)

M rEr
0 exp(−rpk)

= C exp(−pk+1 + rpk), C = (ME0)
1−1/r

and, by choosing r = p, we obtain Ek+1 ≤ CEr
k.
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The Secant method Local convergence of the the Secant Method

Lemma

Let f(x) satisfying standard assumptions, then∣∣∣∣∣∣∣
f(α + h)− f(α)

h
− f(α− k)− f(α)

k
h + k

∣∣∣∣∣∣∣ ≤
γ

2

The proof use the trick function

G(t) :=

f(α + th)− f(α)

h
− f(α− tk)− f(α)

k
h + k

,

Note that G(1) is the finite difference of the lemma.
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The Secant method Local convergence of the the Secant Method

Proof of lemma

The function H(t) := G(t)−G(1)t2 is 0 in t = 0 and t = 1. In
view of Rolle’s theorem2 there exists an η ∈ (0, 1) such that
H ′(η) = 0. But

H ′(t) = G′(t)− 2G(1)t, G′(t) =
f ′(α + th)− f ′(α− tk)

h + k
,

by evaluating H ′(η) we have G′(η) = 2G(1)η. Then

G(1) =
1

2η
G′(η) =

f ′(α + ηh)− f ′(α− ηk)

2η(h + k)

The thesis follows by taking |G(1)| and using the Lipschitz
property of f ′(x).

2Michel Rolle 1652–1719
One Dimensional Non-Linear Problems 39 / 63
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The quasi-Newton method

Quasi-Newton method

A simple modification on Newton scheme produces a whole classes
of numerical schemes. if we take

xk+1 = xk −
f(xk)

ak
,

different choice of ak produce different numerical scheme:

1 If ak = f ′(xk) we obtain the Newton Raphson method.

2 If ak = f ′(x0) we obtain the chord method.

3 If ak = f ′(xm) where m = [k/p]p we obtain the Shamanskii
method.

4 If ak =
f(xk)− f(xk−1)

xk − xk−1
we obtain the secant method.

5 If ak =
f(xk)− f(xk − hk)

hk
we obtain the secant finite

difference method.
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The quasi-Newton method

Remark

By choosing hk = xk−1 − xk in the secant finite difference method,
we obtain the secant method, so that this method is a
generalization of the secant method.

Remark

If hk 6= xk−1 − xk the secant finite difference method needs two
evaluation of f(x) per step, while the secant method needs only
one evaluation of f(x) per step.

Remark

In the secant method near convergence we have f(xk) ≈ f(xk−1),
so that numerical cancellation problem can arise. The Secant
Finite Difference scheme does not have this problem provided that
hk is not too small.
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The quasi-Newton method Local convergence of quasi-Newton method

Local convergence of quasi-Newton method (1/3)

Let α be a simple root of f(x) (i.e. f(α) 6= 0) and f(x) satisfy
standard assumptions, then we can write

xk+1 − α = xk − α− a−1
k f(xk)

= a−1
k

[
f(α)− f(xk)− ak(α− xk)

]
= a−1

k

[
f(α)− f(xk)− f ′(xk)(α− xk)

+(f ′(xk)− ak)(α− xk)
]

By using thed Taylor Like expansion Lemma we have

|xk+1 − α| ≤ |ak|−1
(γ

2
|xk − α|+

∣∣f ′(xk)− ak

∣∣ )
|xk − α|
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The quasi-Newton method Local convergence of quasi-Newton method

Local convergence of quasi-Newton method (2/3)

Lemma

If f(x) satisfies standard assumptions, then∣∣∣∣f ′(x)− f(x)− f(x− h)

h

∣∣∣∣ ≤ γ

2
h

from the Lemma we have that the finite difference secant scheme
satisfies:

|xk+1 − α| ≤ γ

2 |ak|

(
|xk − α|+ hk

)
|xk − α|

Moreover, form∣∣f ′(xk)
∣∣ ≤ ∣∣f ′(xk)− ak

∣∣ + |ak| ≤ |ak|+
γ

2
hk

it follows that

|xk+1 − α| ≤ γ

2 |f ′(xk)| − γhk

(
|xk − α|+ hk

)
|xk − α|
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The quasi-Newton method Local convergence of quasi-Newton method

Local convergence of quasi-Newton method (3/3)

Theorem

Let f(x) satisfies standard assumptions, and α be a simple root;
then, there exists δ > 0 and η > 0 such that if |x0 − α| < δ and
0 < |hk| ≤ η; the sequence {xk} given by

xk+1 = xk −
f(xk)

ak
, ak =

f(xk)− f(xk − hk)

hk
,

for k = 1, 2, . . . is defined and q-linearly converges to α. Moreover,

1 If limk 7→∞ hk = 0 then {xk} q-super-linearlyconverges to α.

2 If there exists a constant C such that |hk| ≤ C |xk − α| or
|hk| ≤ C |f(xk)| then the convergence is q-quadratic.

3 If there exists a constant C such that |hk| ≤ C |xk − xk−1|
then the convergence is:

two-step q-quadratic;
one-step r-order p = (1 +

√
5)/2.
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Fixed–Point procedure
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Fixed–Point procedure

Fixed–Point procedure

Definition (Fixed point)

Given a map G : D ⊂ Rm 7→ R
m we say that x? is a fixed point of

G if:

x? = G(x?).

Searching a zero of f(x) is the same as searching a fixed point of:

g(x) = x− f(x).

A natural way to find a fixed point is by using iterations. For
example by starting from x0 we build the sequence

xk+1 = g(xk), k = 1, 2, . . .

We ask when the sequence {xi}∞i=0 is convergent to α.
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Fixed–Point procedure

Example (Fixed point Newton)

Newton-Raphson scheme can be written in the fixed point form by
setting:

g(x) = x− f(x)

f ′(x)

Example (Fixed point secant)

Secant scheme can be written in the fixed point form by setting:

G(x) =

x2f(x1)− x1f(x2)

f(x1)− f(x2)
x1
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Fixed–Point procedure Contraction mapping Theorem

Contraction mapping Theorem

Theorem (Contraction mapping)

Let G : D 7→ D ⊂ Rn such that there exists L < 1

‖G(x)− G(y)‖ ≤ L ‖x− y‖ , ∀x, y ∈ D

Let x0 such that Bρ(x0) = {x| ‖x− x0‖ ≤ ρ} ⊂ D where
ρ = ‖G(x0)− x0‖ /(1− L), then

1 There exists a unique fixed point x? in Bρ(x0).

2 The sequence {xk} generated by xk+1 = G(xk) remains in
Bρ(x0) and q-linearly converges to x? with constant L.

3 The following error estimate is valid

‖xk − x?‖ ≤ ‖x1 − x0‖
Lk

1− L
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Fixed–Point procedure Contraction mapping Theorem

Proof of Contraction mapping (1/2)
Prove that {xk}∞0 is a Cauchy sequence

‖xk+m − xk‖ ≤ L ‖xk+m−1 − xk−1‖ ≤ · · · ≤ Lk ‖xm − x0‖

and

‖xm − x0‖ ≤
m−1∑
l=0

‖xl+1 − xl‖ ≤
m−1∑
l=0

Ll ‖x1 − x0‖

≤ 1− Lm

1− L
‖x1 − x0‖ ≤

‖x1 − x0‖
1− L

so that

‖xk+m − xk‖ ≤
Lk

1− L
‖x1 − x0‖ ≤ ρ

This prove that {xk}∞0 ⊂ Bρ(x0) and that is a Cauchy sequence.
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Fixed–Point procedure Contraction mapping Theorem

Proof of Contraction mapping (2/2)
Prove existence, uniqueness and rate

The sequence {xk}∞0 is a Cauchy sequence so that there is the
limit x? = limk 7→∞ xk. To prove that x? is a fixed point:

‖x? − G(x?)‖ ≤ ‖x? − xk‖+ ‖xk − G(xk)‖+ ‖G(xk)− G(x?)‖

≤ (1 + L) ‖x? − xk‖+ Lk ‖x1 − x0‖ −→
k 7→∞

0

Uniqueness is proved by contradiction, let be x and y two fixed
points:

‖x− y‖ = ‖G(x)− G(y)‖ ≤ L ‖x− y‖ < ‖x− y‖

To prove convergence rate notice that xk+m 7→ x? for m 7→ ∞:

‖xk − x?‖ ≤ ‖xk − xk+m‖+ ‖xk+m − x?‖

≤ Lk

1− L
‖x1 − x0‖+ ‖xk+m − x?‖
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Fixed–Point procedure Contraction mapping Theorem

Example

Newton-Raphson in fixed point form

g(x) = x− f(x)

f ′(x)
, g′(x) =

f(x)f ′′(x)

(f ′(x))2
,

If α is a simple root of f(x) then

g′(α) =
f(α)f ′′(α)

(f ′(α))2
= 0,

If f(x) ∈ C2 then g′(x) is continuous in a neighborhood of α and
by choosing ρ small enough we have∣∣g′(x)

∣∣ ≤ L < 1, x ∈ [α− ρ, α + ρ]

From the contraction mapping theorem, it follows from that the
Newton-Raphson method is locally convergent when α is a simple
root.
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Fixed–Point procedure Contraction mapping Theorem

Fast convergence

Suppose that α is a fixed point of g(x) and g ∈ Cp with

g′(α) = g′′(α) = · · · = g(p−1)(α) = 0,

by Taylor Theorem

g(x) = g(α) +
(x− α)p

p!
g(p)(η),

so that

|xk+1 − α| = |g(xk)− g(α)| ≤
∣∣g(p)(ηk)

∣∣
p!

|xk − α|p .

If g(p)(x) is bounded in a neighborhood of α it follows that the
procedure has locally q-order of p.
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Fixed–Point procedure Contraction mapping Theorem

Slow convergence (1/2)

Newton-Raphson in fixed point form

g(x) = x− f(x)

f ′(x)
, g′(x) =

f(x)f ′′(x)

(f ′(x))2
,

If α is a multiple root, i.e.

f(x) = (x− α)nh(x), h(α) 6= 0 n > 1

it follows that

f ′(x) = n(x− α)n−1h(x) + (x− α)nh′(x)

f ′′(x) = (x− α)n−2
[
(n2 − n)h(x) + 2n(x− α)h′(x) + (x− α)2h′′(x)

]
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Fixed–Point procedure Contraction mapping Theorem

Slow convergence (2/2)

Consequently,

g′(α) =
n(n− 1)h(α)2

n2h(α)2
= 1− 1

n
,

so that ∣∣g′(α)
∣∣ = 1− 1

n
< 1

and the Newton-Raphson scheme is locally q-linearly convergent
with coefficient 1− 1/n.
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Stopping criteria and q-order estimation
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Stopping criteria and q-order estimation

Stopping criteria for q-convergent sequences (1/2)

1 Consider an iterative scheme that produces a sequence {xk}
that converges to α with q-order p.

2 This means that there exists a constant C such that

|xk+1 − α| ≤ C |xk − α|p for k ≥ m

3 If limk 7→∞
|xk+1 − α|
|xk − α|p

exists and converge say to C then we

have

|xk+1 − α| ≈ C |xk − α|p for large k

4 We can use this last expression to obtain an estimate of the
error even if the values of p is unknown by using the only
known values.
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Stopping criteria and q-order estimation

Stopping criteria q-convergent sequences (2/2)

1 If |xk+1 − α| ≤ C |xk − α|p we can write:

|xk − α| ≤ |xk − xk+1|+ |xk+1 − α|

≤ |xk − xk+1|+ C |xk − α|p

⇓

|xk − α| ≤ |xk − xk+1|
1− C |xk − α|p−1

2 If xk is so near to the solution that C |xk − α|p−1 ≤ 1
2 , then

|xk − α| ≤ 2 |xk − xk+1|

3 This fact justifies the two stopping criteria

|xk+1 − xk| ≤ τ Absolute tolerance

|xk+1 − xk| ≤ τ max{|xk| , |xk+1|} Relative tolerance

One Dimensional Non-Linear Problems 58 / 63



Stopping criteria and q-order estimation

Estimation of the q-order (1/3)

1 Consider an iterative scheme that produce a sequence {xk}
converging to α with q-order p.

2 If |xk+1 − α| ≈ C |xk − α|p then the ratio:

log
|xk+1 − α|
|xk − α|

≈ log
C |xk − α|p

|xk − α|
= (p− 1) log C

1
p−1 |xk − α|

and analogously

log
|xk+2 − α|
|xk+1 − α|

≈ log
C1+p |xk − α|p

2

C |xk − α|p
= p(p− 1) log C

1
p−1 |xk − α|

3 From this two ratios we can deduce p as follows

log
|xk+2 − α|
|xk+1 − α|

/
log

|xk+1 − α|
|xk − α|

≈ p
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Stopping criteria and q-order estimation

Estimation of the q-order (2/3)

1 The ratio

log
|xk+2 − α|
|xk+1 − α|

/
log

|xk+1 − α|
|xk − α|

≈ p

is expressed in term of unknown errors uses the error which is
not known.

2 If we are near to the solution, we can use the estimation
|xk − α| ≈ |xk+1 − xk| so that

log
|xk+2 − xk+3|
|xk+1 − xk+2|

/
log

|xk+1 − xk+2|
|xk − xk+1|

≈ p

nd three iterations are enough to estimate the q-order of the
sequence.
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Stopping criteria and q-order estimation

Estimation of the q-order (3/3)

1 if the the step length is proportional to the value of f(x) as in
the Newton-Raphson scheme, i.e. |xk − α| ≈ M |f(xk)| we
can simplify the previous formula as:

log
|f(xk+2)|
|f(xk+1)|

/
log

|f(xk+1)|
|f(xk)|

≈ p

2 Such estimation are useful to check the code implementation.
In fact, if we expect the order p and we see the order r 6= p,
something is wrong in the implementation or in the theory!
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Conclusions

Conclusions

The methods presented in this lesson can be generalized for higher
dimension. In particular

1 Newton-Raphson

multidimensional Newton scheme
inexact Newton scheme

2 Secant

Broyden scheme

3 quasi-Newton

finite difference approximation of the Jacobian

moreover those method can be globalized.
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