

The				

Local Convergence of the Newton-Raphson method

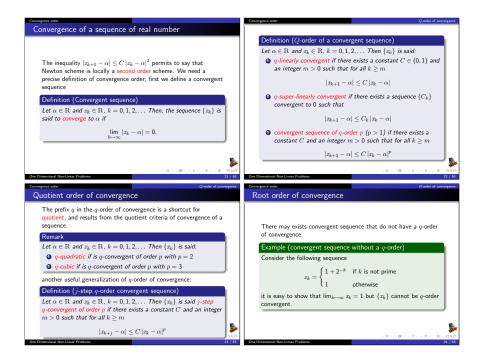
Local Convergence of the Newton-Raphson metho

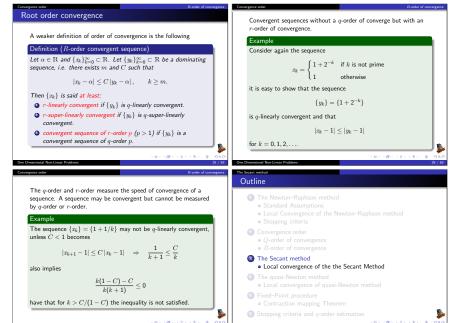
proof of local convergence

The Newton-Raphson method

Theorem (Local Convergence of Newton method) Consider a Newton step with $|x_k - \alpha| \le \delta$ and Let f(x) satisfy standard assumptions, and α be a simple root (i.e. $x_{k+1} - \alpha = x_k - \alpha - \frac{f(x_k) - f(\alpha)}{f'(x_k)} = \frac{f(\alpha) - f(x_k) - f'(x_k)(\alpha - x_k)}{f'(x_k)}$ $f'(\alpha) \neq 0$). If $|x_0 - \alpha| < \delta$ with $C\delta < 1$ where $C = \frac{\gamma}{|f'(\alpha)|}$ taking absolute value and using the Taylor expansion like lemma $|x_{k+1} - \alpha| \le \gamma |x_k - \alpha|^2 / (2 |f'(x_k)|)$ then, the sequence generated by the Newton method satisfies: **a** $|x_k - \alpha| \le \delta$ for $k = 0, 1, 2, 3, \ldots$ $f' \in C^1(a, b)$ so that there exist a δ such that $2|f'(x)| > |f'(\alpha)|$ (a) $|x_{k+1} - \alpha| \le C |x_k - \alpha|^2$ for k = 0, 1, 2, 3, ...for all $|x_{\ell} - \alpha| \leq \delta$. Choosing δ such that $\gamma \delta \leq |f'(\alpha)|$ we have $\lim_{k \to \infty} x_k = \alpha.$ $|x_{k+1} - \alpha| \le C |x_k - \alpha|^2 \le |x_k - \alpha|, \qquad C = \gamma / |f'(\alpha)|$ By induction we prove point 1. Point 2 and 3 follow trivially. The Newton-Raphson method Outline Stopping criteria An iterative scheme generally does not find the solution in a finite number of steps. Thus, stopping criteria are needed to interrupt Onvergence order the computation. The major ones are: *Q*-order of convergence $|f(x_{k+1})| < \tau$ R-order of convergence **(a)** $|x_{l+1} - x_{l}| < \tau |x_{l+1}|$ $|x_{k+1} - x_k| < \tau \max\{|x_k|, |x_{k+1}|\}$ $|x_{k+1} - x_k| < \tau \max\{\text{typ } \mathbf{x}, |x_{k+1}|\}$ Typ x is the typical size of x and $\tau \approx \sqrt{\varepsilon}$ where ε is the machine precision.

(A) (2) (3) 3 000





One Dimensional Non-Linear Problems

One Dimensional Non-Linear Problem

1 C C C

Secant method

Newton method is a fast (q-order 2) numerical scheme to approximate the root of a function f(x) but needs the knowledge of the first derivative of f(x). Sometimes first derivative is not available or not computable, in this case a numerical procedure to approximate the root which does not use derivative is required. A simple modification of the Newton-Raphson scheme where the first derivative is approximated by a finite difference produces the secant method:

$$x_{k+1} = x_k - \frac{f(x_k)}{a_k}, \quad a_k = \frac{f(x_k) - f(x_{k-1})}{x_k - x_{k-1}}$$

Algorithm (Secant scheme)

Let $x_0 \neq x_1$ assigned, for $k = 1, 2, \ldots$

$$x_{k+1} = x_k - \frac{f(x_k)}{\frac{f(x_k) - f(x_{k-1})}{x_k - x_{k-1}}} = \frac{x_{k-1}f(x_k) - x_k f(x_{k-1})}{f(x_k) - f(x_{k-1})}$$

Remark

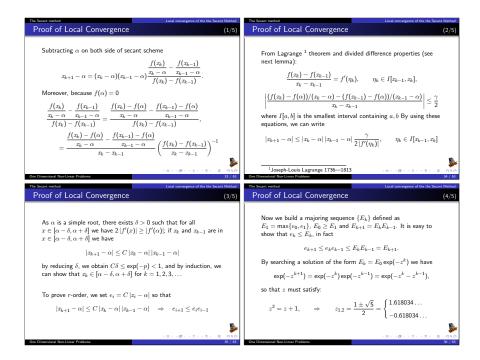
The Secant method

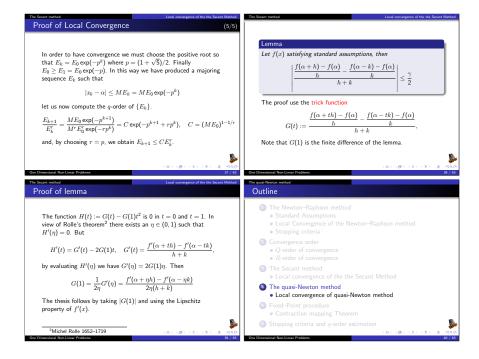
In the secant method near convergence we have $f(x_k) \approx f(x_{k-1})$, so that numerical cancellation problem may arise. In this case we must stop the iteration before such a problem is encountered, or we must modify the secant method near convergence.

The Secant method

The secant method: a geometric point of view

Let us take $f \in C(a, b)$ and x_0 and x_1 be different approximations of a root of f(x). We can approximate f(x) by the secant line for $(x_0, f(x_0))^T$ and $(x_1, f(x_1))^T$. $y = \frac{f(x_0)(x_1 - x) + f(x_1)(x - x_0)}{x_1 - x_0}.$ (*) The intersection of the line (*) with the x axes at $x = x_2$ is the new approximation of the root of f(x), $0 = \frac{f(x_0)(x_1 - x_2) + f(x_1)(x_2 - x_0)}{x_1 - x_0}, \quad \Rightarrow \quad x_2 = x_1 - \frac{f(x_1)}{f(x_1) - f(x_0)}$ Local convergence of the Secant Method Theorem Let f(x) satisfy standard assumptions, and α be a simple root (i.e. $f'(\alpha) \neq 0$; then, there exists $\delta > 0$ such that $C\delta \leq \exp(-p) < 1$ where $C = \frac{\gamma}{|f'(\alpha)|}$ and $p = \frac{1+\sqrt{5}}{2} = 1.618034...$ For all $x_0, x_1 \in [\alpha - \delta, \alpha + \delta]$ with $x_0 \neq x_1$ we have: **(a)** $|x_k - \alpha| \le \delta$ for k = 0, 1, 2, 3, ...,• the sequence $\{x_i\}$ is convergent to α with r-order at least p.





The quasi-Newton method

Quasi-Newton method

A simple modification on Newton scheme produces a whole classes of numerical schemes. if we take

$$x_{k+1} = x_k - \frac{f(x_k)}{a_k}$$
,

different choice of ak produce different numerical scheme:

- If $a_k = f'(x_k)$ we obtain the Newton Raphson method.
- If a_k = f'(x₀) we obtain the chord method.
- If a_k = f'(x_m) where m = [k/p]p we obtain the Shamanskii method.
- If $a_k = \frac{f(x_k) f(x_{k-1})}{x_k x_{k-1}}$ we obtain the secant method.
- If $a_k = \frac{f(x_k) f(x_k h_k)}{h_k}$ we obtain the secant finite difference method.

One Dimensional Non-Linear Problems The quasi-Newton method

Local convergence of quasi-Newton method

Let α be a simple root of f(x) (i.e. $f(\alpha)\neq 0)$ and f(x) satisfy standard assumptions, then we can write

$$\begin{aligned} x_{k+1} - \alpha &= x_k - \alpha - a_k^{-1} f(x_k) \\ &= a_k^{-1} [f(\alpha) - f(x_k) - a_k(\alpha - x_k)] \\ &= a_k^{-1} [f(\alpha) - f(x_k) - f'(x_k)(\alpha - x_k) \\ &+ (f'(x_k) - a_k)(\alpha - x_k)] \end{aligned}$$

By using thed Taylor Like expansion Lemma we have

$$|x_{k+1} - \alpha| \le |a_k|^{-1} \left(\frac{\gamma}{2} |x_k - \alpha| + |f'(x_k) - a_k|\right) |x_k - \alpha|$$

e quasi-Newton method

Remark

By choosing $h_k = x_{k-1} - x_k$ in the secant finite difference method, we obtain the secant method, so that this method is a generalization of the secant method.

Remark

If $h_k \neq x_{k-1} - x_k$ the secant finite difference method needs two evaluation of f(x) per step, while the secant method needs only one evaluation of f(x) per step.

Remark

In the secant method near convergence we have $f(x_k) \approx f(x_{k-1})$, so that numerical cancellation problem can arise. The Secant Finite Difference scheme does not have this problem provided that h_k is not too small.

Local convergence of quasi-Newton method

(2/3)

Lemma

If f(x) satisfies standard assumptions, then

$$\left|f'(x) - \frac{f(x) - f(x - h)}{h}\right| \le \frac{\gamma}{2}h$$

from the Lemma we have that the finite difference secant scheme satisfies:

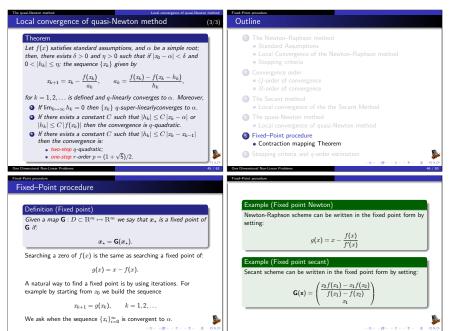
$$|x_{k+1} - \alpha| \le \frac{\gamma}{2|a_k|} (|x_k - \alpha| + h_k) |x_k - \alpha|$$

Moreover, form

$$|f'(x_k)| \le |f'(x_k) - a_k| + |a_k| \le |a_k| + \frac{\gamma}{2}h_k$$

it follows that

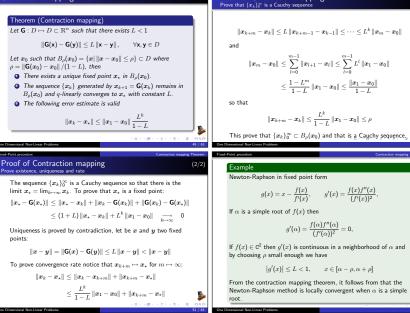
$$|x_{k+1} - \alpha| \le \frac{\gamma}{2|f'(x_k)| - \gamma h_k} \Big(|x_k - \alpha| + h_k \Big) |x_k - \alpha|$$



Fixed-Point pro

(1/2)

Contraction mapping Theorem



Newton-Raphson in fixed point form

Proof of Contraction mapping

$$g(x) = x - \frac{f(x)}{f'(x)}, \qquad g'(x) = \frac{f(x)f''(x)}{(f'(x))^2},$$

 $\leq \frac{1-L^m}{1-L^m} \|x_1 - x_0\| \leq \frac{\|x_1 - x_0\|}{1-L^m}$

If α is a simple root of f(x) then

$$g'(\alpha) = \frac{f(\alpha)f''(\alpha)}{(f'(\alpha))^2} = 0,$$

If $f(x) \in C^2$ then a'(x) is continuous in a neighborhood of α and by choosing ρ small enough we have

$$|g'(x)| \le L < 1$$
, $x \in [\alpha - \rho, \alpha + \rho]$

From the contraction mapping theorem, it follows from that the Newton-Raphson method is locally convergent when α is a simple

Fast convergence

Suppose that α is a fixed point of g(x) and $g \in \mathbb{C}^p$ with

$$g'(\alpha) = g''(\alpha) = \cdots = g^{(p-1)}(\alpha) = 0,$$

by Taylor Theorem

 $g(x) = g(\alpha) + \frac{(x - \alpha)^p}{n!}g^{(p)}(\eta),$

so that

$$|x_{k+1} - \alpha| = |g(x_k) - g(\alpha)| \le \frac{|g^{(p)}(\eta_k)|}{p!} |x_k - \alpha|^p$$
.

If $q^{(p)}(x)$ is bounded in a neighborhood of α it follows that the procedure has locally q-order of p.

Fixed-Point procedure

Slow convergence

Consequently.

$$g'(\alpha) = \frac{n(n-1)h(\alpha)^2}{n^2h(\alpha)^2} = 1 - \frac{1}{n}$$

so that

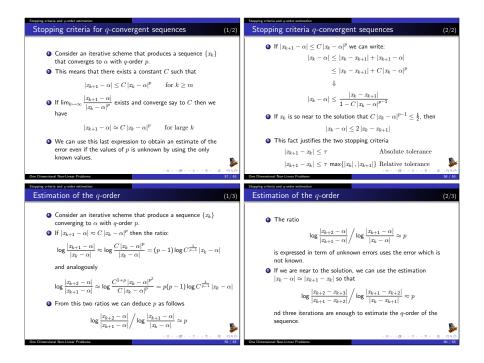
$$|g'(\alpha)| = 1 - \frac{1}{n} < 1$$

and the Newton-Raphson scheme is locally *a*-linearly convergent with coefficient 1 - 1/n.

Fixed-Point procedure Slow convergence

(1/2)

Newton-Raphson in fixed point form $g(x) = x - \frac{f(x)}{f'(x)}, \qquad g'(x) = \frac{f(x)f''(x)}{(f'(x))^2},$ If α is a multiple root, i.e. $f(x) = (x - \alpha)^n h(x), \quad h(\alpha) \neq 0 \quad n > 1$ it follows that $f'(x) = n(x - \alpha)^{n-1}h(x) + (x - \alpha)^n h'(x)$ $f''(x) = (x - \alpha)^{n-2} [(n^2 - n)h(x) + 2n(x - \alpha)h'(x) + (x - \alpha)^2 h''(x)]$ 53 / 63 Stopping criteria and q-order estimation Outline (2/2)The Newton-Raphson method Convergence order Stopping criteria and a-order estimation (A) (2) (3) 3 000 101 101 121 121 21 3000



Stopping criteria and q-order estimation Estimation of the q-order Conclusions (3/3)The methods presented in this lesson can be generalized for higher dimension. In particular • if the the step length is proportional to the value of f(x) as in the Newton-Raphson scheme, i.e. $|x_{t} - \alpha| \approx M |f(x_{t})|$ we Newton-Raphson can simplify the previous formula as: a multidimensional Newton scheme $\log \frac{|f(x_{k+2})|}{|f(x_{k+1})|} / \log \frac{|f(x_{k+1})|}{|f(x_k)|} \approx p$ a inevact Newton scheme Secant Brovden scheme Such estimation are useful to check the code implementation. guasi-Newton In fact, if we expect the order p and we see the order $r \neq p$, finite difference approximation of the Jacobian something is wrong in the implementation or in the theory! moreover those method can be globalized. 101-121-121 One Dimensional Non-Linear Proble References J. Stoer and R. Bulirsch Introduction to numerical analysis Springer-Verlag, Texts in Applied Mathematics, 12, 2002. J. E. Dennis, Jr. and Robert B. Schnabel Numerical Methods for Unconstrained Optimization and Nonlinear Equations SIAM, Classics in Applied Mathematics, 16, 1996. 0 1 1 M 1 1 2 1 1 2 1 3 1 3