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Generic minimization algorithm

In the following we study the convergence rate of the Generic
minimization algorithm applied to a quadratic function q(x) with
exact line search. The function

q(x) =
1

2
xT Ax− bT x + c

can be viewed as a n-dimensional generalization of the
1-dimensional parabolic model.

Generic minimization algorithm

Given an initial guess x0, let k = 0;
while not converged do

Find a descent direction pk at xk;
Compute a step size αk using a line-search along pk.
Set xk+1 = xk + αkpk and increase k by 1.

end while
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Assumption (Symmetry)

The matrix A is assumed to be symmetric, in fact,

A = ASymm + ASkew

where

ASymm =
1

2

[
A + AT

]
, ASymm = (ASymm)T

ASkew =
1

2

[
A−AT

]
, ASkew = −(ASkew )T

moreover

xT Ax = xT ASymmx + xT ASkewx = xT ASymmx

so that only the symmetric part of A contribute to q(x).
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Assumption (SPD)

The matrix A is assumed to be symmetric and positive definite, in
fact,

∇q(x)T =
1

2

(
A + AT

)
x− b = Ax− b

and

∇2q(x) =
1

2

(
A + AT

)
= A

From the sufficient condition for a minimum we have that
∇q(x?)

T = 0, i.e.

Ax? = b

and ∇2q(x?) = A is SPD.
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The toy problem (1/3)

In the following we study the convergence rate of the Steepest
Descent and Conjugate Gradient methods applied to

q(x) =
1

2
xT Ax− bT x + c

where A is an SPD matrix.

This assumption simplify the analysis but it is also useful in
the non linear case. In fact, by expanding a generic function
f(x) near its minimum x? we have

f(x) = f(x?) +∇f(x?)(x− x?)

+
1

2
(x− x?)

T∇2f(x?)(x− x?) +O(‖x− x?‖3)
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The toy problem (2/3)

By setting

A = ∇2f(x?),

b = ∇2f(x?)x? −∇f(x?)

c = f(x?)−∇f(x?)x? +
1

2
xT

?∇2f(x?)x?

we have

f(x) =
1

2
xT Ax− bT x + c +O(‖x− x?‖3)

So that we expect that when an iterate xk is near x? then we
can neglect O(‖x− x?‖3) and the asymptotic behavior is the
same of the quadratic problem.

Conjugate Direction minimization 7 / 105

The toy problem (3/3)

we can rewrite the quadratic problem in many different way as
follows

q(x) =
1

2
(x− x?)

T A(x− x?) + c′

=
1

2
(Ax− b)T A−1(Ax− b) + c′

where

c′ = c +
1

2
xT

? Ax?

This last forms are useful in the study of the steepest descent
method.
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Convergence rate of Steepest Descent iterative scheme
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Convergence rate of Steepest Descent iterative scheme The steepest descent for quadratic functions

The steepest descent for quadratic functions (1/3)

The steepest descent minimization algorithm

Given an initial guess x0, let k = 0;
while not converged do

Choose as descent direction pk = −∇q(xk)
T = b−Axk;

Compute a step size αk using a line-search along pk.
Set xk+1 = xk + αkpk and increase k by 1.

end while

Definition (Residual)

The expressions

r(x) = b−Ax, rk = b−Axk

are called the residual. We obviously have r(x) = −∇q(x)T and
r(x?) = 0.
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Convergence rate of Steepest Descent iterative scheme The steepest descent for quadratic functions

The steepest descent for quadratic functions (2/3)

We can solve exactly the problem

αk = arg min
α≥0

q(xk − αrk)

because p(α) = q(xk − αrk) is a parabola. In fact

dp(α)

dα
=

dq(xk − αrk)

dα
= −∇q(xk − αrk)rk = 0

but

0 = −∇q(xk − αrk)rk = r(xk − αrk)
T rk =

(
b−A(xk − αrk)

)T
rk

=
(
rk − αArk

)T
rk

and the minimum is at α set to
rT

k rk

rT
k Ark

.
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Convergence rate of Steepest Descent iterative scheme The steepest descent for quadratic functions

The steepest descent for quadratic functions (3/3)

The steepest descent minimization algorithm

Given an initial guess x0, let k = 0;
while not converged do

Compute rk = b−Axk;

Compute the step size αk =
rT

k rk

rT
k Ark

;

Set xk+1 = xk + αkrk and increase k by 1.
end while

Or more compactly

xk+1 = xk +
rT

k rk

rT
k Ark

rk
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Convergence rate of Steepest Descent iterative scheme The steepest descent for quadratic functions

The steepest descent reduction step (1/3)

We want bound q(xk+1) by q(xk):

q(xk+1) = q (xk + αkrk)

=
1

2
(Axk + αkArk − b)T A−1 (Axk + αkArk − b) + c′

=
1

2
(αkArk − rk)

T A−1 (αkArk − rk) + c′

=
1

2
rT

k A−1rk +
1

2
α2

kr
T
k Ark − αkr

T
k rk + c′

= q(xk) +
1

2
αk

(
αkr

T
k Ark − 2rT

k rk

)
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Convergence rate of Steepest Descent iterative scheme The steepest descent for quadratic functions

The steepest descent reduction step (2/3)

Substituting αk =
rT

k rk

rT
k Ark

we obtain

q(xk+1) = q(xk)−
1

2

(rT
k rk)

2

rT
k Ark

this shows that the steepest descent method reduce at each step
the objective function q(x).

Using the expression q(x) =
1

2
r(x)T A−1r(x) + c′ we can write:

1

2
rT

k+1A
−1rk+1 =

1

2
rT

k A−1rk −
1

2

(rT
k rk)

2

rT
k Ark
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Convergence rate of Steepest Descent iterative scheme The steepest descent for quadratic functions

The steepest descent reduction step (3/3)

or better

rT
k+1A

−1rk+1 = rT
k A−1rk

(
1−

(rT
k rk)

2

(rT
k A−1rk)(r

T
k Ark)

)
noticing that rk = b−Axk = Ax?−Axk = A(x?−xk) we have

‖x? − xk+1‖2A = ‖x? − xk‖2A
(

1−
(rT

k rk)
2

(rT
k A−1rk)(r

T
k Ark)

)
where

‖x‖A =
√

xT Ax

is the energy norm induced by the SPD matrix A.

Conjugate Direction minimization 15 / 105

Convergence rate of Steepest Descent iterative scheme The steepest descent convergence rate

The estimate of the convergence rate for the steepest descent
method is linked to the estimate of the term

(rT
k rk)

2

(rT
k A−1rk)(r

T
k Ark)

in particular we can prove

Lemma (Kantorovic)

Let A ∈ Rn×n an SPD matrix then the following inequality is valid

1 ≤ (xT Ax)(xT A−1x)

(xT x)2
≤ (M + m)2

4 M m

for all x 6= 0. Where m = λ1 is the smallest eigenvalue of A and
M = λn is the biggest eigenvalue of A.
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Convergence rate of Steepest Descent iterative scheme The steepest descent convergence rate

Proof. (1/5).

STEP 1: problem reformulation. First of all notice that

(xT Ax)(xT A−1x)

(xT x)2
=

(yT Ay)(yT A−1y)

(yT y)2

for all y = αx with α 6= 0. Choosing α = ‖x‖−1 have:

min
‖z‖=1

(zT Az)(zT A−1z) ≤

(xT Ax)(xT A−1x)

(xT x)2

≤ max
‖z‖=1

(zT Az)(zT A−1z)
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Convergence rate of Steepest Descent iterative scheme The steepest descent convergence rate

Proof. (2/5).

STEP 2: eigenvector expansions. Matrix A ∈ Rn×n is an SPD
matrix so that there exists u1, u2, . . . , un a complete orthonormal
eigenvectors set with 0 < λ1 ≤ λ2 ≤ · · · ≤ λn corresponding
eigenvalues. Let be x ∈ Rn then

x =
∑n

k=1
αkuk, xT x =

∑n

k=1
α2

k

so that (xT Ax)(xT A−1x) = h(α1, . . . , αn) where

h(α1, . . . , αn) =
(∑n

k=1
α2

kλk

) (∑n

k=1
α2

kλ
−1
k

)
then the lemma can be reformulated:

Find maxima and minima of h(α1, . . . , αn)

subject to
∑n

k=1 α2
k = 1.
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Convergence rate of Steepest Descent iterative scheme The steepest descent convergence rate

Proof. (3/5).

STEP 3: problem reduction. By using Lagrange multiplier maxima
and minima are the stationary points of:

g(α1, . . . , αn, µ) = h(α1, . . . , αn) + µ
(∑n

k=1
α2

k − 1
)

setting A =
∑n

k=1 α2
kλk and B =

∑n
k=1 α2

kλ
−1
k we have

∂g(α1, . . . , αn, µ)

∂αk
= 2αk

(
λkB + λ−1

k A + µ) = 0

so that

1 Or αk = 0;

2 Or λk is a root of the quadratic polynomial λ2B + λµ + A.

in any case there are at most 2 coefficients α’s not zero. a

athe argument should be improved in the case of multiple eigenvalues
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Convergence rate of Steepest Descent iterative scheme The steepest descent convergence rate

Proof. (4/5).

STEP 4: problem reformulation. say αi and αj are the only non
zero coefficients, then α2

i + α2
j = 1 and we can write

h(α1, . . . , αn) =
(
α2

i λi + α2
jλj

)(
α2

i λ
−1
i + α2

jλ
−1
j

)
= α4

i + α4
j + α2

i α
2
j

(
λi

λj
+

λj

λi

)
= α2

i (1− α2
j ) + α2

j (1− α2
i ) + α2

i α
2
j

(
λi

λj
+

λj

λi

)
= 1 + α2

i α
2
j

(
λi

λj
+

λj

λi
− 2

)

= 1 + α2
i (1− α2

i )
(λi − λj)

2

λiλj
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Convergence rate of Steepest Descent iterative scheme The steepest descent convergence rate

Proof. (5/5).

STEP 5: bounding maxima and minima. notice that

0 ≤ β(1− β) ≤ 1

4
, ∀β ∈ [0, 1]

1 ≤ 1 + α2
i (1− α2

i )
(λi − λj)

2

λiλj
≤ 1 +

(λi − λj)
2

4λiλj
=

(λi + λj)
2

4λiλj

to bound (λi + λj)
2/(4λiλj) consider the function

f(x) = (1 + x)2/x which is increasing for x ≥ 1 so that we have

(λi + λj)
2

4λiλj
≤ (M + m)2

4 M m

and finally

1 ≤ h(α1, . . . , αn) ≤ (M + m)2

4 M m

Conjugate Direction minimization 21 / 105

Convergence rate of Steepest Descent iterative scheme The steepest descent convergence rate

Convergence rate of Steepest Descent

The Kantorovich inequality permits to prove:

Theorem (Convergence rate of Steepest Descent)

Let A ∈ Rn×n an SPD matrix then the steepest descent method:

xk+1 = xk +
rT

k rk

rT
k Ark

rk

converge to the solution x? = A−1b with at least linear q-rate in
the norm ‖·‖A. Moreover we have the error estimate

‖xk+1 − x?‖A ≤
κ− 1

κ + 1
‖xk − x?‖A

κ = M/m is the condition number where m = λ1 is the smallest
eigenvalue of A and M = λn is the biggest eigenvalue of A.
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Convergence rate of Steepest Descent iterative scheme The steepest descent convergence rate

Proof.

Remember from slide N◦15

‖x? − xk+1‖2A = ‖x? − xk‖2A
(

1−
(rT

k rk)
2

(rT
k A−1rk)(r

T
k Ark)

)
from Kantorovich inequality

1−
(rT

k rk)
2

(rT
k A−1rk)(r

T
k Ark)

≤ 1− 4 M m

(M + m)2
=

(M −m)2

(M + m)2

so that

‖x? − xk+1‖A ≤
M −m

M + m
‖x? − xk‖A
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Convergence rate of Steepest Descent iterative scheme The steepest descent convergence rate

Remark (One step convergence)

The steepest descent method can converge in one iteration if
κ = 1 or when r0 = uk where uk is an eigenvector of A.

1 In the first case (κ = 1) we have A = βI for some β > 0 so it
is not interesting.

2 In the second case we have

(uT
k uk)

2

(uT
k A−1uk)(u

T
k Auk)

=
(uT

k uk)
2

λ−1
k (uT

k uk)λk(u
T
k uk)

= 1

in both cases we have r1 = 0 i.e. we have found the solution.
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Conjugate direction method
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Conjugate direction method Conjugate vectors

Conjugate direction method

Definition (Conjugate vector)

Given two vectors p and q in Rn are conjugate respect to A if
they are orthogonal respect the scalar product induced by A; i.e.,

pT Aq =
n∑

i,j=1

Aijpiqj = 0.

Clearly, n vectors p1,p2, . . . pn ∈ Rn that are pair wise conjugated
respect to A form a base of Rn.
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Conjugate direction method Conjugate vectors

Problem (Linear system)

Find the minimum of q(x) = 1
2xT Ax− bT x + c is equivalent to

solve the first order necessary condition, i.e.

Find x? ∈ Rn such that: Ax? = b.

Observation

Consider x0 ∈ Rn and decompose the error e0 = x? − x0 by the
conjugate vectors p1, p2, . . . ,pn ∈ Rn:

e0 = x? − x0 = σ1p1 + σ2p2 + · · ·+ σnpn.

Evaluating the coefficients σ1, σ2, . . . , σn ∈ R is equivalent to
solve the problem Ax? = b, because knowing e0 we have

x? = x0 + e0.
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Conjugate direction method Conjugate vectors

Observation

Using conjugacy the coefficients σ1, σ2, . . . , σn ∈ R can be
computed as

σi =
pT

i Ae0

pT
i Api

, for i = 1, 2, . . . , n.

In fact, for all 1 ≤ i ≤ n, we have

pT
i Ae0 = pT

i A (σ1p1 + σ2p2 + . . . + σnpn) ,

= σ1p
T
i Ap1 + σ2p

T
i Ap2 + . . . + σnpT

i Apn,

= σip
T
i Api,

because pT
i Apj = 0 for i 6= j.
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Conjugate direction method Conjugate vectors

The conjugate direction method evaluate the coefficients σ1,
σ2, . . . , σn ∈ R recursively in n steps, solving for k ≥ 0 the
minimization problem:

Conjugate direction method

Given x0; k ← 0;
repeat

k ← k + 1;
Find xk ∈ x0 + Vk such that:

xk = arg min
x∈x0+Vk

‖x? − x‖A

until k = n

where Vk is the subspace of Rn generated by the first k conjugate
direction; i.e.,

Vk = span
{
p1,p2, . . . ,pk

}
.
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Conjugate direction method First step

Step: x0 → x1

At the first step we consider the subspace x0 + span{p1} which
consists in vectors of the form

x(α) = x0 + αp1 α ∈ R

The minimization problem becomes:

Minimization step x0 → x1

Find x1 = x0 + α1p1 (i.e., find α1!) such that:

‖x? − x1‖A = min
α∈R
‖x? − (x0 + αp1)‖A ,
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Conjugate direction method First step

Solving first step method 1

The minimization problem is the minimum respect to α of the
quadratic:

Φ(α) = ‖x? − (x0 + αp1)‖2A ,

= (x? − (x0 + αp1))
T A (x? − (x0 + αp1)) ,

= (e0 − αp1)
T A (e0 − αp1) ,

= eT
0 Ae0 − 2αpT

1 Ae0 + α2pT
1 Ap1.

minimum is found by imposing:

dΦ(α)

dα
= −2pT

1 Ae0 + 2αpT
1 Ap1 = 0 ⇒ α1 =

pT
1 Ae0

pT
1 Ap1
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Conjugate direction method First step

Solving first step method 2 (1/2)

Remember the error expansion:

x? − x0 = σ1p1 + σ2p2 + · · ·+ σnpn.

Let x(α) = x0 + αp1, the difference x? − x(α) becomes:

x? − x(α) = (σ1 − α)p1 + σ2p2 + . . . + σnpn

due to conjugacy the error ‖x? − x(α)‖A becomes

‖x? − x(α)‖2A

=
(
(σ1 − α)p1 +

n∑
i=2

σipi

)T
A

(
(σ1 − α)p1 +

n∑
j=2

σjpi

)

= (σ1 − α)2pT
1 Ap1 +

n∑
j=2

σ2
j p

T
j Apj
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Conjugate direction method First step

Solving first step method 2 (2/2)

Because

‖x? − x(α)‖2A = (σ1 − α)2 ‖p1‖2A +
n∑

i=2

σ2
2 ‖pi‖2A ,

we have that

‖x? − x(α1)‖2A =
n∑

i=2

σ2
i ‖pi‖2A ≤ ‖x? − x(α)‖2A for all α 6= σ1

so that minimum is found by imposing α1 = σ1:

α1 =
pT

1 Ae0

pT
1 Ap1

This argument can be generalized for all k > 1 (see next slides).
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Conjugate direction method kth Step

Step, xk−1 → xk

For the step from k − 1 to k we consider the subspace of Rn

Vk = span
{
p1,p2, . . . ,pk

}
which contains vectors of the form:

x(α(1), α(2), . . . , α(k)) = x0 + α(1)p1 + α(2)p2 + . . . + α(k)pk

The minimization problem becomes:

Minimization step xk−1 → xk

Find xk = x0 + α1p1 + α2p2 + . . . + αkpk (i.e. α1, α2, . . . , αk)
such that:

‖x? − xk‖A = min
α(1),α(2),...,α(k)∈R

∥∥∥x? − x(α(1), α(2), . . . , α(k))
∥∥∥

A
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Conjugate direction method kth Step

Solving kth Step: xk−1 → xk (1/2)

Remember the error expansion:

x? − x0 = σ1p1 + σ2p2 + · · ·+ σnpn.

Consider a vector of the form

x(α(1), α(2), . . . , α(k)) = x0 + α(1)p1 + α(2)p2 + . . . + α(k)pk

the error x? − x(α(1), α(2), . . . , α(k)) can be written as

x? − x(α(1), α(2), . . . , α(k)) = x? − x0 −
k∑

i=1

α(i)pi,

=
k∑

i=1

(
σi − α(i)

)
pi +

n∑
i=k+1

σipi.
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Conjugate direction method kth Step

Solving kth Step: xk−1 → xk (2/2)

using conjugacy of pi we obtain the norm of the error:∥∥∥x? − x(α(1), α(2), . . . , α(k))
∥∥∥2

A

=
k∑

i=1

(
σi − α(i)

)2 ‖pi‖2A +
n∑

i=k+1

σ2
i ‖pi‖2A .

So that minimum is found by imposing αi = σi: for i = 1, 2, . . . , k.

αi =
pT

i Ae0

pT
i Api

i = 1, 2, . . . , k

Conjugate Direction minimization 36 / 105



Conjugate direction method Successive one dimensional minimization

Successive one dimensional minimization (1/3)

notice that αi = σi and that

xk = x0 + α1p1 + · · ·+ αkpk

= xk−1 + αkpk

so that xk−1 contains k − 1 coefficients αi for the
minimization.

if we consider the one dimensional minimization on the
subspace xk−1 + span{pk} we find again xk!
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Conjugate direction method Successive one dimensional minimization

Successive one dimensional minimization (2/3)

Consider a vector of the form

x(α) = xk−1 + αpk

remember that xk−1 = x0 + α1p1 + · · ·+ αk−1pk−1 so that the
error x? − x(α) can be written as

x? − x(α) = x? − x0 −
k−1∑
i=1

αipi + αpk

=
k−1∑
i=1

(
σi − αi

)
pi +

(
σk − α

)
pk +

n∑
i=k+1

σipi.

due to the equality σi = αi the blue part of the expression is 0.
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Conjugate direction method Successive one dimensional minimization

Successive one dimensional minimization (3/3)

Using conjugacy of pi we obtain the norm of the error:

‖x? − x(α)‖2A =
(
σk − α

)2 ‖pk‖2A +
n∑

i=k+1

σ2
i ‖pi‖2A .

So that minimum is found by imposing α = σk:

αk =
pT

k Ae0

pT
k Apk

Remark

This observation permit to perform the minimization on the
k-dimensional space x0 + Vk as successive one dimensional
minimizations along the conjugate directions pk!.
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Conjugate direction method Successive one dimensional minimization

Problem (one dimensional successive minimization)

Find xk = xk−1 + αkpk such that:

‖x? − xk‖A = min
α∈R
‖x? − (xk−1 + αpk)‖A ,

The solution is the minimum respect to α of the quadratic:

Φ(α) = (x? − (xk−1 + αpk))
T A (x? − (xk−1 + αpk)) ,

= (ek−1 − αpk)
T A (ek−1 − αpk) ,

= eT
k−1Aek−1 − 2αpT

k Aek−1 + α2pT
k Apk.

minimum is found by imposing:

dΦ(α)

dα
= −2pT

k Aek−1 + 2αpT
k Apk = 0 ⇒ αk =

pT
k Aek−1

pT
k Apk
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Conjugate direction method Successive one dimensional minimization

In the case of minimization on the subspace x0 + Vk we have:

αk = pT
k Ae0 / pT

k Apk

In the case of one dimensional minimization on the subspace
xk−1 + span{pk} we have:

αk = pT
k Aek−1 / pT

k Apk

Apparently they are different results, however by using the
conjugacy of the vectors pi we have

pT
k Aek−1 = pT

k A(x? − xk−1)

= pT
k A

(
x? − (x0 + α1p1 + · · ·+ αk−1pk−1)

)
= pT

k Ae0 − α1p
T
k Ap1 − · · · − αk−1p

T
k Apk−1

= pT
k Ae0
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Conjugate direction method Successive one dimensional minimization

The one step minimization in the space x0 + Vn and the
successive minimization in the space xk−1 + span{pk},
k = 1, 2, . . . , n are equivalent if pis are conjugate.

The successive minimization is useful when pis are not known
in advance but must be computed as the minimization process
proceeds.

The evaluation of αk is apparently not computable because ei

is not known. However noticing

Aek = A(x? − xk) = b−Axk = rk

we can write

αk = pT
k Aek−1 / pT

k Apk = pT
k rk−1 / pT

k Apk =

Finally for the residual is valid the recurrence

rk = b−Axk = b−A(xk−1 + αkpk) = rk−1 − αkApk.
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Conjugate direction method Conjugate direction minimization

Conjugate direction minimization

Algorithm (Conjugate direction minimization)

k ← 0; x0 assigned;
r0 ← b−Ax0;
while not converged do

k ← k + 1;

αk ←
rT

k−1p
T
k

pkApk
;

xk ← xk−1 + αkpk;
rk ← rk−1 − αkApk;

end while

Observation (Computazional cost)

The conjugate direction minimization requires at each step one
matrix–vector product for the evaluation of αk and two update
AXPY for xk and rk.
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Conjugate direction method Conjugate direction minimization

Monotonic behavior of the error

Remark (Monotonic behavior of the error)

The energy norm of the error ‖ek‖A is monotonically decreasing in
k. In fact:

ek = x? − xk = αk+1pk+1 + . . . + αnpn,

and by conjugacy

‖ek‖2A = ‖x? − xk‖2A = σ2
k+1 ‖pk+1‖2A + . . . + σ2

n ‖pn‖2A .

Finally from this relation we have en = 0.

Conjugate Direction minimization 44 / 105



Conjugate Gradient method
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Conjugate Gradient method

Conjugate Gradient method

The Conjugate Gradient method combine the Conjugate Direction
method with an orthogonalization process (like Gram-Schmidt)
applied to the residual to construct the conjugate directions.
In fact, because A define a scalar product in the next slide we
prove:

each residue is orthogonal to the previous conjugate
directions, and consequently linearly independent from the
previous conjugate directions.

if the residual is not null is can be used to construct a new
conjugate direction.
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Conjugate Gradient method

Orthogonality of the residue rk respect Vk

The residue rk is orthogonal to p1, p2, . . . , pk. In fact, from
the error expansion

ek = αk+1pk+1 + αk+2pk+2 + · · ·+ αnpn

because rk = Aek, for i = 1, 2, . . . , k we have

pT
i rk = pT

i Aek

= pT
i A

n∑
j=k+1

αjpj =
n∑

j=k+1

αjp
T
i Apj

= 0
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Conjugate Gradient method

Building new conjugate direction (1/2)

The conjugate direction method build one new direction at
each step.

If rk 6= 0 it can be used to build the new direction pk+1 by a
Gram-Schmidt orthogonalization process

pk+1 = rk + β
(k+1)
1 p1 + β

(k+1)
2 p2 + . . . + β

(k+1)
k pk,

where the k coefficients β
(k+1)
1 , β

(k+1)
2 , . . . , β

(k+1)
k must

satisfy:

pT
i Apk+1 = 0, for i = 1, 2, . . . , k.
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Conjugate Gradient method

Building new conjugate direction (2/2)

(repeating from previous slide)

pk+1 = rk + β
(k+1)
1 p1 + β

(k+1)
2 p2 + · · ·+ β

(k+1)
k pk,

expanding the expression:

0 = pT
i Apk+1,

= pT
i A

(
rk + β

(k+1)
1 p1 + β

(k+1)
2 p2 + · · ·+ β

(k+1)
k pk

)
,

= pT
i Ark + β

(k+1)
i pT

i Api,

⇒ β
(k+1)
i = −pT

i Ark

pT
i Api

i = 1, 2, . . . , k
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Conjugate Gradient method

The choice of the residual rk 6= 0 for the construction of the new
conjugate direction pk+1 has three important consequences:

1 simplification of the expression for αk;

2 Orthogonality of the residual rk from the previous residue r0,
r1, . . . , rk−1;

3 three point formula and simplification of the coefficients

β
(k+1)
i .

this facts will be examined in the next slides.
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Conjugate Gradient method

Simplification of the expression for αk

Writing the expression for pk from the orthogonalization process

pk = rk−1 + β
(k+1)
1 p1 + β

(k+1)
2 p2 + . . . + β

(k+1)
k−1 pk−1,

using orthogonality of rk−1 and the vectors p1, p2, . . . , pk−1, (see
slide N.47) we have

rT
k−1pk = rT

k−1

(
rk−1 + β

(k+1)
1 p1 + β

(k+1)
3 p2 + . . . + β

(k+1)
k−1 pk−1

)
,

= rT
k−1rk−1.

recalling the definition of αk it follows:

αk =
eT

k−1Apk

pT
k Apk

=
rT

k−1pk

pT
k Apk

=
rT

k−1rk−1

pT
k Apk
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Conjugate Gradient method

Orthogonally of the residue rk from r0, r1, . . . , rk−1

From the definition of pi+1 it follows:

pi+1 = ri + β
(i+1)
1 p1 + β

(i+1)
2 p2 + . . . + β

(i+1)
i pi,

⇒ ri ∈ span{p1,p2, . . . ,pi,pi+1} = Vi+1

(
obvious

)
using orthogonality of rk and the vectors p1, p2, . . . , pk, (see slide
N.47) for i < k we have

rT
k ri = rT

k

(
pi+1 −

i∑
j=1

β
(i+1)
j pj

)
,

= rT
k pi+1 −

i∑
j=1

β
(i+1)
j rT

k pj = 0.

Conjugate Direction minimization 52 / 105



Conjugate Gradient method

Three point formula and simplification of β
(k+1)
i

From the relation rT
k ri = rT

k (ri−1 − αiApi) we deduce

rT
k Api =

rT
k ri−1 − rT

k ri

αi
=

{
−rT

k rk/αk if i = k;

0 if i < k;

remembering that αk = rT
k−1rk−1 / pT

k Apk we obtain

β
(k+1)
i = −

rT
k Api

pT
i Api

=


rT

k rk

rT
k−1rk−1

i = k;

0 i < k;

i.e. there is only one non zero coefficient β
(k+1)
k , so we write

βk = β
(k+1)
k and obtain the three point formula:

pk+1 = rk + βkpk
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Conjugate Gradient method

Conjugate gradient algorithm

initial step:
k ← 0; x0 assigned;
r0 ← b−Ax0;
p1 ← r0;
while ‖rk‖ > ε do

k ← k + 1;
Conjugate direction method

αk ←
rT

k−1rk−1

pT
k Apk

;

xk ← xk−1 + αkpk;
rk ← rk−1 − αkApk;
Residual orthogonalization

βk ←
rT

k rk

rT
k−1rk−1

;

pk+1 ← rk + βkpk;
end while
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Conjugate Gradient convergence rate Polynomial residual expansions

Polynomial residual expansions (1/5)

From the Conjugate Gradient iterative scheme on slide 54 we have

Lemma

There exists k-degree polynomial Pk(x) and Qk(x) such that

rk = Pk(A)r0 k = 0, 1, . . . , n

pk = Qk−1(A)r0 k = 1, 2, . . . , n

Moreover Pk(0) = 1 for all k.

Proof. (1/2).

The proof is by induction.
Base k = 0

p1 = r0

so that P0(x) = 1 and Q0(x) = 1.

Conjugate Direction minimization 56 / 105



Conjugate Gradient convergence rate Polynomial residual expansions

Polynomial residual expansions (2/5)

Proof. (2/2).

let the expansion valid for k − 1 Consider the recursion for the
residual:

rk = rk−1 − αkApk

= Pk−1(A)r0 + αkAQk−1(A)r0

=
(
Pk−1(A) + αkAQk−1(A)

)
r0

then Pk(x) = Pk−1(x) + αkxQk−1(x) and Pk(0) = Pk−1(0) = 1.
Consider the recursion for the conjugate direction

pk+1 = Pk(A)r0 + βkQk−1(A)r0

=
(
Pk(A) + βkQk−1(A)

)
r0

then Qk(x) = Pk(x) + βkQk−1(x).
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Conjugate Gradient convergence rate Polynomial residual expansions

Polynomial residual expansions (3/5)

We have the following trivial equality

Vk = span
{
p1,p2, . . . pk

}
= span

{
r0, r1, . . . rk−1

}
=

{
q(A)r0 | q ∈ Pk−1,

}
=

{
p(A)e0 | p ∈ Pk, p(0) = 0

}
In this way the optimality of CG step can be written as

‖x? − xk‖A ≤ ‖x? − x‖A , ∀x ∈ x0 + Vk

‖x? − xk‖A ≤ ‖x? − (x0 + p(A)e0)‖A , ∀p ∈ Pk, p(0) = 0

‖x? − xk‖A ≤ ‖P (A)e0‖A , ∀P ∈ Pk, P (0) = 1
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Conjugate Gradient convergence rate Polynomial residual expansions

Polynomial residual expansions (4/5)

Recalling that

A−1rk = A−1(b−Axk) = x? − xk = ek

we can write

ek = x? − xk = A−1rk

= A−1Pk(A)r0

= Pk(A)A−1r0

= Pk(A)(x? − x0)

= Pk(A)e0.

due to the optimality of the conjugate gradient we have:
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Conjugate Gradient convergence rate Polynomial residual expansions

Polynomial residual expansions (5/5)

Using the results of slide 58 and 59 we can write

ek = Pk(A)e0,

‖ek‖A = ‖Pk(A)e0‖A ≤ ‖P (A)e0‖A ∀P ∈ Pk, P (0) = 1

and from this equation we have the estimate

‖ek‖A ≤ inf
P∈Pk, P (0)=1

‖P (A)e0‖A

So an estimate of the form

inf
P∈Pk, P (0)=1

‖P (A)e0‖A ≤ Ck ‖e0‖A

can be used to proof a convergence rate theorem, as for the
steepest descent algorithm.
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Conjugate Gradient convergence rate Convergence rate calculation

Convergence rate calculation

Lemma

Let A ∈ Rn×n an SPD matrix, and p ∈ Pk a polynomial, then

‖p(A)x‖A ≤ ‖p(A)‖2 ‖x‖A

Proof. (1/2).

The matrix A is SPD so that we can write

A = UT ΛU , Λ = diag{λ1, λ2, . . . , λn}

where U is an orthogonal matrix (i.e. UT U = I) and Λ ≥ 0 is
diagonal. We can define the SPD matrix A1/2 as follows

A1/2 = UT Λ1/2U , Λ1/2 = diag{λ1/2
1 , λ

1/2
2 , . . . , λ1/2

n }

and obviously A1/2A1/2 = A.
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Conjugate Gradient convergence rate Convergence rate calculation

Proof. (2/2).

Notice that

‖x‖2A = xT Ax = xT A1/2A1/2x =
∥∥∥A1/2x

∥∥∥2

2

so that

‖p(A)x‖A =
∥∥∥A1/2p(A)x

∥∥∥
2

=
∥∥∥p(A)A1/2x

∥∥∥
2

≤ ‖p(A)‖2
∥∥∥A1/2x

∥∥∥
2

= ‖p(A)‖2 ‖x‖A
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Conjugate Gradient convergence rate Convergence rate calculation

Lemma

Let A ∈ Rn×n an SPD matrix, and p ∈ Pk a polynomial, then

‖p(A)‖2 = max
λ∈σ(A)

|p(λ)|

Proof.

The matrix p(A) is symmetric, and for a generic symmetric matrix
B we have

‖B‖2 = max
λ∈σ(B)

|λ|

observing that if λ is an eigenvalue of A then p(λ) is an eigenvalue
of p(A) the thesis easily follows.

Conjugate Direction minimization 63 / 105

Conjugate Gradient convergence rate Convergence rate calculation

Starting the error estimate

‖ek‖A ≤ inf
P∈Pk, P (0)=1

‖P (A)e0‖A

Combining the last two lemma we easily obtain the estimate

‖ek‖A ≤ inf
P∈Pk, P (0)=1

[
max

λ∈σ(A)
|P (λ)|

]
‖e0‖A

The convergence rate is estimated by bounding the constant

inf
P∈Pk, P (0)=1

[
max

λ∈σ(A)
|P (λ)|

]
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Conjugate Gradient convergence rate Finite termination of Conjugate Gradient

Finite termination of Conjugate Gradient

Theorem (Finite termination of Conjugate Gradient)

Let A ∈ Rn×n an SPD matrix, the the Conjugate Gradient applied
to the linear system Ax = b terminate finding the exact solution
in at most n-step.

Proof.

From the estimate

‖ek‖A ≤ inf
P∈Pk, P (0)=1

[
max

λ∈σ(A)
|P (λ)|

]
‖e0‖A

choosing P (x) =
∏

λ∈σ(A)

(x− λ)
/ ∏

λ∈σ(A)

(0− λ)

we have maxλ∈σ(A) |P (λ)| = 0 and ‖en‖A = 0.
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Conjugate Gradient convergence rate Convergence rate of Conjugate Gradient

Convergence rate of Conjugate Gradient

1 The constant

inf
P∈Pk, P (0)=1

[
max

λ∈σ(A)
|P (λ)|

]
is not easy to evaluate,

2 The following bound, is useful

max
λ∈σ(A)

|P (λ)| ≤ max
λ∈[λ1,λn]

|P (λ)|

3 in particular the final estimate will be obtained by

inf
P∈Pk, P (0)=1

[
max

λ∈σ(A)
|P (λ)|

]
≤ max

λ∈[λ1,λn]

∣∣P̄k(λ)
∣∣

where P̄k(x) is an opportune k-degree polynomial for which
P̄k(0) = 1 and it is easy to evaluate maxλ∈[λ1,λn]

∣∣P̄k(λ)
∣∣.
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Conjugate Gradient convergence rate Chebyshev Polynomials

Chebyshev Polynomials (1/4)

1 The Chebyshev Polynomials of the First Kind are the right
polynomial for this estimate. This polynomial have the
following definition in the interval [−1, 1]:

Tk(x) = cos(k arccos(x))

2 Another equivalent definition valid in the interval (−∞,∞) is
the following

Tk(x) =
1

2

[(
x +

√
x2 − 1

)k
+

(
x−

√
x2 − 1

)k
]

3 In spite of these definition, Tk(x) is effectively a polynomial.
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Conjugate Gradient convergence rate Chebyshev Polynomials

Chebyshev Polynomials (2/4)

Some example of Chebyshev Polynomials.
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Conjugate Gradient convergence rate Chebyshev Polynomials

Chebyshev Polynomials (3/4)

1 It is easy to show that Tk(x) is a polynomial by the use of

cos(α + β) = cos α cos β − sin α sin β

cos(α + β) + cos(α− β) = 2 cos α cos β

let θ = arccos(x):
1 T0(x) = cos(0 θ) = 1;
2 T1(x) = cos(1 θ) = x;
3 T2(x) = cos(2 θ) = cos(θ)2− sin(θ)2 = 2 cos(θ)2−1 = 2x2−1;
4 Tk+1(x) + Tk−1(x) = cos((k + 1)θ) + cos((k − 1)θ)

= 2 cos(kθ) cos(θ) = 2 xTk(x)

2 In general we have the following recurrence:
1 T0(x) = 1;
2 T1(x) = x;
3 Tk+1(x) = 2 xTk(x)− Tk−1(x).
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Conjugate Gradient convergence rate Chebyshev Polynomials

Chebyshev Polynomials (4/4)

Solving the recurrence:
1 T0(x) = 1;
2 T1(x) = x;
3 Tk+1(x) = 2 xTk(x)− Tk−1(x).

We obtain the explicit form of the Chebyshev Polynomials

Tk(x) =
1

2

[(
x +

√
x2 − 1

)k
+

(
x−

√
x2 − 1

)k
]

The translated and scaled polynomial is useful in the study of
the conjugate gradient method:

Tk(x; a, b) = Tk

(a + b− 2x

b− a

)
where we have |Tk(x; a, b)| ≤ 1 for all x ∈ [a, b].
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Conjugate Gradient convergence rate Convergence rate of Conjugate Gradient method

Convergence rate of Conjugate Gradient method

Theorem (Convergence rate of Conjugate Gradient method)

Let A ∈ Rn×n an SPD matrix then the Conjugate Gradient
method converge to the solution x? = A−1b with at least linear
r-rate in the norm ‖·‖A. Moreover we have the error estimate

‖ek‖A . 2

(√
κ− 1√
κ + 1

)k

‖e0‖A

κ = M/m is the condition number where m = λ1 is the smallest
eigenvalue of A and M = λn is the biggest eigenvalue of A.

The expression ak . bk means that for all ε > 0 there exists k0 > 0
such that:

ak ≤ (1− ε)bk, ∀k > k0
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Conjugate Gradient convergence rate Convergence rate of Conjugate Gradient method

Proof.

From the estimate

‖ek‖A ≤ max
λ∈[m,M ]

|P (λ)| ‖e0‖A , P ∈ Pk, P (0) = 1

choosing P (x) = Tk(x;m,M)/Tk(0;m,M) from the fact that
|Tk(x;m,M)| ≤ 1 for x ∈ [m,M ] we have

‖ek‖A ≤ Tk(0;m,M)−1 ‖e0‖A = Tk

(
M + m

M −m

)−1

‖e0‖A

observe that M+m
M−m = κ+1

κ−1 and

Tk

(
κ + 1

κ− 1

)−1

= 2

[(√
κ + 1√
κ− 1

)k

+

(√
κ− 1√
κ + 1

)k ]−1

finally notice that
(√

κ−1√
κ+1

)k
→ 0 as k →∞.
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Preconditioning the Conjugate Gradient method Preconditioning

Preconditioning

Problem (Preconditioned linear system)

Given A,P ∈ Rn×n, with A an SPD matrix and P non singular
matrix and b ∈ Rn.

Find x? ∈ Rn such that: P−T Ax? = P−T b.

A good choice for P should be such that M = P T P ≈ A, where
≈ denotes that M is an approximation of A in some sense to
precise later.
Notice that:

P non singular imply:

P−T (b−Ax) = 0 ⇐⇒ b−Ax = 0;

A SPD imply Ã = P−T AP−1 is also SPD (obvious proof).
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Preconditioning the Conjugate Gradient method Preconditioning

Now we reformulate the preconditioned system:

Problem (Preconditioned linear system)

Given A,P ∈ Rn×n, with A an SPD matrix and P non singular
matrix and b ∈ Rn the preconditioned problem is the following:

Find x̃? ∈ Rn such that: Ãx̃? = b̃

where

Ã = P−T AP−1 b̃ = P−T b

notice that if x? is the solution of the linear system Ax = b then
x̃? = Px? is the solution of the linear system Ãx = b̃.
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Preconditioning the Conjugate Gradient method Preconditioning

PCG: preliminary version

initial step:
k ← 0; x0 assigned;
x̃0 ← Px0; r̃0 ← b̃− Ãx̃0; p̃1 ← r̃0;
while ‖r̃k‖ > ε do

k ← k + 1;
Conjugate direction method

α̃k ←
erT
k−1 erk−1epT

k
eAepk

;

x̃k ← x̃k−1 + α̃kp̃k;
r̃k ← r̃k−1 − α̃kÃp̃k;
Residual orthogonalization

β̃k ←
erT
k erkerT

k−1 erk−1
;

p̃k+1 ← r̃k + β̃kp̃k;
end while
final step
P−1x̃k;
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Preconditioning the Conjugate Gradient method CG reformulation

Conjugate gradient algorithm applied to Ãx̃ = b̃ require the
evaluation of thing like:

Ãp̃k = P−T AP−1p̃k.

this can be done without evaluate directly the matrix Ã, by the
following operations:

1 solve Ps′k = p̃k for s′k = P−1p̃k;

2 evaluate s′′k = As′k;

3 solve P T s′′′k = s′′k for s′′′k = P−T s′′.

Step 1 and 3 require the solution of two auxiliary linear system.
This is not a big problem if P and P T are triangular matrices (see
e.g. incomplete Cholesky).
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Preconditioning the Conjugate Gradient method CG reformulation

However. . . we can reformulate the algorithm using only the
matrices A and P !

Definition

For all k ≥ 1, we introduce the vector qk = P−1p̃.

Observation

If the vectors p̃1, p̃2, . . . p̃k for all 1 ≤ k ≤ n are Ã-conjugate,
then the corresponding vectors q1, q2, . . . qk are A-conjugate.
In fact:

qT
j Aqi = p̃T

j P−T︸ ︷︷ ︸
=qT

j

A P−1p̃i︸ ︷︷ ︸
=qT

j

= p̃T
j Ã︸︷︷︸

= P−T AP−1

p̃i = 0, if i 6= j,

that is a consequence of Ã-conjugation of vectors p̃i.
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Preconditioning the Conjugate Gradient method CG reformulation

Definition

For all k ≥ 1, we introduce the vectors

xk = xk−1 + α̃kqk.

Observation

If we assume, by construction, x̃0 = Px0, then we have

x̃k = Pxk, for all k with 1 ≤ k ≤ n.

In fact, if x̃k−1 = Pxk−1 (inductive hypothesis), then

x̃k = x̃k−1 + α̃kp̃k [preconditioned CG]

= Pxk−1 + α̃kPqk [inductive Hyp. defs of qk]

= P (xk−1 + α̃kqk) [obvious]

= Pxk [defs. of xk]
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Preconditioning the Conjugate Gradient method CG reformulation

Observation

Because x̃k = Pxk for all k ≥ 0, we have the recurrence between
the corresponding residue r̃k = b̃− Ãx̃ and rk = b−Axk:

r̃k = P−T rk.

In fact,

r̃k = b̃− Ãx̃k, [defs. of r̃k]

= P−T b− P−T AP−1Pxk, [defs. of b̃, Ã, x̃k]

= P−T (b−Axk) , [obvious]

= P−T rk. [defs. of rk]
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Preconditioning the Conjugate Gradient method CG reformulation

Definition

For all k, with 1 ≤ k ≤ n, the vector zk is the solution of the
linear system

Mzk = rk.

where M = P T P . Formally,

zk = M−1rk = P−1P−T rk.

Using the vectors {zk},
we can express α̃k and β̃k in terms of A, the residual rk, and
conjugate direction qk;

we can build a recurrence relation for the A-conjugate
directions qk.
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Preconditioning the Conjugate Gradient method CG reformulation

Observation

α̃k =
r̃T

k−1r̃k−1

p̃T
k Ãp̃k

=
rk−1P

−1P−T rk−1

qT
k P T P−T AP−1Pqk

=
rk−1M

−1rk−1

qkAqk
,

=
rk−1zk−1

qkAqk
.

Observation

β̃k =
r̃T

k r̃k

r̃T
k−1r̃k−1

=
rT

k P−1P−T rk

rT
k−1P

−1P−T rk−1
=

rT
k M−1rk

rT
k−1M

−1rk−1
,

=
rT

k zk

rT
k−1zk−1

.
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Preconditioning the Conjugate Gradient method CG reformulation

Observation

Using the vector zk = M−1rk, the following recurrence is true

qk+1 = zk + β̃kqk

In fact:

p̃k+1 = r̃k + β̃kp̃k [preconditioned CG]

P−1p̃k+1 = P−1r̃k + β̃kP
−1p̃k [left mult P−1]

P−1p̃k+1 = P−1P−T rk + β̃kP
−1p̃k [rk+1 = P−T rk+1]

P−1p̃k+1 = M−1rk + β̃kP
−1p̃k [M−1 = P−1P−T ]

qk+1 = zk + β̃kqk [qk = P−1p̃k]
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Preconditioning the Conjugate Gradient method CG reformulation

PCG: final version

initial step:
k ← 0; x0 assigned;
r0 ← b−Ax0; q1 ← r0;
while ‖zk‖ > ε do

k ← k + 1;
Conjugate direction method

α̃k ←
rT

k−1zk−1

qT
k

eAqk
;

xk ← xk−1 + α̃kqk;
rk ← rk−1 − α̃kAqk;
Preconditioning
zk = M−1rk;
Residual orthogonalization

β̃k ←
rT

k zk

rT
k−1zk−1

;

qk+1 ← zk + β̃kqk;
end while
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Nonlinear Conjugate Gradient extension

Outline

1 Convergence rate of Steepest Descent iterative scheme

2 Conjugate direction method

3 Conjugate Gradient method

4 Conjugate Gradient convergence rate

5 Preconditioning the Conjugate Gradient method

6 Nonlinear Conjugate Gradient extension
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Nonlinear Conjugate Gradient extension

Nonlinear Conjugate Gradient extension

1 The conjugate gradient algorithm can be extended for
nonlinear minimization.

2 Fletcher and Reeves extend CG for the minimization of a
general non linear function f(x) as follows:

1 Substitute the evaluation of αk by an line search
2 Substitute the residual rk with the gradient ∇f(xk)

3 We also translate the index for the search direction pk to be
more consistent with the gradients. The resulting algorithm is
in the next slide
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Nonlinear Conjugate Gradient extension Fletcher and Reeves

Fletcher and Reeves Nonlinear Conjugate Gradient

initial step:
k ← 0; x0 assigned;
f0 ← f(x0); g0 ← ∇f(x0)

T ;
p0 ← −g0;
while ‖gk‖ > ε do

k ← k + 1;
Conjugate direction method
Compute αk by line-search;
xk ← xk−1 + αkpk−1;
gk ← ∇f(xk)

T ;
Residual orthogonalization

βFR
k ← gT

k gk

gT
k−1gk−1

;

pk ← −gk + βFR
k pk−1;

end while
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Nonlinear Conjugate Gradient extension Fletcher and Reeves

1 To ensure convergence and apply Zoutendijk global
convergence theorem we need to ensure that pk is a descent
direction.

2 p0 is a descent direction by construction, for pk we have

gT
k pk = −‖gk‖2 + βFR

k gT
k pk−1

if the line-search is exact than gT
k pk−1 = 0 because pk−1 is

the direction of the line-search. So by induction pk is a
descent direction.

3 Exact line-search is expensive, however if we use inexact
line-search with strong Wolfe conditions

1 sufficient decrease: f(xk + αkpk) ≤ f(xk) + c1 αk∇f(xk)pk;
2 curvature condition: |∇f(xk + αkpk)pk| ≤ c2 |∇f(xk)pk|.

with 0 < c1 < c2 < 1/2 then we can prove that pk is a
descent direction.
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Nonlinear Conjugate Gradient extension convergence analysis

The previous consideration permits to say that Fletcher and Reeves
nonlinear conjugate gradient method with strong Wolfe line-search
is globally convergent1

To prove globally convergence we need the following lemma:

Lemma (descent direction bound)

Suppose we apply Fletcher and Reeves nonlinear conjugate
gradient method to f(x) with strong Wolfe line-search with
0 < c2 < 1/2. The the method generates descent direction pk that
satisfy the following inequality

− 1

1− c2
≤

gT
k pk

‖gk‖2
≤ −1− 2c2

1− c2
, k = 0, 1, 2, . . .

1globally here means that Zoutendijk like theorem apply
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Nonlinear Conjugate Gradient extension convergence analysis

Proof. (1/3).

The proof is by induction. First notice that the function

t(ξ) =
2ξ − 1

1− ξ

is monotonically increasing on the interval [0, 1/2] and that
t(0) = −1 and t(1/2) = 0. Hence, because of c2 ∈ (0, 1/2) we
have:

−1 <
2c2 − 1

1− c2
< 0. (?)

base of induction k = 0: For k = 0 we have p0 = −g0 so that
gT

0 p0/ ‖g0‖2 = −1. From (?) the lemma inequality is trivially
satisfied.
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Nonlinear Conjugate Gradient extension convergence analysis

Proof. (2/3).

Using update direction formula’s of the algorithm:

βFR
k =

gT
k gk

gT
k−1gk−1

pk = −gk + βFR
k pk−1

we can write

gT
k pk

‖gk‖2
= −1 + βFR

k

gT
k pk−1

‖gk‖2
= −1 +

gT
k pk−1

‖gk−1‖2

and by using second strong Wolfe condition:

−1 + c2
gT

k−1pk−1

‖gk−1‖2
≤

gT
k pk

‖gk‖2
≤ −1− c2

gT
k−1pk−1

‖gk−1‖2
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Nonlinear Conjugate Gradient extension convergence analysis

Proof. (3/3).

by induction we have

1

1− c2
≥ −

gT
k−1pk−1

‖gk−1‖2
> 0

so that

gT
k pk

‖gk‖2
≤ −1− c2

gT
k−1pk−1

‖gk−1‖2
≤ −1 + c2

1

1− c2
=

2c2 − 1

1− c2

and

gT
k pk

‖gk‖2
≥ −1 + c2

gT
k−1pk−1

‖gk−1‖2
≥ −1− c2

1

1− c2
= − 1

1− c2
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Nonlinear Conjugate Gradient extension convergence analysis

1 The inequality of the the previous lemma can be written as:

1

1− c2

‖gk‖
‖pk‖

≥ −
gT

k pk

‖gk‖ ‖pk‖
≥ 1− 2c2

1− c2

‖gk‖
‖pk‖

> 0

2 Remembering the Zoutendijk theorem we have

∞∑
k=1

(cos θk)
2 ‖gk‖2 <∞, where cos θk = −

gT
k pk

‖gk‖ ‖pk‖

3 so that if ‖gk‖ / ‖pk‖ is bounded from below we have that
cos θk ≥ δ for all k and then from Zoutendijk theorem the
scheme converge.

4 Unfortunately this bound cant be proved so that Zoutendijk
theorem cant be applied directly. However it is possible to
prove a weaker results, i.e. that lim infk→∞ ‖gk‖ = 0!
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Nonlinear Conjugate Gradient extension convergence analysis

Convergence of Fletcher and Reeves method

Assumption (Regularity assumption)

We assume f ∈ C1(Rn) with Lipschitz continuous gradient, i.e.
there exists γ > 0 such that∥∥∇f(x)T −∇f(y)T

∥∥ ≤ γ ‖x− y‖ , ∀x,y ∈ Rn
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Nonlinear Conjugate Gradient extension convergence analysis

Theorem (Convergence of Fletcher and Reeves method)

Suppose the method of Fletcher and Reeves is implemented with
strong Wolfe line-search with 0 < c1 < c2 < 1/2. If f(x) and x0

satisfy the previous regularity assumptions, then

lim inf
k→∞

‖gk‖ = 0

Proof. (1/4).

From previous Lemma we have

cos θk ≥
1

1− c2

‖gk‖
‖pk‖

k = 1, 2, . . .

substituting in Zoutendijk condition we have
∞∑

k=1

‖gk‖4

‖pk‖2
<∞.

The proof is by contradiction. in fact if theorem is not true than
the series diverge. Next we want to bound ‖pk‖.
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Nonlinear Conjugate Gradient extension convergence analysis

Proof. (bounding ‖pk‖) (2/4).

Using second Wolfe condition and previous Lemma∣∣gT
k pk−1

∣∣ ≤ −c2g
T
k pk−1 ≤

c2

1− c2
‖gk−1‖2

using pk ← −gk + βFR
k pk−1 we have

‖pk‖2 ≤ ‖gk‖2 + 2βFR
k

∣∣gT
k pk−1

∣∣ + (βFR
k )2 ‖pk−1‖2

≤ ‖gk‖2 +
2c2

1− c2
βFR

k ‖gk−1‖2 + (βFR
k )2 ‖pk−1‖2

recall that βFR
k ← ‖gk‖2 / ‖gk−1‖2 then

‖pk‖2 ≤
1 + c2

1− c2
‖gk‖2 + (βFR

k )2 ‖pk−1‖2
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Nonlinear Conjugate Gradient extension convergence analysis

Proof. (bounding ‖pk‖) (3/4).

setting c3 = 1+c2
1−c2

and using repeatedly the last inequality we
obtain:

‖pk‖2 ≤ c3 ‖gk‖2 + (βFR
k )2

(
c3 ‖gk−1‖2 + (βFR

k−1)
2 ‖pk−2‖2

)
= c3 ‖gk‖4

(
‖gk‖−2 + ‖gk−1‖−2

)
+
‖gk‖4

‖gk−2‖4
‖pk−2‖2

≤ c3 ‖gk‖4
(
‖gk‖−2 + ‖gk−1‖−2 + ‖gk−2‖−2

)
+
‖gk‖4

‖gk−3‖4
‖pk−3‖2

≤ c3 ‖gk‖4
k∑

j=1

‖gj‖−2
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Nonlinear Conjugate Gradient extension convergence analysis

Proof. (4/4).

Suppose now by contradiction there exists δ > 0 such that
‖gk‖ ≥ δ a by using the regularity assumptions we have

‖pk‖2 ≤ c3 ‖gk‖4
k∑

j=1

‖gj‖−2 ≤ c3 ‖gk‖4 δ−2k

Substituting in Zoutendijk condition we have

∞ >
∞∑

k=1

‖gk‖4

‖pk‖2
≥ δ2

c4

∞∑
k=1

1

k
=∞

this contradict assumption.

athe correct assumption is that there exists k0 such that ‖gk‖ ≥ δ for
k ≥ k0 but this complicate a little bit the following inequality without
introducing new idea.
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Nonlinear Conjugate Gradient extension convergence analysis

Weakness of Fletcher and Reeves method

Suppose that pk is a bad search direction, i.e. cos θk ≈ 0.

From the descent direction bound Lemma (see slide 89) we
have

1

1− c2

‖gk‖
‖pk‖

≥ cos θk ≥
1− 2c2

1− c2

‖gk‖
‖pk‖

> 0

so that to have cos θk ≈ 0 we needs ‖pk‖ � ‖gk‖.
since pk is a bad direction near orthogonal to gk it is likely
that the step is small and xk+1 ≈ xk. If so we have also
gk+1 ≈ gk and βFR

k+1 ≈ 1.

but remember that pk+1 ← −gk+1 + βFR
k+1pk, so that

pk+1 ≈ pk.

This means that a long sequence of unproductive iterates will
follows.
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Nonlinear Conjugate Gradient extension Polack and Ribiére

Polack and Ribiére Nonlinear Conjugate Gradient

1 The previous problem can be elided if we restart anew when
the iterate stagnate.

2 Restarting is obtained by simply set βFR
k = 0.

3 A more elegant solution can be obtained with a new definition
of βk due to Polack and Ribiére is the following:

βPR
k =

gT
k (gk − gk−1)

gT
k−1gk−1

4 This definition of βPR
k is identical of βFR

k in the case of
quadratic function because gT

k gk−1 = 0. The definition differs
in non linear case and in particular when there is stagnation
i.e. gk ≈ gk−1 we have βPR

k ≈ 0, i.e. we have an automatic
restart.
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Nonlinear Conjugate Gradient extension Polack and Ribiére

Polack and Ribiére Nonlinear Conjugate Gradient

initial step:
k ← 0; x0 assigned;
f0 ← f(x0); g0 ← ∇f(x0)

T ;
p0 ← −g0;
while ‖gk‖ > ε do

k ← k + 1;
Conjugate direction method
Compute αk by line-search;
xk ← xk−1 + αkpk−1;
gk ← ∇f(xk)

T ;
Residual orthogonalization

βPR
k ← gT

k (gk−gk−1)

gT
k−1gk−1

;

pk ← −gk + βPR
k pk−1;

end while

Conjugate Direction minimization 101 / 105

Nonlinear Conjugate Gradient extension Polack and Ribiére

Weakness of Polack and Ribiére method (1/2)

Although the modification is minimal, for the Polack and
Ribiére method with strong Wolfe line-search it can happen
that pk is not a descent direction.

If pk is not a descent direction we can restart i.e. set
βPR

k = 0 or modify βPR
k as follows

βPR+
k = max{βPR

k , 0}

this new coefficient with a modified Wolfe line-search ensure
that pk is a descent direction.
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Nonlinear Conjugate Gradient extension Polack and Ribiére

Weakness of Polack and Ribiére method (2/2)

Polack and Ribiére choice on the average perform better than
Fletcher and Reeves but there is not convergence results!

Although there is not convergence results there is a negative
results due to Powell:

Theorem

Consider the Polack and Ribiére method with exact line-search.
There exists a twice continuously differentiable function
f : R3 7→ R and a starting point x0 such that the sequence of
gradients

{
‖gk‖

}
is bounded away from zero.

However is spite of this results Polack and Ribiére is the first
choice among conjugate direction methods.
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Nonlinear Conjugate Gradient extension Polack and Ribiére

Other choices

There are many other modification of the coefficient βk that
collapse to the same coefficient in the case o quadratic
function. One important choice is the Hestenes and Stiefel
choice

βHS
k =

gT
k (gk − gk−1)

(gT
k − gT

k−1)pk−1

For this choice there is similar convergence results of Fletcher
and Reeves and similar performance.
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