

Assumption (SPD)

The matrix \boldsymbol{A} is assumed to be symmetric and positive definite, in fact,

$$abla \mathsf{q}(\boldsymbol{x})^T = rac{1}{2} (\boldsymbol{A} + \boldsymbol{A}^T) \boldsymbol{x} - \boldsymbol{b} = \boldsymbol{A} \boldsymbol{x} - \boldsymbol{b}$$

and

$$\nabla^2 q(x) = \frac{1}{2} (A + A^T) = A$$

From the sufficient condition for a minimum we have that $\nabla \mathbf{q}(\pmb{x}_{\star})^T = \pmb{0}, ~ i.e.$

 $Ax_{\star} = b$

a) (0) (2) (2) (2) (2)

141-121-121 2 000

and $\nabla^2 q(x_\star) = A$ is SPD.

The toy problem

By setting

$$\begin{split} \mathbf{A} &= \nabla^2 \mathsf{f}(\mathbf{x}_{\star}), \\ \mathbf{b} &= \nabla^2 \mathsf{f}(\mathbf{x}_{\star}) \mathbf{x}_{\star} - \nabla \mathsf{f}(\mathbf{x}_{\star}) \\ c &= \mathsf{f}(\mathbf{x}_{\star}) - \nabla \mathsf{f}(\mathbf{x}_{\star}) \mathbf{x}_{\star} + \frac{1}{2} \mathbf{x}_{\star}^T \nabla^2 \mathsf{f}(\mathbf{x}_{\star}) \mathbf{x}_{\star} \end{split}$$

we have

$$f(x) = \frac{1}{2}x^{T}Ax - b^{T}x + c + O(||x - x_{\star}||^{3})$$

• So that we expect that when an iterate x_k is near x_\star then we can neglect $\mathcal{O}(||x - x_\star||^3)$ and the asymptotic behavior is the same of the quadratic problem.

The toy problem

 In the following we study the convergence rate of the Steepest Descent and Conjugate Gradient methods applied to

$$q(\boldsymbol{x}) = \frac{1}{2}\boldsymbol{x}^T \boldsymbol{A} \boldsymbol{x} - \boldsymbol{b}^T \boldsymbol{x} + \boldsymbol{c}$$

where A is an SPD matrix.

• This assumption simplify the analysis but it is also useful in the non linear case. In fact, by expanding a generic function f(x) near its minimum x_* we have

$$egin{aligned} & (oldsymbol{x}) = \mathsf{f}(oldsymbol{x}_{\star}) +
abla \mathsf{f}(oldsymbol{x}_{\star}) (oldsymbol{x} - oldsymbol{x}_{\star}) \ & + rac{1}{2} (oldsymbol{x} - oldsymbol{x}_{\star})^T
abla^2 \mathsf{f}(oldsymbol{x}_{\star}) (oldsymbol{x} - oldsymbol{x}_{\star}) + \mathcal{O}(\|oldsymbol{x} - oldsymbol{x}_{\star}\|^3) \end{aligned}$$

The toy problem

Conjugate Direction

(2/3)

(3/3)

 we can rewrite the quadratic problem in many different way as follows

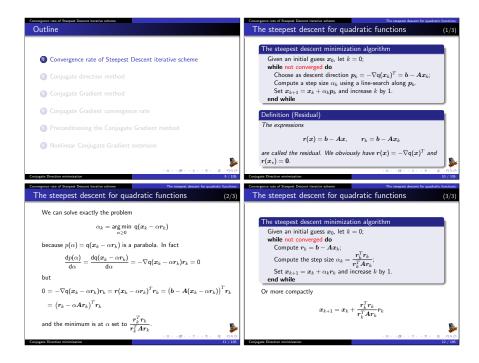
$$q(\boldsymbol{x}) = \frac{1}{2} (\boldsymbol{x} - \boldsymbol{x}_{\star})^{T} \boldsymbol{A} (\boldsymbol{x} - \boldsymbol{x}_{\star}) + c'$$
$$= \frac{1}{2} (\boldsymbol{A} \boldsymbol{x} - \boldsymbol{b})^{T} \boldsymbol{A}^{-1} (\boldsymbol{A} \boldsymbol{x} - \boldsymbol{b}) + c'$$

where

Conjugate Direction minimization

$$c' = c + \frac{1}{2} \boldsymbol{x}_{\star}^{T} \boldsymbol{A} \boldsymbol{x}_{\star}$$

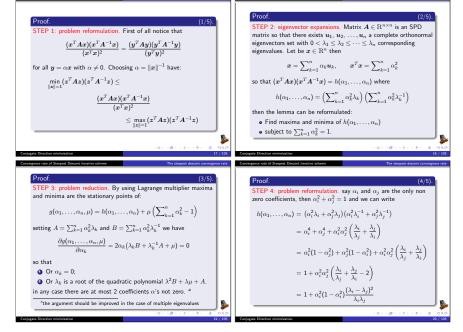
 This last forms are useful in the study of the steepest descent method.



onvergence rate of Steepest Descent iterative scheme Convergence rate of Steepest Descent iterative scheme The steepest descent reduction step The steepest descent reduction step (1/3)(2/3)Substituting $\alpha_k = \frac{\mathbf{r}_k^T \mathbf{r}_k}{\mathbf{r}_k^T \mathbf{A} \mathbf{r}_k}$ we obtain We want bound $q(x_{k+1})$ by $q(x_k)$: $q(\boldsymbol{x}_{k+1}) = q(\boldsymbol{x}_k + \alpha_k \boldsymbol{r}_k)$ $q(x_{k+1}) = q(x_k) - \frac{1}{2} \frac{(r_k^T r_k)^2}{r_k^T A r_k}$ $= \frac{1}{2} (\mathbf{A}\mathbf{x}_k + \alpha_k \mathbf{A}\mathbf{r}_k - \mathbf{b})^T \mathbf{A}^{-1} (\mathbf{A}\mathbf{x}_k + \alpha_k \mathbf{A}\mathbf{r}_k - \mathbf{b}) + c'$ this shows that the steepest descent method reduce at each step $= \frac{1}{2} (\alpha_k \mathbf{A} \mathbf{r}_k - \mathbf{r}_k)^T \mathbf{A}^{-1} (\alpha_k \mathbf{A} \mathbf{r}_k - \mathbf{r}_k) + c'$ the objective function a(x). $= \frac{1}{2} \mathbf{r}_{k}^{T} \mathbf{A}^{-1} \mathbf{r}_{k} + \frac{1}{2} \alpha_{k}^{2} \mathbf{r}_{k}^{T} \mathbf{A} \mathbf{r}_{k} - \alpha_{k} \mathbf{r}_{k}^{T} \mathbf{r}_{k} + c'$ Using the expression $q(x) = \frac{1}{2}r(x)^T A^{-1}r(x) + c'$ we can write: $= q(\mathbf{x}_k) + \frac{1}{2}\alpha_k \left(\alpha_k \mathbf{r}_k^T \mathbf{A} \mathbf{r}_k - 2\mathbf{r}_k^T \mathbf{r}_k\right)$ $\frac{1}{2}r_{k+1}^T A^{-1}r_{k+1} = \frac{1}{2}r_k^T A^{-1}r_k - \frac{1}{2}\frac{(r_k^T r_k)^2}{r_k^T Ar_k}$ The steepest descent reduction step The estimate of the convergence rate for the steepest descent method is linked to the estimate of the term or better $\frac{(\boldsymbol{r}_k^T \boldsymbol{r}_k)^2}{(\boldsymbol{r}_k^T \boldsymbol{A}^{-1} \boldsymbol{r}_k)(\boldsymbol{r}_k^T \boldsymbol{A} \boldsymbol{r}_k)}$ $r_{k+1}^T A^{-1} r_{k+1} = r_k^T A^{-1} r_k \left(1 - \frac{(r_k^T r_k)^2}{(r_k^T A^{-1} r_k)(r_k^T A r_k)} \right)$ in particular we can prove noticing that $r_{i} = b - Ax_{i} = Ax_{i} - Ax_{i} = A(x_{i} - x_{i})$ we have Lemma (Kantorovic) $\|\boldsymbol{x}_{\star} - \boldsymbol{x}_{k+1}\|_{\boldsymbol{A}}^{2} = \|\boldsymbol{x}_{\star} - \boldsymbol{x}_{k}\|_{\boldsymbol{A}}^{2} \left(1 - \frac{(\boldsymbol{r}_{k}^{T} \boldsymbol{r}_{k})^{2}}{(\boldsymbol{r}^{T} \boldsymbol{A}^{-1} \boldsymbol{r}_{k})(\boldsymbol{r}^{T} \boldsymbol{A} \boldsymbol{r}_{k})}\right)$ Let $A \in \mathbb{R}^{n \times n}$ an SPD matrix then the following inequality is valid $1 \le \frac{(x^T A x)(x^T A^{-1} x)}{(x^T x)^2} \le \frac{(M + m)^2}{4 M m}$ where $\|\boldsymbol{x}\|_{\boldsymbol{A}} = \sqrt{\boldsymbol{x}^T \boldsymbol{A} \boldsymbol{x}}$ for all $x \neq 0$. Where $m = \lambda_1$ is the smallest eigenvalue of A and $M = \lambda_n$ is the biggest eigenvalue of Ais the energy norm induced by the SPD matrix A. 1411 121 121 2 000

The steepest descent convergence rab

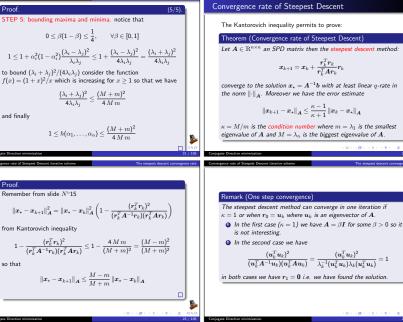
Convergence rate of Steepest Descent iterative schem

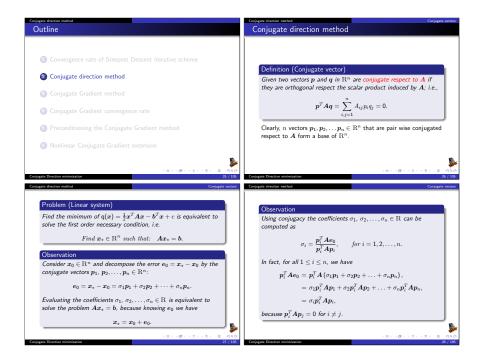


Proof

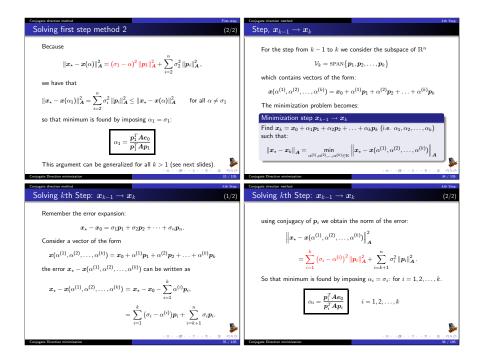
Proof.

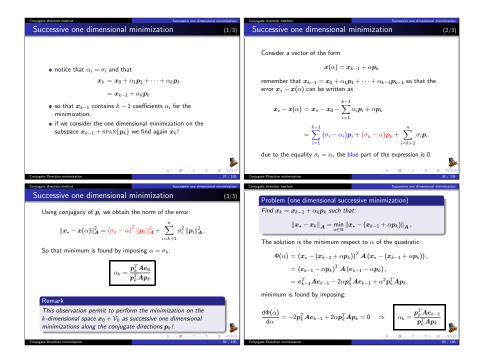
Convergence rate of Steepest Descent iterative scheme





oniurate direction method Conjugate direction method Step: $x_0 \rightarrow x_1$ The conjugate direction method evaluate the coefficients σ_1 , $\sigma_2, \dots, \sigma_n \in \mathbb{R}$ recursively in n steps, solving for $k \ge 0$ the minimization problem: Conjugate direction method At the first step we consider the subspace $x_0 + \text{SPAN}\{p_1\}$ which Given x_0 : $k \leftarrow 0$: consists in vectors of the form repeat $x(\alpha) = x_0 + \alpha n_1$ $\alpha \in \mathbb{R}$ $k \leftarrow k + 1$: Find $x_{l} \in x_0 + \mathcal{V}_{l}$ such that: The minimization problem becomes: $x_k = \underset{x \in x_0+\mathcal{V}_k}{\arg \min} ||x_{\star} - x||_A$ Minimization step $x_0 \rightarrow x_1$ Find $x_1 = x_0 + \alpha_1 p_1$ (i.e., find $\alpha_1!$) such that: until k = n $||x_{\star} - x_{1}||_{A} = \min_{\alpha} ||x_{\star} - (x_{0} + \alpha p_{1})||_{A}$ where V_k is the subspace of \mathbb{R}^n generated by the first k conjugate direction: i.e., $\mathcal{V}_k = \text{SPAN}\{\mathbf{p}_1, \mathbf{p}_2, \dots, \mathbf{p}_k\},\$ Conjugate Direction minimizatio Conjugate Direction min Conjugate direction method Conjugate direction method Solving first step method 1 Solving first step method 2 (1/2)Remember the error expansion: The minimization problem is the minimum respect to α of the quadratic: $\boldsymbol{x}_{+} - \boldsymbol{x}_{0} = \sigma_{1}\boldsymbol{p}_{1} + \sigma_{2}\boldsymbol{p}_{2} + \cdots + \sigma_{n}\boldsymbol{p}_{n}$ $\Phi(\alpha) = \|x_{+} - (x_{0} + \alpha p_{1})\|_{A}^{2}$ Let $x(\alpha) = x_0 + \alpha p_1$, the difference $x_1 - x(\alpha)$ becomes: $= (\boldsymbol{x}_{+} - (\boldsymbol{x}_{0} + \alpha \boldsymbol{p}_{1}))^{T} \boldsymbol{A} (\boldsymbol{x}_{+} - (\boldsymbol{x}_{0} + \alpha \boldsymbol{p}_{1})),$ $\boldsymbol{x}_{+} - \boldsymbol{x}(\alpha) = (\sigma_1 - \alpha)\boldsymbol{p}_1 + \sigma_2\boldsymbol{p}_2 + \ldots + \sigma_n\boldsymbol{p}_n$ $= (\boldsymbol{e}_0 - \alpha \boldsymbol{p}_1)^T \boldsymbol{A} (\boldsymbol{e}_0 - \alpha \boldsymbol{p}_1).$ due to conjugacy the error $||x_{+} - x(\alpha)||_{A}$ becomes $= e_0^T A e_0 - 2\alpha p_1^T A e_0 + \alpha^2 p_1^T A p_1$ $\|x_{\cdot} - x(\alpha)\|^{2}$ minimum is found by imposing: $= \left((\sigma_1 - \alpha) \boldsymbol{p}_1 + \sum_{i=1}^n \sigma_i \boldsymbol{p}_i \right)^T \boldsymbol{A} \left((\sigma_1 - \alpha) \boldsymbol{p}_1 + \sum_{i=1}^n \sigma_j \boldsymbol{p}_i \right)$ $\frac{\mathrm{d}\Phi(\alpha)}{\mathrm{d}\alpha} = -2p_1^T A e_0 + 2\alpha p_1^T A p_1 = 0 \quad \Rightarrow \quad \alpha_1 = \frac{p_1^T A e_0}{p_1^T A p_1}$ $= (\sigma_1 - \alpha)^2 p_1^T A p_1 + \sum_{j=1}^n \sigma_j^2 p_j^T A p_j$ ALC: 121 121 2 000 Conjugate Direction minimization





Conjugate Direction minimizatio

Conjugate direction minimization

 $k \leftarrow 0$: x_0 assigned:

while not converged do

Observation (Computazional cost)

 $r_0 \leftarrow b - Ax_0$:

 $k \leftarrow k + 1;$ $\alpha_k \leftarrow \frac{\mathbf{r}_{k-1}^T \mathbf{p}_k^T}{\mathbf{p}_k A \mathbf{p}_k};$ $\mathbf{x}_k \leftarrow \mathbf{x}_{k-1} + \alpha_k \mathbf{p}_k;$ $\mathbf{r}_k \leftarrow \mathbf{r}_{k-1} - \alpha_k A \mathbf{p}_k;$

end while

Algorithm (Conjugate direction minimization)

Conjugate direction method

Successive one dimensional minimization

Conjugate direction minimization

10 1 1 M 1 1 2 1 1 2 1 2 1 3

43 / 10

Successive one dimensional minimizatio

Conjugate direction minimizatio

• In the case of minimization on the subspace $x_0 + \mathcal{V}_k$ we have:

$$\alpha_k = \mathbf{p}_k^T \mathbf{A} \mathbf{e}_0 / \mathbf{p}_k^T \mathbf{A} \mathbf{p}_k$$

• In the case of one dimensional minimization on the subspace $m{x}_{k-1}+ ext{SPAN}\{m{p}_k\}$ we have:

$$\alpha_k = \mathbf{p}_k^T \mathbf{A} \mathbf{e}_{k-1} / \mathbf{p}_k^T \mathbf{A} \mathbf{p}_k$$

 Apparently they are different results, however by using the conjugacy of the vectors p_i we have

$$p_k^T A e_{k-1} = p_k^T A(\boldsymbol{x}_* - \boldsymbol{x}_{k-1})$$

$$= p_k^T A(\boldsymbol{x}_* - (\boldsymbol{x}_0 + \alpha_1 p_1 + \dots + \alpha_{k-1} p_{k-1}))$$

$$= p_k^T A e_0 - \alpha_1 p_k^T A p_1 - \dots - \alpha_{k-1} p_k^T A p_{k-1}$$

$$= p_k^T A e_0$$

- The one step minimization in the space x₀ + V_n and the successive minimization in the space x_{k-1} + SPAN{p_k}, k = 1, 2, ..., n are equivalent if p_is are conjugate.
- The successive minimization is useful when p_is are not known in advance but must be computed as the minimization process proceeds.
- The evaluation of α_k is apparently not computable because e_i is not known. However noticing

$$Ae_k = A(x_\star - x_k) = b - Ax_k = r_k$$

we can write

Conjugate Direction minimizat

Conjugate direction method

Conjugate direction method

$$\alpha_k = \boldsymbol{p}_k^T \boldsymbol{A} \boldsymbol{e}_{k-1} / \boldsymbol{p}_k^T \boldsymbol{A} \boldsymbol{p}_k = \boldsymbol{p}_k^T \boldsymbol{r}_{k-1} / \boldsymbol{p}_k^T \boldsymbol{A} \boldsymbol{p}_k =$$

Finally for the residual is valid the recurrence

$$r_k = b - Ax_k = b - A(x_{k-1} + \alpha_k p_k) = r_{k-1} - \alpha_k Ap_k.$$

Monotonic behavior of the error

Remark (Monotonic behavior of the error)

The energy norm of the error $\|e_k\|_{\pmb{A}}$ is monotonically decreasing in k. In fact:

$$e_k = x_* - x_k = \alpha_{k+1}p_{k+1} + ... + \alpha_n p_n$$

and by conjugacy

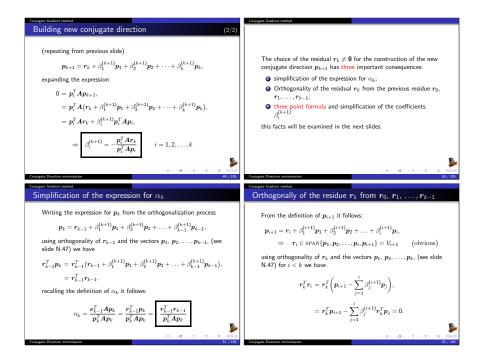
$$\|\boldsymbol{e}_{k}\|_{\boldsymbol{A}}^{2} = \|\boldsymbol{x}_{\star} - \boldsymbol{x}_{k}\|_{\boldsymbol{A}}^{2} = \sigma_{k+1}^{2} \|\boldsymbol{p}_{k+1}\|_{\boldsymbol{A}}^{2} + \ldots + \sigma_{n}^{2} \|\boldsymbol{p}_{n}\|_{\boldsymbol{A}}^{2}$$

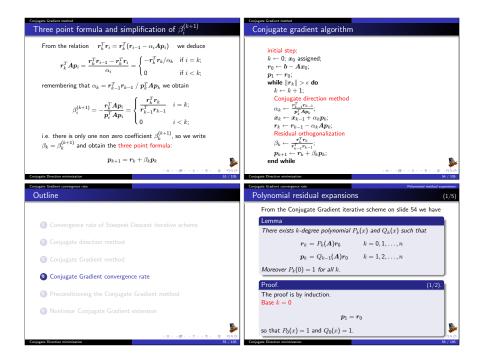
Finally from this relation we have $e_n = 0$.

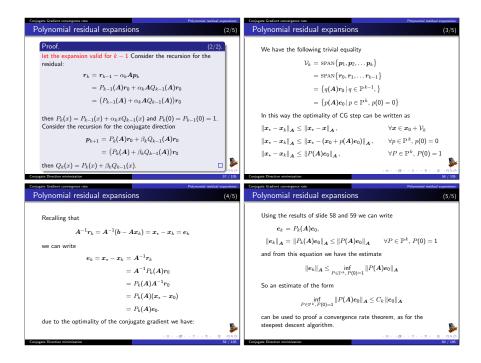
The conjugate direction minimization requires at each step one matrix-vector product for the evaluation of α_k and two update AXPY for x_k and r_k .

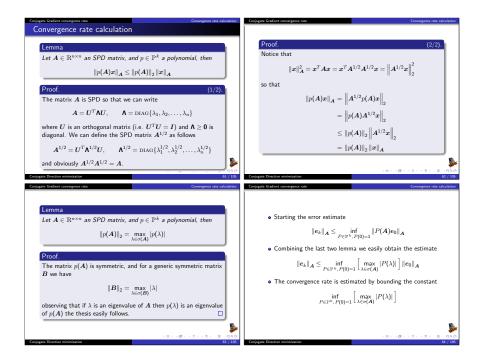
Conjugate Direction minimization

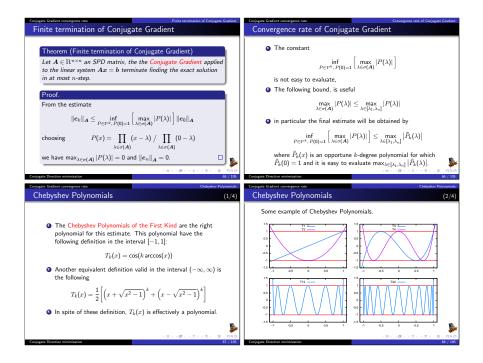
ut Godien method	Conjugate Gradient method
 Convergence rate of Steepest Descent iterative scheme Conjugate direction method Conjugate Gradient method 	The Conjugate Gradient method combine the Conjugate Direction method with an orthogonalization process (like Gram-Schmidt) applied to the residual to construct the conjugate directions. In fact, because A define a scalar product in the next slide we prove: • each residue is orthogonal to the previous conjugate
Conjugate Gradient convergence rate Preconditioning the Conjugate Gradient method Nonlinear Conjugate Gradient extension	 each radius to drogsquently linearly independent from the previous conjugate directions. if the residual is not null is can be used to construct a new conjugate direction.
presention monimisation (4) is the control of the residue r_k respect \mathcal{V}_k	Conjugate Duncine monosation Conjugate Guttern motion Building new conjugate direction
• The residue r_k is orthogonal to p_1, p_2, \dots, p_k . In fact, from the error expansion $e_k = \alpha_{k+1}p_{k+1} + \alpha_{k+2}p_{k+2} + \dots + \alpha_n p_n$ because $r_k = Ae_k$, for $i = 1, 2, \dots, k$ we have $p_i^T r_k = p_i^T Ae_k$ $= p_i^T A \sum_{j=k+1}^n \alpha_j p_j = \sum_{j=k+1}^n \alpha_j p_i^T Ap_j$ = 0	• The conjugate direction method build one new direction at each step. • If $r_k \neq 0$ it can be used to build the new direction p_{k+1} by a Gram-Schmidt orthogonalization process $p_{k+1} = r_k + \beta_1^{(k+1)}p_1 + \beta_2^{(k+1)}p_2 + \ldots + \beta_k^{(k+1)}p_k$, where the k coefficients $\beta_1^{(k+1)}, \beta_2^{(k+1)}, \ldots, \beta_k^{(k+1)}$ must satisfy: $p_i^T A p_{k+1} = 0$, for $i = 1, 2, \ldots, k$.
مېرى دى. دې	Coluzza Musica minimization

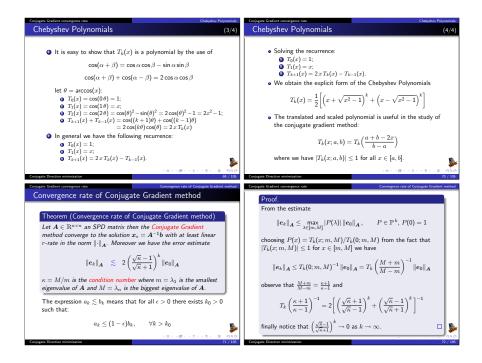


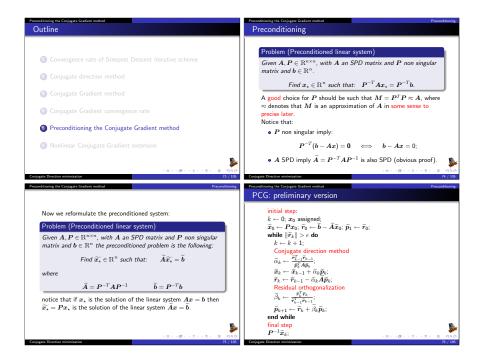












CG reformulation Preconditioning the Conjugate Gradient metho

5 - (B) - (2) - (2) - (2)

CG reformulatio

Conjugate gradient algorithm applied to $\widetilde{A}\widetilde{x} = \widetilde{b}$ require the evaluation of thing like:

$$\widetilde{A}\widetilde{p}_{k} = P^{-T}AP^{-1}\widetilde{p}_{k}$$

this can be done without evaluate directly the matrix $\widetilde{\boldsymbol{A}},$ by the following operations:

- solve $Ps'_k = \tilde{p}_k$ for $s'_k = P^{-1}\tilde{p}_k$;
- evaluate $s_k'' = As_k'$;

onjugate Direction minimizatio

Definition

Preconditioning the Conjugate Gradient method

 $\textbf{ o solve } \boldsymbol{P}^T \boldsymbol{s}_k^{\prime\prime\prime} = \boldsymbol{s}_k^{\prime\prime} \text{ for } \boldsymbol{s}_k^{\prime\prime\prime} = \boldsymbol{P}^{-T} \boldsymbol{s}^{\prime\prime}.$

Step 1 and 3 require the solution of two auxiliary linear system. This is not a big problem if P and P^T are triangular matrices (see e.g. incomplete Cholesky).

However... we can reformulate the algorithm using only the matrices \boldsymbol{A} and $\boldsymbol{P}!$

Definition

For all $k \ge 1$, we introduce the vector $q_k = P^{-1}\tilde{p}$.

Observation

If the vectors $\tilde{p}_1, \tilde{p}_2, \dots \tilde{p}_k$ for all $1 \le k \le n$ are \tilde{A} -conjugate, then the corresponding vectors $q_1, q_2, \dots q_k$ are A-conjugate. In fact:

$$\boldsymbol{q}_{j}^{T}\boldsymbol{A}\boldsymbol{q}_{i}=\underbrace{\widetilde{\boldsymbol{p}}_{j}^{T}\boldsymbol{P}^{-T}}_{=\boldsymbol{q}_{i}^{T}}\boldsymbol{A}\underbrace{\boldsymbol{P}^{-1}\widetilde{\boldsymbol{p}_{i}}}_{=\boldsymbol{q}_{j}^{T}}=\widetilde{\boldsymbol{p}}_{j}^{T}\underbrace{\widetilde{\boldsymbol{A}}}_{=\boldsymbol{P}^{-T}}\underbrace{\widetilde{\boldsymbol{p}}_{i}=0, \quad \text{if } i\neq j,}_{=\boldsymbol{q}_{i}^{T}}$$

that is a consequence of \tilde{A} -conjugation of vectors \tilde{p}_i .

For all $k \ge 1$, we introduce the vectors

 $x_k = x_{k-1} + \tilde{\alpha}_k q_k$

Observation

Preconditioning the Conjugate Gradient method

Conjugate Direction

CG reformulation

79 / 10

Because $\tilde{x}_k = Px_k$ for all $k \ge 0$, we have the recurrence between the corresponding residue $\tilde{r}_k = \tilde{b} - \tilde{A}\tilde{x}$ and $r_k = b - Ax_k$:

$$\widetilde{r}_k = P^{-T}r_k.$$

In fact,

$$\begin{split} &= \vec{b} - \vec{A} \vec{x}_k, & [defs. of \vec{r}_k] \\ &= P^{-T} b - P^{-T} A P^{-1} P x_k, & [defs. of \vec{b}, \vec{A}, \vec{x}_k] \\ &= P^{-T} (b - A x_k), & [obvious] \\ &= P^{-T} r_k. & [defs. of r_k] \end{split}$$

Conjugate Direction minimizati

Preconditioning the Conjugate Gradient method

CG reformulation

D1 (0) (2) (2) 2) 2 040

83 / 10

81 / 105

CG reformulation

Preconditioning the Conjugate Gradient method Observation

Definition

For all k, with $1 \leq k \leq n,$ the vector \boldsymbol{z}_k is the solution of the linear system

$$M z_k = r_k$$

where $M = P^T P$. Formally,

$$z_k = M^{-1}r_k = P^{-1}P^{-T}r_k$$

Using the vectors $\{z_k\}$,

- we can express α̃_k and β̃_k in terms of A, the residual r_k, and conjugate direction q_k;
- we can build a recurrence relation for the A-conjugate directions q_k.

Conjugate Direction minimization

Preconditioning the Conjugate Gradient method

Observation

Using the vector $z_k = M^{-1}r_k$, the following recurrence is true

$$q_{k+1} = z_k + \tilde{\beta}_k q_k$$

In fact:

$$\begin{array}{ll} \bar{p}_{k+1} = \bar{r}_k + \beta_k \bar{p}_k & [preconditioned CG] \\ P^{-1}\bar{p}_{k+1} = P^{-1}\bar{r}_k + \beta_k P^{-1} \bar{p}_k & [left mult P^{-1}] \\ P^{-1}\bar{p}_{k+1} = P^{-1}P^{-T}r_k + \bar{\beta}_k P^{-1} \bar{p}_k & [r_{k+1} = P^{-T}r_{k+1}] \\ P^{-1}\bar{p}_{k+1} = M^{-1}r_k + \bar{\beta}_k P^{-1} \bar{p}_k & [M^{-1} = P^{-1}P^{-T}] \\ q_{k+1} = z_k + \bar{\beta}_k q_k & [q_k = P^{-1}\bar{p}_k] \end{array}$$

$$\tilde{\beta}_{k} = \frac{\tilde{r}_{k}^{T} \tilde{r}_{k}^{T}}{\tilde{r}_{k-1}^{T} \tilde{r}_{k-1}} = \frac{r_{k}^{T} P^{-1} P^{-T} r_{k}}{r_{k-1}^{T} P^{-1} P^{-1} r_{k-1}} = \frac{r_{k}^{T} M^{-1}}{r_{k-1}^{T} P^{-1} P^{-1} r_{k-1}} = \frac{r_{k}^{T} M^{-1}}{r_{k-1}^{T} M^{-1}}$$

 $\tilde{\alpha}_k = \frac{\tilde{r}_{k-1}^T \tilde{r}_{k-1}}{\tilde{\sigma}^T \tilde{\mathbf{a}} \tilde{\mathbf{a}}_{\cdot}} = \frac{r_{k-1} P^{-1} P^{-T} r_{k-1}}{q_{\cdot}^T P^T P^{-T} A P^{-1} P q_k} = \frac{r_{k-1} M^{-1} r_{k-1}}{q_k A q_k},$

Conjugate Direction minimization

Preconditioning the Conjugate Gradient method

 $\sum_{k=1}^{T} z_{k-1}$

initial step:

cita minic

Conjugate Direction minimizatio

Outline	Nonlinear Conjugate Gradient extension
Convergence rate of Steepest Descent iterative scheme	The conjugate gradient algorithm can be extended for
Onjugate direction method	nonlinear minimization.
Onjugate Gradient method	Fletcher and Reeves extend CG for the minimization of a general non linear function f(x) as follows:
 Conjugate Gradient convergence rate 	 Substitute the evaluation of α_k by an line search Substitute the residual r_k with the gradient ∇f(x_k)
Preconditioning the Conjugate Gradient method	We also translate the index for the search direction p _k to be more consistent with the gradients. The resulting algorithm is in the next slide
	Re-
 CD → CD →	is y lab Conjugate Direction miningation Conjugate Direction miningation Tablem and Reveal Notificate Conjugate Conferent extension Filtedure and Reveal
agate Direction minimization	E5 / 105. Conjugate Direction minimization Pletcher and Reven. Nonlinear Conjugate Conduct extension Pletcher and Reven. Nonlinear Conjugate Conduct extension

convergence analysis

Nonlinear Conjugate Gradient extension

Proof.

Conjugate Direction m

so that

and

Nonlinear Conjugate Gradient extension
Proof.

by induction we have

The proof is by induction. First notice that the function

$$t(\xi) = \frac{2\xi - 1}{1 - \xi}$$

is monotonically increasing on the interval [0,1/2] and that t(0)=-1 and t(1/2)=0. Hence, because of $c_2\in(0,1/2)$ we have:

$$-1 < \frac{2c_2 - 1}{1 - c_2} < 0.$$
 (*)

base of induction k=0: For k=0 we have $p_0=-g_0$ so that $g_0^T p_0/\|g_0\|^2=-1$. From (*) the lemma inequality is trivially satisfied.

 $\frac{1}{1-c_2} \ge -\frac{g_{k-1}^T p_{k-1}}{\|q_{k-1}\|^2} > 0$

 $\frac{g_k^T p_k}{\|q_k\|^2} \le -1 - c_2 \frac{g_{k-1}^T p_{k-1}}{\|q_k\|^2} \le -1 + c_2 \frac{1}{1 - c_2} = \frac{2c_2 - 1}{1 - c_2}$

 $\frac{g_k^T p_k}{\|q_k\|^2} \ge -1 + c_2 \frac{g_{k-1}^T p_{k-1}}{\|q_{k-1}\|^2} \ge -1 - c_2 \frac{1}{1 - c_2} = -\frac{1}{1 - c_2}$

The previous consideration permits to say that Fletcher and Reeves nonlinear conjugate gradient method with strong Wolfe line-search is globally convergent¹

To prove globally convergence we need the following lemma:

Lemma (descent direction bound)

Suppose we apply Fletcher and Reeves nonlinear conjugate gradient method to f(x) with strong Wolfe line-search with $0 < c_2 < 1/2$. The the method generates descent direction p_k that satisfy the following inequality

$$-\frac{1}{1-c_2} \le \frac{g_k^T p_k}{\|g_k\|^2} \le -\frac{1-2c_2}{1-c_2}, \qquad k = 0, 1, 2, \dots$$

Nonlinear Conjugate Gradient extension

Proof.

Using update direction formula's of the algorithm:

$$eta_k^{FR} = rac{m{g}_k^T m{g}_k}{m{g}_{k-1}^T m{g}_{k-1}} \qquad m{p}_k = -m{g}_k + eta_k^{FR} m{p}_{k-1}$$

we can write

$$\frac{\boldsymbol{g}_{k}^{T}\boldsymbol{p}_{k}}{\|\boldsymbol{g}_{k}\|^{2}} = -1 + \beta_{k}^{FR} \frac{\boldsymbol{g}_{k}^{T}\boldsymbol{p}_{k-1}}{\|\boldsymbol{g}_{k}\|^{2}} = -1 + \frac{\boldsymbol{g}_{k}^{T}\boldsymbol{p}_{k-1}}{\|\boldsymbol{g}_{k-1}\|^{2}}$$

and by using second strong Wolfe condition:

$$-1 + c_2 \frac{\boldsymbol{g}_{k-1}^T \boldsymbol{p}_{k-1}}{\|\boldsymbol{g}_{k-1}\|^2} \le \frac{\boldsymbol{g}_k^T \boldsymbol{p}_k}{\|\boldsymbol{g}_k\|^2} \le -1 - c_2 \frac{\boldsymbol{g}_{k-1}^T \boldsymbol{p}_{k-1}}{\|\boldsymbol{g}_{k-1}\|^2}$$

(ガン・ミン・ミン・ミークへで) 91 / 105 Contact

Conjugate Direction minimization

(ロン (書) (言) (書) (書) (書) (日)

convergence analysis

$$\frac{1}{1 - c_2} \frac{\|\boldsymbol{g}_k\|}{\|\boldsymbol{p}_k\|} \ge -\frac{\boldsymbol{g}_k^T \boldsymbol{p}_k}{\|\boldsymbol{g}_k\| \|\boldsymbol{p}_k\|} \ge \frac{1 - 2c_2}{1 - c_2} \frac{\|\boldsymbol{g}_k\|}{\|\boldsymbol{p}_k\|} > 0$$

@ Remembering the Zoutendijk theorem we have

$$\sum_{k=1}^{\infty} (\cos \theta_k)^2 \left\| \boldsymbol{g}_k \right\|^2 < \infty, \quad \text{where} \quad \cos \theta_k = - \frac{\boldsymbol{g}_k^T \boldsymbol{p}_k}{\|\boldsymbol{g}_k\| \left\| \boldsymbol{p}_k \right\|}$$

- so that if $||g_k|| / ||p_k||$ is bounded from below we have that $\cos \theta_k \ge \delta$ for all k and then from Zoutendijk theorem the scheme converge.
- Unfortunately this bound cant be proved so that Zoutendijk theorem cant be applied directly. However it is possible to prove a weaker results, i.e. that $\liminf_{k\to\infty} ||g_k|| = 0!$

Conjugate Direction minimization

Proof.

Theorem (Convergence of Fletcher and Reeves method)

Suppose the method of Fletcher and Reeves is implemented with strong Wolfe line-search with $0 < c_1 < c_2 < 1/2$. If f(x) and x_0 satisfy the previous regularity assumptions, then

$$\liminf_{k\to\infty} \|\boldsymbol{g}_k\| = 0$$

(1/4

6

95 / 10

From previous Lemma we have

$$\cos \theta_k \ge \frac{1}{1 - c_2} \frac{\|g_k\|}{\|p_k\|}$$
 $k = 1, 2, ...$

substituting in Zoutendijk condition we have $\sum_{k=1}^{\infty} \frac{\|g_k\|^4}{\|p_k\|^2} < \infty.$

The proof is by contradiction. in fact if theorem is not true than the series diverge. Next we want to bound $||p_k||$.

Assumption (Regularity assumption) We assume $f \in C^1(\mathbb{R}^n)$ with Lipschitz continuous gradient, i.e. there exists $\gamma > 0$ such that $\|\nabla f(x)^T - \nabla f(y)^T\| \le \gamma \|x - y\|$, $\forall x, y \in \mathbb{R}^n$

Convergence of Fletcher and Reeves method

Proof. (bounding $||p_k||$)

Nonlinear Conjugate Gradient ex

Nonlinear Conjugate Gradient extension

Using second Wolfe condition and previous Lemma

$$|\boldsymbol{g}_{k}^{T}\boldsymbol{p}_{k-1}| \leq -c_{2}\boldsymbol{g}_{k}^{T}\boldsymbol{p}_{k-1} \leq \frac{c_{2}}{1-c_{2}} \|\boldsymbol{g}_{k-1}\|$$

using $p_k \leftarrow -g_k + \beta_k^{FR} p_{k-1}$ we have

$$\|\mathbf{p}_{k}\|^{2} \le \|\mathbf{g}_{k}\|^{2} + 2\beta_{k}^{FR} |\mathbf{g}_{k}^{T}\mathbf{p}_{k-1}| + (\beta_{k}^{FR})^{2} \|\mathbf{p}_{k-1}\|^{2}$$

 $\le \|\mathbf{g}_{k}\|^{2} + \frac{2c_{2}}{1-c_{2}}\beta_{k}^{FR} \|\mathbf{g}_{k-1}\|^{2} + (\beta_{k}^{FR})^{2} \|\mathbf{p}_{k-1}\|$

recall that $\beta_k^{FR} \gets \|\boldsymbol{g}_k\|^2 \, / \, \|\boldsymbol{g}_{k-1}\|^2$ then

$$\|\boldsymbol{p}_{k}\|^{2} \leq \frac{1 + c_{2}}{1 - c_{2}} \|\boldsymbol{g}_{k}\|^{2} + (\beta_{k}^{FR})^{2} \|\boldsymbol{p}_{k-1}\|^{2}$$

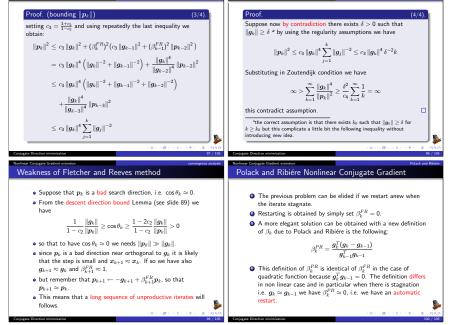
Conjugate Direction minimiza

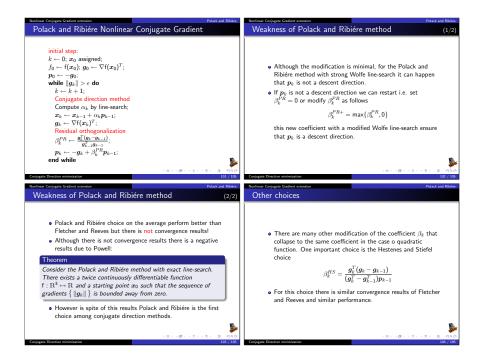
convergence analysis

Nonlinear Conjugate Gradient extension

convergence analysis

Nonlinear Conjugate Gradient extension





References

References

