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In the following we study the convergence rate of the Generic
minimization algorithm applied to a quadratic function q(z) with
exact line search. The function

can be viewed as a n-dimensional generalization of the
1-dimensional parabolic model

Generic minimization algorithm

Given an initial guess xo, let k =0;

while not converged do
Find a descent direction py, at @j;
Compute a step size ay, using a line-search along py.
Set @j41 = @ + i and increase k by 1.

end while

@ Convergence rate of Steepest Descent iterative scheme
© Conjugate direction method

© Conjugate Gradient method

@ Conjugate Gradient convergence rate

@ Preconditioning the Conjugate Gradient method

@ Nonlinear Conjugate Gradient extension

Assumption (Symmetry)
The matrix A is assumed to be symmetric, in fact,

A = ASymm | gSkew

where
ASymm _ A7), ASymm _ (ASmm)T
Ak — 2[4 - A7), ASkew — _( pSkew)T
moreover

2T Az = 2T ASvmm gy o T ASkewy, _ o7 g Symm g,

so that only the symmetric part of A contribute to q(z).
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Assumption (SPD)

The matrix A is assumed to be symmetric and positive definite, in
fact,

Vo(@) = (A + AT)a b= Az b
and

V2q(

%(A+AT) =A

From the sufficient condition for a minimum we have that
Vq(z,)" =0, ie.

Az, =b

and V2q(x,) = A is SPD.

The toy problem

o By setting
A = V(z,),
b = V(z.)z. — Vi(z,)
o = f(a.) - V(. )z, + %aefv%(w,)z,

we have

1

f(z) = EwTAw — b+ et Oz — )

@ So that we expect that when an iterate @y is near @, then we
can neglect O(||z — «.|%) and the asymptotic behavior is the
same of the quadratic problem

The toy problem

@ In the following we study the convergence rate of the Steepest
Descent and Conjugate Gradient methods applied to

%.1:TA.1: —blzte

where A is an SPD matrix.

@ This assumption simplify the analysis but it is also useful in
the non linear case. In fact, by expanding a generic function
f(x) near its minimum @, we have

f(x) = f(z,) + V() (z - 2.)

+%(w —2)"V(x.) (@ — ) + O(|z — 2.*)

The toy problem

@ we can rewrite the quadratic problem in many different way as
follows

%(m —a) A(x —z) + ¢

%(Aw —b)T A (Az —b)+ ¢
where

’
¢

1
c+ Eerz,,

o This last forms are useful in the study of the steepest descent
method
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@ Convergence rate of Steepest Descent iterative scheme

of Descen

The steepest descent f

uadratic functions

We can solve exactly the problem
aj = argmin q(xj, — ary)
a>0

because p(a) = q(), — ary) is a parabola. In fact

dp(a) _ dq(zy —arg) _
da = i = —Va(z — ary)ry =0

0 = —Vq(ay — ary)ry, = r(ax —ary) ry = (b — Ay, — m‘k))Tn
= (rp —aAry) ry

T
Ty

T Ary | %

and the minimum is at o set to

Given an initial guess o, let k

while not converged do
Choose as descent direction py,
Compute a step size aj. using a line-search along py.
Set @ji1 = @i + agpy, and increase k by 1.

end while

ef n (Residual)
The expressions

are called the residual. We obviously have ()

(@) = 0.

The steepest descent for quadratic functions

Given an initial guess o, let k
while not converged do
Compute 14 = b— Aay;

T
TiTk .

Compute the step size aj, =

vl Ary’
Set @j11 = @) + g7k and increase k by 1.
end while

10/ 105
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Or more compactly

T
TiT)

ThL = T vl Ar
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onvergence rate of Stespest Descent ferative scheme.

The steepest descent for quadratic functions

The steepest descent reduction step (1/3) The steepest descent reduction step
- rire
We want bound q(zy11) by q(zx): Substituting oy, = A, we obtain

a(@ki1) = al@y + ary)

1

1(rfre)?
= > (Amy + apAry, — b)" A7 (Awy + apArg —b) + ¢

T 20 Ar,

a(@1) = aly

this shows that the steepest descent method reduce at each step
apAry, — )T AT (ap Arg — 1) + ¢ the objective function q().

2
1
2
IR P R S - -
2Tk &+ SQGT ATE — QT Tk A+ € Using the expression q(a

A7lr(z) + ¢ we can write:

1 T T
= a(@x) + 505 (crf Ary —2rf'ry)

1 5 1, 1(rfr)?
Zrl At Sri ATy - Sk
ZTA+1 Th+1 277 Tk > rﬁ Are

The steepest descent reduction ste|

The estimate of the convergence rate for the steepest descent
method is linked to the estimate of the term
(r{re)?

T 2 R S A—
T oA — At (1o et (AT (1T Ary)
The1 A Thil =T Tk (rTA Try)(rT Ary) ¥ k

or better

in particular we can prove
noticing that v, = b — Ay = Az, — Azy = A(z, — ;) we have

(rfry)? )

T (AT (] Ary)

Lemma (Kantorovic)

Let A € R™*" an SPD matrix then the following inequality is valid

(2" Az)(z” A 1z)
@=? S 4im

2 2
@e — pplla = 2 — iy <1

where 1<

lz]l 4 = V&l Az for all @ # 0. Where m = Ay is the smallest eigenvalue of A and
is the energy norm induced by the SPD matrix A. S elthelbies stciecnvaluclo

YT ——



onvergence rate of Stespest Descent ferative scheme.

Proo
STEP 1: problem reformulation. First of all notice that

(@TA2)aTA'r) (7 Ay)(yTA )

(aTx)? "y

~ have:

x|

for all y = az with a # 0. Choosing a =
thinl(zTAz)(zTA’lz) <
(«” Az)(z" A 'z)
(ET$)2

< max (27 Az)(2TA1z)
Jzl=1

STEP 3: problem reduction. By using Lagrange multiplier maxima
and minima are the stationary points of:

o
) + o (ZA,I”i’l)

setting A = Y27, a?M and B = Y7, a2 we have

901, -, amy 1) = h(an, ..

9o, am, 1)

o =20 (MB + X

so that
Q@ Ora;=0;
@ Or )\ is a root of the quadratic polynomial A2B + A + A

in any case there are at most 2 coefficients a's not zero. ?

“the argument should be improved in the case of multiple eigenvalues

Proof.

STEP 2: eigenvector expansions. Matrix A € R"*" is an SPD
matrix so that there exists u;, up, .. .,u, a complete orthonormal
eigenvectors set with 0 < A\; < A\p < -++ <\, corresponding
eigenvalues. Let be € R" then

n n
— T, 2
T = 2 oy KU z'x 2 o Ok

so that (2" Az)(z” A 'z) = h(ay,...,a,) where

hoa,...,om) = (Z:i1 n,%)\k) (Z:,l ni)\kl>

then the lemma can be reformulated:

o Find maxima and minima of h(ax.....as)
o subject to 371 af = 1.

STEP 4: problem reformulation. say a; and a; are the only non
zero coefficients, then a2 + 05 =1 and we can write

Bon, . an) = (X +a2\) (2N + a2A)T)

A, A
= il B (T] + T{)

a?(1 - a?) +a3(1 - a?) + afa?
XN, A
=1+a%? (J+J—2>
B UYRIDY
Qi=N)?
N

=1+0a%(1-0?)

YT ——
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The steepest descent

VB e[0,1]

X=X (it N)?

)\1

ny

and finally

Remember from slide N°15

from Kantorovich inequality

(rire)®

1< h(an,...,ap) <

2 2
e = ksl = e — s (1-

AN A

to bound (A; + A;)2/(4A;A;) consider the function
f(&) = (1 + 2)?/z which is increasing for = > 1 so that we have

(i +\5)? LM+ m)?

4Mm

(M +m)?
4Mm

(rim)? )
(rfA=Iry)(rf Ary)

4Mm (M —m)?

<1
C (TATr) (T Ary) —

so that

s = @psalla <

T EmpE T (Mtmp

—@ill4

The Kantorovich inequality permits to prove

Theor
Let A € R™*™ an SPD matrix then the steepest descent method:

(Convergence rate of Steepest Descent)

7
rhry
T Aty

Tpt1 = Tp + Tk
converge to the solution x, = A~'b with at least linear q-rate in
the norm ||-|| 5. Moreover we have the error estimate

llzn = @l 4 < ka ENIDA

~+1

& = M/m is the condition number where m = A is the smallest
eigenvalue of A and M = ), is the biggest eigenvalue of A. B

Remark (One step convergence)

The steepest descent method can converge in one iteration if
+ = 1 or when o = ), where uj, is an eigenvector of A.
@ In the first case (k = 1) we have A = BT for some 3 > 0 so it
is not interesting.
@ In the second case we have
(ufur)? _
(uf A=Yu)(uf Aug)

(ufur)? _
A (uT )\ (ul: -
v (wp ) A (g ug)

in both cases we have r; = 0 i.e. we have found the solution

Y —— 2/ 105



@ Conjugate direction method

Problem (Linear system)
Find the minimum of q(x) = 3a” Az — b + c is equivalent to

solve the first order necessary condition, i.e.

Find x, € R" such that: Awm, =b.

Consider xg € R™ and decompose the error eg = x, — g by the
conjugate vectors p1, P2, ...,pn € R™:

€y =Ty, —Xg = 01P1 +02P2 + -+ + TuPn-

Evaluating the coefficients oy, 2, ...,0n € R is equivalent to
solve the problem Az, = b, because knowing eg we have

T, =z + €o.

5

25 /105

Conjugate direction metkh

Definition (Conjugate vector)

Given two vectors p and g in R" are conjugate respect to A if
they are orthogonal respect the scalar product induced by A; i.e.,

z
P Ag= ) Aypig;=0.
ig=1

Clearly, n vectors py, pz,...p, € R™ that are pair wise conjugated
respect to A form a base of R"

Using conjugacy the coefficients oy, o, .., on € R can be
computed as
Pl Aey

i 260 1,2,...,n.
P! Api

o fori

In fact, for all 1 < i < n, we have
Pl Aeg = pT A (01p1+02p2 + ...+ 0upn)
o1p] Ap1 + 02p] Ap> + ... + 0P Apn,

= oip! Api,

because pI Ap; = 0 fori # j

105
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The conjugate direction method evaluate the coefficients o,
02,...,0n € R recursively in n steps, solving for k > 0 the
minimization problem:

Conjugate direction method

Given xo; k — 0;
repeat
ke—k+1;
Find @}, € o + Vj such that:

x), = argmin [z, — x| 4
Vi

T e+

until k =n

where V, is the subspace of R™ generated by the first k& conjugate

direction; i.e.,

Vi = SPAN{p1. P2,

Solving first step me

The minimization problem is the minimum respect to a of the
quadratic:

O(a) = @, — (w0 + ap1) s »
= (. — (@0 +ap1))” A (z. — (20 + ap1)),
= (eo—ap1)" A(eo — apy),
el Aeg — 2ap! Aeg + o’pl Apy.

minimum is found by imposing:

dd(a)

= —ZPTAeg + Zr:p;rApl =0 =

da

At the first step we consider the subspace @ + SPAN{p;} which
consists in vectors of the form

x(a) = xo + ap1 aeR

The minimization problem becomes:

Minimization step &g — @1

Find @1 = @0 + a1ps (.., find a1!) such that:

llx = @14 = min 2. = (@0 +p1)ll4

Solving first step method

Remember the error expansion:

T — T = 01Pp1+ 02p2 + -+ OnPn-
Let @(a) = @o + apy, the difference @, — (a) becomes:
z, —x(a) = (01— a)pr + o2p2 + ... + OuPn
due to conjugacy the error ||z, — z(a)|| , becomes
llzs — ()

= ((m —a)pr+ imp,)TA((m —a)p1+ in,p,)
=2

=2

= (01— a)’p{ Ap1+ Y o?p] Ap;
=

YT ——
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e —] First step
(2/2

Solving first step method 2

Because

2 2 2 2
. = @(a)|% = (01— ) [pr s + D o3 Ipilla s
i=2

we have that

2 2 2
2, —a(an)|% = > o pil < o — (@)}, foralla#oy

i=2

so that minimum is found by imposing a1 = o1

Remember the error expansion:
Ty —Tg = 01P1 + 02P2 + + + TpPn.

Consider a vector of the form
z(a®,a®, . aW) = zq + aWp; +a@p; + ... + aF)p,

the error @, — x(a®, o), ... aM) can be written as

k
e a(a®,0®,a®) = 2, 20— Y alp,

i=1

For the step from k — 1 to k we consider the subspace of R™

Vi = sean{p1,par ... pi}
which contains vectors of the form:

2(a®,a®,... o) = 2o + aWp; + aPp; + ... + aWpy,

The minimization problem becomes:

Minimization step @1 — @
Find @), = @o + c1p1 + a2p2 + ... + apy (ie. ar,02,..., ag)
such that:

z, — z(a®,a®, ..., o“))HA

Nl =il = o) al@alkeR

34/ 105

.

~ 2 2 2 2
= (o= IpilA+ S o il
1 i=k+1

So that minimum is found by imposing a; = o;: fori =1,2,..., k.

_ I’TAeo

; i=12
pl Api

«
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T T——y—— Succesive one dimensional minimization |

Successive one dimensional minimization (1/3) Successive one dimensional minimizati

Consider a vector of the form
o notice that a; = o; and that @(a) = Tp-1 + api
X = To + a1p1 + -+ QP remember that @1 = ®o + a1p1 + - -+ + @p_1Pr—1 SO that the

error @, — @(a) can be written as
= Tp-1 + Pr

X . k-1
@ 50 that @ contains k — 1 coefficients o for the wr (o) = 2o 3 i+ o
minimization. et
o if we consider the one dimensional minimization on the b1 n
subspace @j,_1 + SPAN{p;} we find again a;! Z (03 — i) pi + (o1 — ) pr + Z Oipi-
= i=kt1

due to the equality o; = «; the blue part of the expression is 0.

direction method imensional minimization tion m

cessive one dimensi | minimizatio

Problem (one dimensional successive minimization)

Using conjugacy of p; we obtain the norm of the error: Find @}, = 1 + xpy such that:
n o
2 \2 2 2012 Iz — @]l o = min [z, — (k-1 + apr)ll4 .
e — ()% = (7 — o) Ipela+ Y o llpill- oeR
i=k+1

The solution is the minimum respect to a of the quadratic:
(a) = (@, — (2

= (ex-1 — api)” A(er—1 — apy).,

So that minimum is found by imposing @ = a: B
1+ apg) Az, — (@r-1+apy))

Pl Ap

= el ;Aej_1 — 20p} Aej_1 + a’p] Apy.

minimum is found by imposing:

This observation permit to perform the minimization on the vy

5 5 i y . do(a) T A, T A, piAer
k-dimensional space @o + V. as successive one dimensional da —2pj Aey1 +20p, App =0 = Qg = T Apr
minimizations along the conjugate directions py!. ‘, * }

Direction minimization




onjugate direction method

@ In the case of minimization on the subspace xo + Vi we have:
ar = pj Aeo / i Api

@ In the case of one dimensional minimization on the subspace
@)1 + SPAN{pj;,} we have:

o) = pf Aer_1 / pL Apk

@ Apparently they are different results, however by using the
conjugacy of the vectors p; we have

plAer 1 = pLA(x, — mp1)
= plA(z. — (xo+1p1 + - + ap_1Pk-1))
= pj Aeg — a1pl Apy — -+ — aj_1p} Apa

= pi Aeo

Conjugate direction minimization

Algorithm (Conjugate direction minimization)

k — 0; @q assigned;

T — b— Amo;

while not converged do
k—k+1;

TEAPL

PLAD,
T Tp—1 + OkPk/
Tk < Tho1 — R APE;

end while

ap —

Observation (Computazional cost)

The conjugate direction minimization requires at each step one
matrix-vector product for the evaluation of oy, and two update
AXPY for @), and .

Successive one dimensional minimization

direction minimization

The one step minimization in the space @g + V,, and the
successive minimization in the space x;_1 4+ SPAN{pj;},
k=1,2,...,n are equivalent if p;s are conjugate.

The successive minimization is useful when p;s are not known
in advance but must be computed as the minimization process
proceeds.

o The evaluation of ay, is apparently not computable because e;
is not known. However noticing

Aey = A(m, —ap) = b— Az =1,
we can write

i = pl Aey1 / L Api = i1 [ Pl Api =

Finally for the residual is valid the recurrence
r=b— Az = b— A(@_1 + pr) = Tt — L APy

tonic behavior of

Remark (Monotonic behavior of the error)

The energy norm of the error |||  is monotonically decreasing in
k. In fact:

€ = &y — T = Qk1Pk+1 + .- + AnPry
and by conjugacy
2 2 2 2
lewla = llex = @xlis = o [Prrala + -+ 02 [Pl -

Finally from this relation we have e,, = 0.

Direction minimization




Conjugate Gradient method

© Conjugate Gradient method

o The residue 7, is orthogonal to py, pa, ...
the error expansion

i In fact, from

€k = Ok t1Pk+1 + Ok+2Pk+2 + o0 + QnPa
because v, = Aey, fori=1,2,..., k we have
plri = pl Ae,
=pfA Y ajp;= Y a;plAp,
j=h+1 j=k+1

The Conjugate Gradient method combine the Conjugate Direction
method with an orthogonalization process (like Gram-Schmidt)
applied to the residual to construct the conjugate directions.

In fact, because A define a scalar product in the next slide we
prove

@ each residue is orthogonal to the previous conjugate
directions, and consequently linearly independent from the
previous conjugate directions.

o if the residual is not null is can be used to construct a new
conjugate direction.

@ The conjugate direction method build one new direction at
each step.

o If 7, # 0 it can be used to build the new direction py1 by a
Gram-Schmidt orthogonalization process

Pri1 =Tk + @9‘”?1 + sé“l)l)z +o ﬁff‘l)m»«

where the k coefficients
satisfy.

A, gt must

.ﬁ)’,E.‘+1)

plAppia =0, fori=1,2,..., k.

Direction minimization




onjugat method

Building new conjugate direction

(repeating from previous slide)

k+1]
Pyt =+ 8 py

4+ 8 p, g g D,
expanding the expression:
0= p! Apia,

= plA(r,+ 85 Vpy + 6 py 44 gDy,

T Ary + 8" DpT Ap,,

g1 _ 717',’?4”
» Api

Simplification of the expression for «y

Writing the expression for pj, from the orthogonalization process

I.-+1)p1 + ﬁglﬁ»l)

k+1]
P =it + O P2+ B py

using orthogonality of 7,1 and the vectors py, pa, ....pj-1, (see
slide N.47) we have

+1),

Ay 4+ 88 Vpy 44 s pa),

T T
ri_apr = 7 (ree1 4
T
= Tp-1Tk-1-

recalling the definition of a, it follows:

T e
el 1Apr v ipk
o =

plAp:  plAp. | plAp:

The choice of the residual 7, # 0 for the construction of the new
conjugate direction pj 1 has three important consequences:
@ simplification of the expression for ay;
@ Orthogonality of the residual 71, from the previous residue 7,
TLoo Tho1
@ three point formula and simplification of the coefficients
gk+1)
i

this facts will be examined in the next slides.

From the definition of pj 1 it follows:

pipr =i+ B py 4+ 8 Vp, L+ g D,
= 1 €SPAN{p1,P2, ..., Pi.Pit1} = Vis1 (obvious)

using orthogonality of 71, and the vectors p1, p, ..., p, (see slide
N.47) for i < k we have

v =rl <Pt = Zﬁj‘“)l)})-

=

,
rlpigs— Y T, = 0.
=1

YT ——
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Conjugate gradient algorithm

From the relation /7 =] (ri-1 — 0:Ap;)  we deduce

T, T, T — ke
JE TroJog ifi=k;
r[Aplzlflik:{ k

o

0 ifi <k

remembering that aj, = v{_,rx_1 / p} Apy, we obtain

’I‘TT‘ e
(k1) TLAp: ke
3! [ ; =l
p! Api
i<k
. (k1) .
i.e. there is only one non zero coefficient A", so we write

B = %Y and obtain the three point formula:

Pri1 =Tk + Brpr

initial step:

k — 0; o assigned;

ro — b— Azg;

p1 < To;

while ||r¢| > € do
ke—k+1;
Conjugate direction method

L — L1 + Pk
Tk Tho1 — APy
Residual orthogonalization

vy
Pr+1 < T+ Bepri
end while 5‘

jon minimization 54/ 105

Polynomial residual expansions

@ Conjugate Gradient convergence rate

From the Conjugate Gradient iterative scheme on slide 54 we have

Lemma

There exists k-degree polynomial Py(x) and Qx(x) such that
. = Pu(A)ro k=01

= Qua(A)rg  k=12...n
Moreover Py(0) =1 for all k

Proof. (1/2).

The proof is by induction.
Base k =0

pP1=To

1.

so that Py(x) =1 and Qo(x)

Direction minimization




Polynomial residual expansions

Polynomial residual expansions

(2/5)

Proof. (2,
let the expansion valid for k — 1 Consider the recursion for the
residual

Tk = Tho1 — 0 Ap
= Pe-1(A)ro + ax AQr-1(A)ro
= (Pi-1(A) + a1 AQk-1(A))0
then Pi(z) = Pi-1(z) + ap2Qg-1(x) and Py(0) = P;—1(0) = 1.
Consider the recursion for the conjugate direction
Pri1 = Pi(A)ro + BrQr-1(A)ro
= (Pu(A) + BrQr-1(A)) 0
then Q(z) = Pi(z) + 3:Qk-1(z)

Ipe—

Recalling that

Alr =AM b- Azy) =2, — 3 = ¢
we can write
= Al
AP (A)ro
= Pi(A)AMr
= P(A)(x. — zo)
= Py(A)eo.

due to the optimality of the conjugate gradient we have:

Polynomial residual expansions

We have the following trivial equality
Vi = SPAN{p1.P2.... P}

= SPAN{7o,T1,... Tk 1}

= {a(A)rolge P L}

= {p(A)eo|p € P¥, p(0) = 0}
In this way the optimality of CG step can be written as
e — 2l g < ll&e — 2] 4, Va € zo + Vi
. — @il a < 2. — (o +p(A)eo)|a, Vo EPF p(0)=0

e =2kl 4 < [[P(A)eol| 4, vP e P* P(0)=1

Polynomial residual expansions

Using the results of slide 58 and 59 we can write
ex = Pi(A)eo.
llexlla = 1Pc(A)eoll o < I1P(A)eoll o

and from this equation we have the estimate

VP e Pk, P(0) =1

el 4 < inf P(A)e
llexll 4 p— P(o)=1 [[P(A)eol o
So an estimate of the form

inf P(A < Cy
pew‘."p(o),l‘ (A)eoll 4 < Cr lleoll o

can be used to proof a convergence rate theorem, as for the
steepest descent algorithm.

YT ——
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Convergence rate calculati

Lemma

Let A € R™*™ an SPD matrix, and p € P* a polynomial, then

Ip(A)z| 4 < [IP(A)ll; |2l o

Proof.
The matrix A is SPD so that we can write

A=U"AU, A =DIAG{A1, A2, .o An}

where U is an orthogonal matrix (i.e. UTU = I) and A > 0 is
diagonal. We can define the SPD matrix AY/2 as follows
T 1/2 1/2
AV2_UTN2U, A2 =piac{AY N2, A2

and obviously A1/2AY2 — A,

5
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Lemma
Let A € R"™" an SPD matrix, and p € P* a polynomial, then

lp(A)ll, = T [P

Proof.

The matrix p(A) is symmetric, and for a generic symmetric matrix
B we have

B, = By
1 BIl AQ'Z,TE)H

observing that if \ is an eigenvalue of A then p(\) is an eigenvalue
of p(A) the thesis easily follows. [m}

Convergence rate calculation

Notice that
% = 27 Az = 2 A2 A2z = HAl/Qsz
so that
Ip(A)ells = ||A"2p(A)a,
= [ptarael,
< Ip(A)], [4*2<],

= [Ip(A)llz |z]|.o

@ Starting the error estimate

clla < inf P(A
llexll.a pemmp(u):1H (A)eoll o

o Combining the last two lemma we easily obtain the estimate

. [max POV ] lleolLa

lerlla <
@ The convergence rate is estimated by bounding the constant

inf P(A
i oy [ e 1POV]

Dir
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Finite termination of Conjugate Gradient

Convergence rate of Conjugate Gradient

Theorem (Finite termination of Conjugate Gradient) @ The constant

Let A € R™™ an SPD matrix, the the Conjugate Gradient applied inf max \P(A)\}
to the linear system Ax = b terminate finding the exact solution PEPY, P0)=1 L Aco(4)

in at most n-step. is not easy to evaluate,

@ The following bound, is useful
; POV < P(x
From the estimate max [P < | max | IPO)]
llexlla < 1,€Pj‘"1§(n):1 [Ag;a(;)lP(A)\} lleoll o @ in particular the final estimate will be obtained by

choosing P)= [ =N/ I[ ©0-»

Aea(A) Aca(A)
we have maxye,(a) |P(A)] = 0 and [len | o = 0. o

inf P\ | < P(X
1»(:**'."1»(0):1 [Agr‘f(ﬁ)‘ ( )‘] 7&?‘\?3”]‘ gt )‘

where P;(x) is an opportune k-degree polynomial for which
B P(0) = 1 and it is easy to evaluate maxycp, a1 | Pr(V)]- “

ebyshev Polynomials

@ The Chebyshev Polynomials of the First Kind are the right =
polynomial for this estimate. This polynomial have the R
following definition in the interval [1,1]: -
Ty (x) = cos(k arccos(x)) /
. o
@ Another equivalent definition valid in the interval (—oc, o) is B PrE—
the following

)=} [(, V1) (e ﬁﬂ

@ In spite of these definition, T}(x) is effectively a polynomial.




Ty ———— Chebyshev

Chebyshev Polynomials

@ It is easy to show that T} () is a polynomial by the use of
cos(a + 3) = cosacos 3 — sinasin 3
cos(a + 3) + cos(a — 3) = 2 cos axcos 3

let 6 = arccos(x)
0 To(x) )
@ Ti(z) = cos(16)
0 Ta(x) = cos(26) = cos( )2 —sin(0)2 = 2cos(6)? — 1 = 222 — 1;
0 Tia(z) + Tioa(x) = cos((k + 1)8) + cos((k — 1)6)
= 2cos(k0) cos(6) = 2 Ty ()
@ In general we have the following recurrence:

ergence rate of Conjugate Gradient me

Theorem (Convergence rate of Conjugate Gradient method)

Let A € R™ "™ an SPD matrix then the Conjugate Gradient
method converge to the solution x. = A~'b with at least linear
r-rate in the norm ||-|| 5. Moreover we have the error estimate

lesta 5 2(Z5) ol

k= M/m is the condition number where m = Ay is the smallest
eigenvalue of A and M = \, is the biggest eigenvalue of A

The expression aj < by, means that for all € > 0 there exists ko > 0
such that:

@ <(1—eby,  Vk>ko

Polynom

(4

z) = 22 Ti(x) — Ti1(x)
o We obtain the explicit form of the Chebyshev Polynomials

)+ o]

Ti(a) = %{(r +

@ The translated and scaled polynomial is useful in the study of
the conjugate gradient method:

a+b—2r
Ti(a; a,b) = T, (ﬁ)

where we have |Tj.(z; a,b)| < 1 for all € [a,b]. B

n minimization 105

From the estimate

3 P(A ., PePF PO0)=1
llexlla < AETaXU]I (Ml lleoll 4 (0)

choosing P(x) = Tj(z;m, M)/T}(0; m, M) from the fact that
|T3(;m, M)| < 1 for x € [m, M] we have

lexlla < T(0: m, M) [leo| o = T

M+m\ ! leol
—m olla

observe that 1= = ££1 and

—m = ke
o (51 ”72 VE+1 k+ VE-1\¥17!
Mle—1) “A\Vr-1 VE+1
k
finally noticethat( :;}) —0as k — oo. [} &

Y ——




Preconditioning the Conjugate Gradient method

Preconditioning

Preconditioning

Problem (Preconditioned linear system)

Given A, P € R™*", with A an SPD matrix and P non singular
matrix and b € R"™.

Find , € R" such that: P~" Az, =P~ Tb.

A good choice for P should be such that M = PTP ~ A, where
~ denotes that M is an approximation of A in some sense to
precise later.

Notice that:
@ Preconditioning the Conjugate Gradient method

@ P non singular imply:

PTb-Az)=0 << b-Az=0

ﬁ‘ @ ASPD imply A = P~TAP1 s also SPD (obvious proof) “
L Conivgate Directon minimizatin _________ L _njus]|

Preconditioning the Conjugate Gradient method Preconditioning

preliminary versiol

Now we reformulate the preconditioned system: initial step:

k — 0; xq assigned;
Problem (Preconditioned linear system) Fo — Paxo; 7o — b — Adg; Py — 7o;
Given A, P & R"", with A an SPD matrix and P non singular while ||| > ¢ do

k—k+1;
Coruugate mremon method

matrix and b € R™ the preconditioned problem is the foll

Find @, € R" such that: ~ Az, =b
where

A=PTAP! b=P b

notice that if z, is the solution of the linear system Az = b then
Z, = Pa, is the solution of the linear system Az = b.

Pri1 — T + D)
end while

final step }

e Direction minimization




Conjugate gradient algorithm applied to AZ = b require the

evaluation of thing like:

Ap, =P TAP!

ke
this can be done without evaluate directly the matrix A, by the
following operations:

Q solve Psj, = py. for s} = P~1py;

Q@ evaluate s} = As);

O solve P75 = s}l for s = P~ T's".
Step 1 and 3 require the solution of two auxiliary linear system.
This is not a big problem if P and P are triangular matrices (see
e.g. incomplete Cholesky).

Definition
For all k > 1, we introduce the vectors

T = Th_1 + kG-

If we assume, by construction, &y = Pxq, then we have

z), = Pxy, for all k with 1 < k < n.

In fact, if &y = Pay_ (inductive hypothesis), then

&y, = Tp—1 + QkPk [preconditioned CG]

= Py +apPq;  [inductive Hyp. defs of qi]
= P(xjy +axqe)  [obvious]

= Pxy, [defs. of @]

G reformulation

G reformulation

However. .. we can reformulate the algorithm using only the
matrices A and P!

For all k: > 1, we introduce the vector q. = P~1p.

Observation

If the vectors 1, Pa, - .. P for all 1 < k < n are A-conjugate,
then the corresponding vectors qu, Gz, .. - qi are A-conjugate.
In fact:

iy STpT Ap-ls 5T A5 it
4 Agi=p; P AP 'pi=p] A pi=0 ifi#]
g7 =q! =P TAP!
i

that is a consequence of A-conjugation of vectors p;.

reformulation

Because Py, for all k > 0, we have the recurrence between
the corresponding residue T, — AZ and 1. = b — Az

=P Try.
In fact,
7= b— Az, [defs. of 7]
[defs. of b, A, F]
=P T (b- Axy), [obvious]

=P Ty [defs. of ri]

=P o P TAP 'Puy,

Direction minimization



Preconditioning the Conjugate Gradient method CG reformulation G reformulation

T Tho e PP Ty Tl M oy

Definition
For all k, with 1 < k < n, the vector zj. is the solution of the
linear system

@ = e -
PL APy

q/ PTP-TAP 'Pq, AGk

Mz, = ry.

where M = PTP. Formally,

2p =M 'ry=P P Tr.

Observation

Using the vectors {2}, L pp o
— e . TLT T ™ T T

o we can express . and J in terms of A, the residual y, and Bom otk _Teo Tk _ T2 Tk

conjugate direction gi; TiaTh-1 T PP Trp g r  Mlre g

o we can build a recurrence relation for the A-conjugate
directions gy, _

B g2k B

T
Ti 2k

reformulation

[ G reformulation

initial step:

Using the vector z, = M~Lry,, the following recurrence is true k — 0; xo assigned;
-~ T'DHbiAwOv q1 — To;
Gk+1 = 2k + Brgr while |z;|| > € do
k—k+1;
Conjugate direction method
Tz
af Aax
P = P+ B P7ipy [left mult 7] @ 1 + R
_ T — PEo1 — ORAqy;
P 'y = PP Trp + PPy [frin = P ] Preconditioning
. S ¢ = M-lr,
p1 = M lr, 4+ 3Pt M~! = p-lp-T 2k ki
Bl Tt APTR / Residual orthogonalization
Qi1 = 2k + Begr [ar = P"'pi] B iz
Tr_1%k—1
ki1 — 26+ Begrs
end while &

D1 = 7+ Oibr [preconditioned CGJ e ¢

Direction minimization




Nonlinear Conjugate Gradient extension

@ Nonlinear Conjugate Gradient extension

initial step:
k « 0; @ assigned;
o f(xo); go — Vf(xo)";
Po — —go;
while ||gi|| > ¢ do
k—k+1;
Conjugate direction method
Compute ay, by line-search;
T) ¢ Tp—1 + WPr-1;
gr — Vi)
Residual orthogonalization
gFR _ _glor
k 9l _19k-1"
Pe— —gr + B pr_1;
end while

o

o

o

o

Dir

The conjugate gradient algorithm can be extended for
nonlinear minimization.
Fletcher and Reeves extend CG for the minimization of a
general non linear function () as follows:

@ Substitute the evaluation of aj by an line search

@ Substitute the residual r;. with the gradient Vf(zy)
We also translate the index for the search direction pj. to be
more consistent with the gradients. The resulting algorithm is
in the next slide

To ensure convergence and apply Zoutendijk global
convergence theorem we need to ensure that py. is a descent
direction

Po is a descent direction by construction, for py, we have
gipe = = llgl* + B gl P
if the line-search is exact than yz.-m—1 = 0 because pj_1 is
the direction of the line-search. So by induction py is a
descent direction.
Exact line-search is expensive, however if we use inexact
line-search with strong Wolfe conditions
@ sufficient decrease: f(ay + arpi) < f(ax) + 1 o VE(zy)pr:
@ curvature condition: | V(. + axpi)pr| < o |VF(zx)pk|
with 0 < ¢; < ¢ < 1/2 then we can prove that py is a
descent direction.




Nonlinear Conjugate Gradient oxtension

The previous consideration permits to say that Fletcher and Reeves
nonlinear conjugate gradient method with strong Wolfe line-search
is globally convergent!

To prove globally convergence we need the following lemma:

Lemma (descent direction bound)
Suppose we apply Fletcher and Reeves nonlinear conjugate
gradient method to f(x) with strong Wolfe line-search with

0 < ¢ < 1/2. The the method generates descent direction py, that
satisfy the following inequality

gipe —2c;
gl ~

b k=0,1,2,...

l1-c

*globally here means that Zoutendijk like theorem apply

59 /105

Nonlinear Conjugate Gradient ext

Using update direction formula's of the algorithm:

@
P 9i. 9k P
BER = 2T g = g+ B Rpra

9i 19k
we can write
aipr _ SPRIEPEL _ L OEPi
7= TPk 7 = 1t 2
A IlgI llgr—1ll

and by using second strong Wolfe condition:

giapia

T ;
9iaPe _ gipi
e =

[lgr—/

1+ ——— > = V3
llgr—1ll® " llgell

<

. m o 91/ 105

The proof is by induction. First notice that the function
261
1-¢

is monotonically increasing on the interval [0,1/2] and that

(&) =

#(0) = —1 and #(1/2) = 0. Hence, because of ¢, € (0,1/2) we
have:
2 -1
Sl <o ®)

base of induction k = 0: For k = 0 we have po = —go so that
9¥po/ |lgoll> = —1. From (x) the lemma inequality is trivially
satisfied.

by induction we have
1 gz‘,lpk—l
=62 o "
@ g1l
so that
alpe i — g gipr =
7S -l-c-=——5 <
llgwll g1l
and
gk GIP 1 1
lgil® = lge-al® = - l-c

9/ 105

P~ 5



Nonlinear Conjugate Gradient extension

@ The inequality of the the previous lemma can be written as:

L llgel

9Pk L-2c gl
1—colpill =

lgrlllpell = 1 =2 flpel

@ Remembering the Zoutendijk theorem we have

S 9lp)
Z(cos(ik)2 llgrl® < oo, where cosfy = —— Dk _
= llgl llpxl

@ so that if [|gi|| / [|px/| is bounded from below we have that
cos B > 4 for all k and then from Zoutendijk theorem the
scheme converge.

@ Unfortunately this bound cant be proved so that Zoutendijk
theorem cant be applied directly. However it is possible to
prove a weaker results, i.e. that lim infy_.o [[gil| = 0!

5

93 10

Theorem (Convergence of Fletcher and Reeves method)

Suppose the method of Fletcher and Reeves is implemented with
strong Wolfe line-search with 0 < ¢1 < ¢, < 1/2. If f(z) and a0
satisfy the previous regularity assumptions, then

lim inf [|gx/| =
im inf [|gi|| = 0

From previous Lemma we have

1 gl
c2 [Pl

cos >

1

oo
substituting in Zoutendijk condition we have Z I

k=1 |IPk
The proof is by contradiction. in fact if theorem is not true than
the series diverge. Next we want to bound ||py||.

o 95 / 105

Convergence of Fletcher and Reeves method

Assumption (Regularity assumption)

We assume f € C1(IR™) with Lipschitz continuous gradient, i.e.
there exists iy > 0 such that

[Vi@) - Vi)' | < vl -yll, Vo,yeR

Proof. (bounding |

/)

Using second Wolfe condition and previous Lemma

|97 pia] < —coglprs < g1l

using pr. — —gi + Bf Fpr_1 we have

k11 < llgill® + 267 |gi pr-a| + (BE ™) pr-a 1
2cp
1-c

< llgrll® + B lg-all® + (BE™2 lIpr-a®
recall that B — ||gi|* / | ge-1 then

2_1lte 2, (4 2
Ipell® < 3= llgull® + (B8 [pi-s]

n minimization 94/ 105
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Nonlinear Conjugate Gradient oxtension

Proof. (bounding ||p||) (3/4). Proof.
setting ¢ = 2 and using repeatedly the last inequality we Suppose now by contradiction there exists d > 0 such that

obtain |lgkll = & 2 by using the regularity assumptions we have

[Pkl < esllgell® + (857 (c3 lgel* + 2 e 2 4.
Ipel® < esllgell* Y llgsll =2 < callgel* 6~k

=1

4 2 2
= callgl* (Jlgel 2+ lgesll2) +

Substituting in Zoutendijk condition we have

o0 4
o3 Lol

2
A

IA

s lgnl* (1gel=2 + g1l + llge—2l )

4o I*
22 Ipe—sl® . . .
Hq 3| this contradict assumption. ]
" L 9 “the correct assumption is that there exists ko such that [|gy| > & for
< c3 gkl Z gl k > ko but this complicate a little bit the following inequality without

introducing new idea B

Nonii

and Reeves method

Polack and Ribiére Nonlinear Conjugate Gradie

© Suppose that py is a bad search direction, i.e. cosf) ~ 0. @ The previous problem can be elided if we restart anew when

@ From the descent direction bound Lemma (see slide 89) we the iterate stagnate.

have @ Restarting is obtained by simply set 3% = 0.

1 lgell > costy > @ A more elegant solution can be obtained with a new definition
1—c2|pxl - of 3, due to Polack and Ribiére is the following:
@ 50 that to have cos ), ~ 0 we needs ||pi| > [grll- R gl (g — gi-1)
@ since py. is a bad direction near orthogonal to gy it is likely PR g{ilgk 1
that the step is small and @1 = . If so we have also
gre1~gp and BLE ~ 1 @ This definition of 3 is identical of 3/ in the case of
o but remember that pi1 — —giet + 5 fipy, so that quadratic function because g/'g_1 = 0. The definition differs

in non linear case and in particular when there is stagnation

3PR ~ 0, i.e. we have an automatic

Pi+1 = Pk- .
i.e. g~ g1 we have 3

o This means that a long sequence of unproductive iterates will restart.
follows. “ ) &

e 00 / 105



Nonlinear Conjugate Gradient extension Polack and Ribiére

Polack and Ribiére Nonlinear Conjugate Gradient

Weakness of Polack and Ribiére method

initial step:

k < 0; @g assigned;

Jo = f(wo); go — Vf(wo)"s

Po < —4o:

while [|gi|| > ¢ do
ke—k+1;
Conjugate direction method
Compute ay, by line-search;
T — Tp—1 + Pr-1;
gi — V(@)
Residual orthogonalization
BER AU )

T

P — g+ B pr1;

end while B

@ Although the modification is minimal, for the Polack and
Ribiére method with strong Wolfe line-search it can happen
that py is not a descent direction.

o If py is not a descent direction we can restart i.e. set
PR = 0 or modify 577 as follows

B = max{Bf", 0}

this new coefficient with a modified Wolfe line-search ensure
that py, is a descent direction.

o Polack and Ribiére choice on the average perform better than
Fletcher and Reeves but there is not convergence results!

o Although there is not convergence results there is a negative
results due to Powell:

Consider the Polack and Ribiére method with exact line-search.
There exists a twice continuously differentiable function
f:R3— R and a starting point xq such that the sequence of
gradients { ||gk|| } is bounded away from zero.

o However is spite of this results Polack and Ribiére is the first
choice among conjugate direction methods.

@ There are many other modification of the coefficient 3 that
collapse to the same coefficient in the case o quadratic
function. One important choice is the Hestenes and Stiefel
choice

@ For this choice there is similar convergence results of Fletcher
and Reeves and similar performance.

Direction minimization
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