Non-linear problems in n variable Lectures for PHD course on Non-linear equations and numerical optimization

Enrico Bertolazzi

DIMS - Università di Trento

March 2005

Outline

The Newton Raphson

2 The Broyden method

3 The dumped Broyden method

The problem to solve

Problem

Given $\mathbf{F}:D\subseteq\mathbb{R}^n\mapsto\mathbb{R}^n$

Find $x_{\star} \in D$ for which $\mathbf{F}(x_{\star}) = 0$.

Example

Let

$$\mathbf{F}(x) = \begin{pmatrix} x_1^2 + x_2^3 + 7 \\ x_1 + x_2 + 1 \end{pmatrix}$$

which has $\mathbf{F}(x_{\star}) = \mathbf{0}$ for $x_{\star} = (1, -2)^T$.

Outline

1 The Newton Raphson

2 The Broyden method

3 The dumped Broyden method

The Newton procedure

Consider the following map

$$\mathbf{F}(x) = \begin{pmatrix} x_1^2 + x_2^3 + 7 \\ x_1 + x_2 + 1 \end{pmatrix}$$

we known an approximation of a root $x_0 \approx (1.1, -1.9)^T$.

• Setting $x_1 = x_0 + p$ we obtain ¹

$$\mathbf{F}(\boldsymbol{x}_0 + \boldsymbol{p}) = \begin{pmatrix} 1.351 \\ 0.2 \end{pmatrix} + \begin{pmatrix} 2.2 & 10.83 \\ 1 & 1 \end{pmatrix} \begin{pmatrix} p_1 \\ p_2 \end{pmatrix} + \vec{\mathcal{O}}(\|\boldsymbol{p}\|^2)$$

if x_0 is a good approximation of a root of $\mathbf{F}(x)$ then $\mathcal{O}(\|\mathbf{p}\|^2)$ is a small vector.

¹Here $\vec{\mathcal{O}}(x)$ means $(\mathcal{O}(x),\ldots,\mathcal{O}(x))^T$

The Newton procedure

(2/3)

• Neglecting $\vec{\mathcal{O}}(\|p\|^2)$ and solving

$$\begin{pmatrix} 1.351 \\ 0.2 \end{pmatrix} + \begin{pmatrix} 2.2 & 10.83 \\ 1 & 1 \end{pmatrix} \begin{pmatrix} p_1 \\ p_2 \end{pmatrix} = \mathbf{0}$$

we obtain $p = (-0.094438, -0.105562)^T$.

Now we set

$$x_1 = x_0 + p = egin{pmatrix} 1.005562 \\ -2.0055612 \end{pmatrix}$$

(3/3)

The Newton procedure

Considering

$$\mathbf{F}(\boldsymbol{x}_1 + \boldsymbol{q}) = \begin{pmatrix} -0.05576 \\ 8 \, 10^{-7} \end{pmatrix} + \begin{pmatrix} 2.0111 & 12.0668 \\ 1 & 1 \end{pmatrix} \begin{pmatrix} q_1 \\ q_2 \end{pmatrix} + \boldsymbol{\mathcal{O}}(\|\boldsymbol{q}\|^2)$$

• Neglecting $\vec{\mathcal{O}}(\|q\|^2)$ and solving

$$\begin{pmatrix} -0.05576 \\ 8 \, 10^{-7} \end{pmatrix} + \begin{pmatrix} 2.0111 & 12.0668 \\ 1 & 1 \end{pmatrix} \begin{pmatrix} q_1 \\ q_2 \end{pmatrix} = \mathbf{0}$$

we obtain $q = (-0.0055466, 0.0055458)^T$.

ullet Now we set $x_2 = x_1 + q = (1.000015, -2.000015)^T$

(1/2)

The Newton procedure: a modern point of view

The previous procedure can be resumed as follows:

- ① Consider the following function F(x). We known an approximation of a root x_0 .
- Expand by Taylor series

$$\mathsf{F}(x) = \mathsf{F}(x_0) +
abla \mathsf{F}(x_0)(x-x_0) + ec{\mathcal{O}}(\|x-x_0\|^2)$$

1 Drop the term $\vec{\mathcal{O}}(\|x-x_0\|^2)$ and solve

$$\mathbf{0} = \mathsf{F}(x_0) +
abla \mathsf{F}(x_0)(x-x_0)$$

Call x_1 this solution.

9 Repeat 1 - 3 with $x_1, x_2, x_3, ...$

Algorithm (Newton iterative scheme)

Let x_0 assigned, then for k = 0, 1, 2, ...

• Solve for p_k :

$$abla \mathsf{F}(oldsymbol{x}_k)oldsymbol{p}_k + \mathsf{F}(oldsymbol{x}_k) = \mathbf{0}$$

Update

$$\boldsymbol{x}_{k+1} = \boldsymbol{x}_k + \boldsymbol{p}_k$$

Standard Assumptions

In the study of convergence of numerical scheme, some standard regularity assumption are assumed for the function $\mathbf{F}(x)$.

Assumption (Standard Assumptions)

The function $\mathbf{F}: D \subset \mathbb{R}^n \mapsto \mathbb{R}^n$ is continuous, differentiable with Lipschitz derivative $\nabla \mathbf{F}(\mathbf{x})$. i.e.

$$\|\nabla \mathbf{F}(x) - \nabla \mathbf{F}(y)\| \le \gamma \|x - y\| \qquad \forall x, y \in D \subset \mathbb{R}^n$$

Lemma (Taylor like expansion)

Let $\mathbf{F}(x)$ satisfy the standard assumptions, then

$$\|\mathsf{F}(oldsymbol{y}) - \mathsf{F}(oldsymbol{x}) -
abla \mathsf{F}(oldsymbol{x})(oldsymbol{y} - oldsymbol{x})\| \leq rac{\gamma}{2} \left\| oldsymbol{x} - oldsymbol{y}
ight\|^2 \quad orall oldsymbol{x}, oldsymbol{y} \in D \subset \mathbb{R}^n$$

Proof.

From basic Calculus:

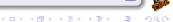
$$\mathsf{F}(oldsymbol{y}) - \mathsf{F}(oldsymbol{x}) = \int_0^1
abla \mathsf{F}(oldsymbol{x} + t(oldsymbol{y} - oldsymbol{x}))(oldsymbol{y} - oldsymbol{x}) \, dt$$

subtracting on both side $abla {\sf F}(x)(y-x)$ we have

$$egin{aligned} \mathbf{F}(oldsymbol{y}) - \mathbf{F}(oldsymbol{x}) -
abla \mathbf{F}(oldsymbol{x})$$

and taking the norm

$$\|\mathsf{F}(y) - \mathsf{F}(x) - \nabla \mathsf{F}(x)(y - x)\| \le \int_0^1 \gamma t \|y - x\|^2 dt$$



Lemma (Jacobian norm control)

Let $\mathbf{F}(x)$ satisfying standard assumptions, and $\nabla \mathbf{F}(x_{\star})$ non singular. Then there exists $\delta > 0$ such that for all $\|x - x_{\star}\| \leq \delta$ we have

$$\|\mathbf{2}^{-1}\|\nabla\mathbf{F}(x)\| \leq \|\nabla\mathbf{F}(x_{\star})\| \leq 2\|\nabla\mathbf{F}(x)\|$$

and

$$2^{-1} \left\|
abla \mathbf{F}(x)^{-1}
ight\| \le \left\|
abla \mathbf{F}(x_{\star})^{-1}
ight\| \le 2 \left\|
abla \mathbf{F}(x)^{-1}
ight\|$$

Proof. (1/3).

From standard assumptions choosing $\gamma \delta \leq 2^{-1} \|\nabla \mathbf{F}(x_\star)\|$

$$\begin{split} \|\nabla \mathsf{F}(\boldsymbol{x})\| &\leq \|\nabla \mathsf{F}(\boldsymbol{x}) - \nabla \mathsf{F}(\boldsymbol{x}_{\star})\| + \|\nabla \mathsf{F}(\boldsymbol{x}_{\star})\| \\ &\leq \gamma \|\boldsymbol{x} - \boldsymbol{x}_{\star}\| + \|\nabla \mathsf{F}(\boldsymbol{x}_{\star})\| \\ &\leq (3/2) \|\nabla \mathsf{F}(\boldsymbol{x}_{\star})\| \leq 2 \|\nabla \mathsf{F}(\boldsymbol{x}_{\star})\| \end{split}$$

again choosing $\gamma \delta \leq 2^{-1} \| \nabla \mathbf{F}(\boldsymbol{x}_\star) \|$

$$egin{aligned} \|
abla \mathsf{F}(x_\star)\| &\leq \|
abla \mathsf{F}(x_\star) -
abla \mathsf{F}(x)\| + \|
abla \mathsf{F}(x)\| \ &\leq \gamma \|x - x_\star\| + \|
abla \mathsf{F}(x)\| \ &\leq 2^{-1} \|
abla \mathsf{F}(x_\star)\| + \|
abla \mathsf{F}(x)\| \end{aligned}$$

so that $2^{-1} \| \nabla \mathbf{F}(x_\star) \| \leq \| \nabla \mathbf{F}(x) \|$.

Proof. (2/3).

From the continuity of the determinant there exists a neighbor with $\nabla \mathbf{F}(x)$ non singular for all $||x - x_{\star}|| \leq \delta$.

$$\begin{split} \left\| \nabla \mathsf{F}(x)^{-1} - \nabla \mathsf{F}(x_{\star})^{-1} \right\| \\ & \leq \left\| \nabla \mathsf{F}(x)^{-1} \right\| \left\| \nabla \mathsf{F}(x_{\star}) - \nabla \mathsf{F}(x) \right\| \left\| \nabla \mathsf{F}(x_{\star})^{-1} \right\| \\ & \leq \gamma \left\| x - x_{\star} \right\| \left\| \nabla \mathsf{F}(x)^{-1} \right\| \left\| \nabla \mathsf{F}(x_{\star})^{-1} \right\| \end{split}$$

and choosing δ such that $\gamma\delta\left\|\nabla\mathbf{F}(x_{\star})^{-1}\right\|\leq 2^{-1}$ we have

$$\left\|
abla \mathsf{F}(x)^{-1} -
abla \mathsf{F}(x_\star)^{-1} \right\| \leq 2^{-1} \left\|
abla \mathsf{F}(x)^{-1} \right\|$$

and using this last inequality

$$\begin{aligned} \left\| \nabla \mathsf{F}(x_{\star})^{-1} \right\| &\leq \left\| \nabla \mathsf{F}(x_{\star})^{-1} - \nabla \mathsf{F}(x)^{-1} \right\| + \left\| \nabla \mathsf{F}(x)^{-1} \right\| \\ &\leq (3/2) \left\| \nabla \mathsf{F}(x)^{-1} \right\| \leq 2 \left\| \nabla \mathsf{F}(x)^{-1} \right\| \end{aligned}$$

Proof. (3/3).

Using last inequality again

$$\begin{aligned} \left\| \nabla \mathsf{F}(x)^{-1} \right\| &\leq \left\| \nabla \mathsf{F}(x)^{-1} - \nabla \mathsf{F}(x_{\star})^{-1} \right\| + \left\| \nabla \mathsf{F}(x_{\star})^{-1} \right\| \\ &\leq 2^{-1} \left\| \nabla \mathsf{F}(x)^{-1} \right\| + \left\| \nabla \mathsf{F}(x_{\star})^{-1} \right\| \end{aligned}$$

so that

$$2^{-1} \left\|
abla \mathbf{\mathsf{F}}(x)^{-1} \right\| \leq \left\|
abla \mathbf{\mathsf{F}}(x_\star)^{-1} \right\|$$

choosing δ such that for all $\|x-x_\star\| \leq \delta$ we have $\nabla \mathbf{F}(x)$ non singular and $\gamma \delta \leq 2^{-1} \|\nabla \mathbf{F}(x_\star)\|$ and $\gamma \delta \|\nabla \mathbf{F}(x_\star)^{-1}\| \leq 2^{-1}$ then the inequality of the lemma are true.

Theorem (Local Convergence of Newton method)

Let $\mathbf{F}(x)$ satisfying standard assumptions, and x_{\star} a simple root (i.e. $\nabla \mathbf{F}(x_{\star})$ non singular). Then, if $\|x_0 - x_{\star}\| \leq \delta$ with $C\delta \leq 1$ where

$$C = \gamma \left\| \nabla \mathsf{F}(\boldsymbol{x}_{\star})^{-1} \right\|$$

then, the sequence generated by Newton method satisfies:

- **1** $||x_k x_{\star}|| \le \delta$ for k = 0, 1, 2, 3, ...
- $\|x_{k+1} x_{\star}\| \le C \|x_k x_{\star}\|^2 \text{ for } k = 0, 1, 2, 3, \dots$
- $\mathbf{3} \lim_{k \mapsto \infty} x_k = x_{\star}.$
 - The point 2 of the theorem is the second q-order of convergence of Newton method.

Proof.

Consider a Newton step with $\|\boldsymbol{x}_k - \boldsymbol{x}_\star\| \leq \delta$ and

$$egin{aligned} oldsymbol{x}_{k+1} - oldsymbol{x}_\star &= oldsymbol{x}_k - oldsymbol{x}_\star -
abla \mathsf{F}(oldsymbol{x}_k)^{-1} ig[
abla \mathsf{F}(oldsymbol{x}_k) (oldsymbol{x}_k - oldsymbol{x}_\star) - \mathsf{F}(oldsymbol{x}_k) + \mathsf{F}(oldsymbol{x}_\star) ig] \end{aligned}$$

taking the norm and using Taylor like lemma

$$\|x_{k+1} - \alpha\| \le 2^{-1} \gamma \|x_k - \alpha\|^2 \|\nabla F(x_k)^{-1}\|$$

from Jacobian norm control lemma there exist a δ such that $2\|\nabla \mathbf{F}(x_k)^{-1}\| \geq \|\nabla \mathbf{F}(x_\star)^{-1}\|$ for all $\|x_k - x_\star\| \leq \delta$. Reducing eventually δ such that $\gamma \delta \|\nabla \mathbf{F}(x_\star)^{-1}\| \leq 1$ we have

$$\|\boldsymbol{x}_{k+1} - \boldsymbol{x}_{\star}\| \le \gamma \|\nabla \mathsf{F}(\boldsymbol{x}_{\star})^{-1}\| \delta \|\boldsymbol{x}_{k} - \boldsymbol{x}_{\star}\|^{2} \le \|\boldsymbol{x}_{k} - \boldsymbol{x}_{\star}\|,$$

So that by induction we prove point 1. Point 2 and 3 follows trivially.

- The problem of Newton method is that it converge normally only when x_0 is near x_\star a root of the nonlinear system.
- A way to make a more robust non linear solver is to use the techniques developed for minimization to make a globally convergent nonlinear solver.
- In particular if we consider the merit function

$$\mathsf{f}(oldsymbol{x}) = rac{1}{2} \left\| \mathsf{F}(oldsymbol{x})
ight\|^2$$

we have that $\mathsf{f}(x) \geq 0$ and if x_\star is such that $\mathsf{f}(x_\star) = 0$ than we have that

- \bullet x_{\star} is a global minimum of f(x);
- **②** $\mathbf{F}(x_{\star}) = \mathbf{0}$, i.e. is a solution of the nonlinear system $\mathbf{F}(x)$.
- So that finding a global minimum of the merit function f(x) is the same of finding a solution of the nonlinear system F(x).

- We can apply for example the gradient method to the merit function f(x). This produce a slow method.
- Instead, we can use the Newton method to produce a search direction. The resulting method is the following
 - Compute the search direction by solving $\nabla \mathbf{F}(x_k)d_k + \mathbf{F}(x_k) = \mathbf{0}$;
 - ② Find an approximate solution of the problem $\alpha_k = \arg\min_{\alpha > 0} \|\mathbf{F}(x_k + \alpha d_k)\|^2$;
 - **3** Update the solution $x_{k+1} = x_k + \alpha_k d_k$.
- The previous algorithm work if the direction d_k is a descent direction.

Is d_k a descent direction?

Consider the gradient of $f(x) = (1/2) \|\mathbf{F}(x)\|^2$:

$$\begin{split} \frac{\partial}{\partial x_k} \mathsf{f}(\boldsymbol{x}) &= \frac{1}{2} \frac{\partial}{\partial x_k} \| \mathsf{F}(\boldsymbol{x}) \|^2 = \frac{1}{2} \frac{\partial}{\partial x_k} \sum_{i=1}^n F_i(\boldsymbol{x})^2 \\ &= \sum_{i=1}^n \frac{\partial F_i(\boldsymbol{x})}{\partial x_k} F_i(\boldsymbol{x}) \end{split}$$

this can be written as

$$abla \mathsf{f}(oldsymbol{x}) = \mathsf{F}(oldsymbol{x})^T
abla \mathsf{F}(oldsymbol{x})$$

Is d_k a descent direction?

Now we check $\nabla f(x_k)d_k$:

$$egin{aligned}
abla \mathsf{f}(oldsymbol{x}_k) oldsymbol{d}_k &= \mathsf{F}(oldsymbol{x}_k)^T
abla \mathsf{F}(oldsymbol{x}_k) oldsymbol{d}_k \ &= -\mathsf{F}(oldsymbol{x}_k)^T
abla \mathsf{F}(oldsymbol{x}_k)
abla \mathsf{F}(oldsymbol{x}_k)^T \mathsf{F}(oldsymbol{x}_k) \ &= - \| \mathsf{F}(oldsymbol{x}_k) \|^2 < 0 \end{aligned}$$

so that Newton direction is a descent direction.

Is the angle from d_k and $\nabla f(x_k)$ bounded from $\pi/2$? (2/2)

Let θ_k the angle form $\nabla f(x_k)$ and d_k , then we have

$$egin{aligned} \cos heta_k &= -rac{
abla \mathsf{f}(oldsymbol{x}_k) d_k}{\|\mathsf{F}(oldsymbol{x}_k)\| \|
abla \mathsf{F}(oldsymbol{x}_k)^{-1} \mathsf{F}(oldsymbol{x}_k)\|} \ &= rac{\|\mathsf{F}(oldsymbol{x}_k)\|}{\|
abla \mathsf{F}(oldsymbol{x}_k)^{-1} \mathsf{F}(oldsymbol{x}_k)\|} \ &\geq rac{\|\mathsf{F}(oldsymbol{x}_k)\|}{\|
abla \mathsf{F}(oldsymbol{x}_k)^{-1}\| \|\mathsf{F}(oldsymbol{x}_k)\|} \ &\geq \left\|
abla \mathsf{F}(oldsymbol{x}_k)^{-1}\right\|^{-1} \end{aligned}$$

so that, if for example $\|\nabla \mathbf{F}(x)^{-1}\|$ is bounded from below then the angle θ_k is strictly less then $\pi/2$ radiants. By the Zoutendijk theorem then the globalized Newton scheme is globally convergent.

Algorithm (The globalized Newton method)

```
k \leftarrow 0; x assigned;
f \leftarrow \mathsf{F}(x);
while ||f_k|| > \epsilon do

    Evaluate search direction

   Solve \nabla \mathsf{F}(x)d = \mathsf{F}(x);
   — Evaluate dumping factor \lambda
   Approximate \lambda = \arg\min_{\alpha > 0} \|\mathbf{F}(x - \alpha d_k)\|^2 by line-search;
   — perform step
   x \leftarrow x - \lambda d:
   f \leftarrow \mathsf{F}(x):
   k \leftarrow k + 1:
end while
```


Outline

1 The Newton Raphson

2 The Broyden method

3 The dumped Broyden method

- Newton method is a fast (q-order 2) numerical scheme to approximate the root of a function $\mathbf{F}(x)$ but needs the knowledge of the Jacobian $\nabla \mathbf{F}(x)$.
- Sometimes Jacobian is not available or too expensive to compute, in this case a numerical procedure to approximate the root which does not use derivative is mandatory.
- The Newton scheme find successively the root of the affine approximation

$$L_k(oldsymbol{x}) \doteq
abla \mathsf{F}(oldsymbol{x}_k)(oldsymbol{x} - oldsymbol{x}_k) + \mathsf{F}(oldsymbol{x}_k) = oldsymbol{0}$$

ullet Substituting the Jacobian in the affine approximation by $oldsymbol{A}_k$

$$M_k(\boldsymbol{x}) \doteq \boldsymbol{A}_k(\boldsymbol{x} - \boldsymbol{x}_k) + \boldsymbol{\mathsf{F}}(\boldsymbol{x}_k) = \boldsymbol{0}$$

and solving successively this affine model produces the family of different methods:

Algorithm (Generic Secant iterative scheme)

Let x_0 and A_0 assigned, then for k = 0, 1, 2, ...

• Solve for p_k :

$$M_k(\boldsymbol{p}_k + \boldsymbol{x}_k) = \boldsymbol{A}_k \boldsymbol{p}_k + \boldsymbol{\mathsf{F}}(\boldsymbol{x}_k) = \boldsymbol{0}$$

Update the root approximation

$$\boldsymbol{x}_{k+1} = \boldsymbol{x}_k + \boldsymbol{p}_k$$

3 Update the affine model and produce A_{k+1} .

- **①** The way an update of $M_k \to M_{k+1}$ determine the algorithm.
- A simple update is the forcing of a number of the secant relation:

$$M_{k+1}(x_{k+1-\ell}) = \mathbf{F}(x_{k+1-\ell}), \qquad \ell = 1, 2, \dots, m$$

notice that $M_{k+1}(x_{k+1}) = \mathbf{F}(x_{k+1})$ for all A_{k+1} .

- **③** If $A_{k+1} \in \mathbb{R}^{n \times n}$ and m = n and $d_{\ell} = x_{k+1-\ell} x_{k+1}$ are linearly independent then we have enough linear relation to determine A_{k+1} .
- **1** Unfortunately vectors d_{ℓ} tends to become linearly dependent so that this approach is very ill conditioned.
- **3** A more feasible approach uses less secant relation and others conditions to determine M_{k+1} .

- The way an update of $M_k \to M_{k+1}$ in Broyden scheme is the following:
 - $M_{k+1}(x_k) = F(x_k);$
 - 2 $M_{k+1}(x) M_k(x)$ is small in some sense;
- The first condition imply

$$oldsymbol{A}_{k+1}(oldsymbol{x}_k - oldsymbol{x}_{k+1}) + \mathsf{F}(oldsymbol{x}_{k+1}) = \mathsf{F}(oldsymbol{x}_k)$$

which set n linear equation that do not determine the n^2 coefficients of A_{k+1} .

The second condition become

$$M_{k+1}(x) - M_k(x) = (A_{k+1} - A_k)(x - x_k)$$

$$||M_{k+1}(x) - M_k(x)|| \le ||A_{k+1} - A_k|| ||x - x_k||$$

where $||\!| \cdot |\!|\!|$ is some norm. The term $||\!| x - x_k |\!|\!|$ is not controllable, so a condition should be $|\!|\!| A_{k+1} - A_k |\!|\!|$ is minimum.

Opening

$$oldsymbol{y}_k = \mathsf{F}(oldsymbol{x}_{k+1}) - \mathsf{F}(oldsymbol{x}_k), \qquad oldsymbol{s}_k = oldsymbol{x}_{k+1} - oldsymbol{x}_k$$

the Broyden scheme find the update A_{k+1} which satisfy:

- $\mathbf{0} \ A_{k+1}s_k = y_k;$
- ② $||A_{k+1} A_k|| \le ||B A_k||$ for all B such that $Bs_k = y_k$.
- ② If we choose for the norm $\|\cdot\|$ the Frobenius norm $\|\cdot\|_F$

$$\|A\|_F = \left(\sum_{i,j=1}^n A_{ij}^2\right)^{1/2}$$

then the problem admits a unique solution.

The Frobenius norm $\|\cdot\|_F$

$$\|A\|_F = \left(\sum_{i,j=1}^n A_{ij}^2\right)^{1/2}$$

is a matrix norm, i.e. it satisfy:

- **3** $||A+B||_F \le ||A||_F + ||B||_F$;

The Frobenius norm is the length of the vector A if we consider A as a vector in \mathbb{R}^{n^2} .

The first two point of the Frobenius norm $\|\cdot\|_F$ are trivial, to prove point 3 and 4 we need two classical inequality:

Cauchy-Schwartz inequality

$$\sum_{i=1}^{n} a_i b_i \le \left(\sum_{i=1}^{n} a_i^2\right)^{1/2} \left(\sum_{i=1}^{n} b_i^2\right)^{1/2}$$

The inequality is strict unless $a_i = \lambda b_i$ for i = 1, 2, ..., n.

Triangular inequality

$$\left(\sum_{i=1}^{n} (a_i + b_i)^2\right)^{1/2} \le \left(\sum_{i=1}^{n} a_i^2\right)^{1/2} + \left(\sum_{i=1}^{n} b_i^2\right)^{1/2}$$

The inequality is strict unless $a_i = \lambda b_i$ for $i = 1, 2, \dots, n$.

The Frobenius matrix norm

Proof of $\|A + B\|_F \le \|A\|_F + \|B\|_F$.

By using triangular inequality

$$\|\boldsymbol{A} + \boldsymbol{B}\|_{F} = \left(\sum_{i,j=1}^{n} (A_{ij} + B_{ij})^{2}\right)^{1/2}$$

$$\leq \left(\sum_{i,j=1}^{n} A_{ij}^{2}\right)^{1/2} + \left(\sum_{i,j=1}^{n} B_{ij}^{2}\right)^{1/2}$$

$$= \|\boldsymbol{A}\|_{F} + \|\boldsymbol{B}\|_{F}.$$

The Frobenius matrix norm

Proof of $\|AB\|_F \leq \|A\|_F \|B\|_F$. By using Cauchy–Schwartz inequality with

$$\|\mathbf{A}\mathbf{B}\|_{F} = \left(\sum_{i,j=1}^{n} \left(\sum_{k=1}^{n} A_{ik} B_{kj}\right)^{2}\right)^{1/2}$$

$$\leq \left(\sum_{i,j=1}^{n} \left(\sum_{k=1}^{n} A_{ik}^{2}\right) \left(\sum_{k'=1}^{n} B_{k'j}^{2}\right)\right)^{1/2}$$

$$= \left(\left(\sum_{i=1}^{n} \sum_{k=1}^{n} A_{ik}^{2}\right) \left(\sum_{j=1}^{n} \sum_{k'=1}^{n} B_{k'j}^{2}\right)\right)^{1/2}$$

$$= \|\mathbf{A}\|_{F} \|\mathbf{B}\|_{F}.$$

With the Frobenius matrix norm it is possible to solve the following problem

Lemma

Let $A \in \mathbb{R}^{n \times n}$ and $s, y \in \mathbb{R}^n$ with $s \neq \mathbf{0}$. Consider the set

$$\mathcal{B} = \left\{ oldsymbol{B} \in \mathbb{R}^{n imes n} \, | \, oldsymbol{B} oldsymbol{s} = oldsymbol{y}
ight\}$$

then there exists a unique matrix $B \in \mathcal{B}$ such that

$$\|oldsymbol{A} - oldsymbol{B}\|_F \leq \|oldsymbol{A} - oldsymbol{C}\|_F$$
 for all $oldsymbol{C} \in \mathcal{B}$

moreover $oldsymbol{B}$ has the following form

$$oldsymbol{B} = oldsymbol{A} + rac{(oldsymbol{y} - oldsymbol{A} oldsymbol{s}) oldsymbol{s}^T}{oldsymbol{s}^T oldsymbol{s}}$$

i.e. B is a rank one perturbation of the matrix A.

Proof. (1/4).

First of all notice that \mathcal{B} is not empty, in fact

$$egin{aligned} rac{1}{oldsymbol{s}^Toldsymbol{s}}oldsymbol{y}oldsymbol{s}^T & egin{bmatrix} rac{1}{oldsymbol{s}^Toldsymbol{s}}oldsymbol{y}oldsymbol{s}^T \end{bmatrix} oldsymbol{s} = oldsymbol{y} \end{aligned}$$

So that the problem is not empty. Next we reformulate the problem as a constrained minimum problem:

$$\mathop{\mathrm{arg\,min}}_{oldsymbol{B}\in\mathbb{R}^{n imes n}} \quad rac{1}{2} \sum_{i,j=1}^n (A_{ij} - B_{ij})^2 \qquad \text{subject to } oldsymbol{B} oldsymbol{s} = oldsymbol{y}.$$

The solution is a stationary point of the Lagrangian:

$$g(\mathbf{B}, \lambda) = \frac{1}{2} \sum_{i,j=1}^{n} (A_{ij} - B_{ij})^2 + \sum_{i=1} \lambda_i \left(\sum_{j=1}^{n} B_{ij} s_j - y_i \right)$$

Proof. (2/4).

taking the gradient we have

$$\frac{\partial}{\partial B_{ij}}g(\boldsymbol{B},\boldsymbol{\lambda}) = A_{ij} - B_{ij} + \lambda_i s_j = 0$$

$$\frac{\partial}{\partial \lambda_i} g(\boldsymbol{B}, \boldsymbol{\lambda}) = \sum_{j=1}^n B_{ij} s_j - y_j = 0$$

The previous equality can be written in matrix form

$$oldsymbol{B} = oldsymbol{A} + oldsymbol{\lambda} oldsymbol{s}^T \qquad oldsymbol{B} oldsymbol{s} = oldsymbol{y}$$

so that we can solve for λ

$$Bs = As + \lambda s^T s = y \qquad \lambda = rac{y - As}{s^T s}$$

next we prove that B is the unique minimum.

Proof. (3/4).

The matrix \boldsymbol{B} is a minimum, in fact

$$\left\|oldsymbol{B} - oldsymbol{A}
ight\|_F = \left\|oldsymbol{A} + rac{(oldsymbol{y} - oldsymbol{A} oldsymbol{s}^T}{oldsymbol{s}^T oldsymbol{s}} - oldsymbol{A}
ight\|_F = \left\|rac{(oldsymbol{y} - oldsymbol{A} oldsymbol{s}) oldsymbol{s}^T}{oldsymbol{s}^T oldsymbol{s}}
ight\|_F$$

for all $C \in \mathcal{B}$ we have Cs = y so that

$$egin{aligned} \|B-A\|_F &= \left\|rac{(Cs-As)s^T}{s^Ts}
ight\|_F = \left\|(C-A)rac{ss^T}{s^Ts}
ight\|_F \ &\leq \|C-A\|_F \left\|rac{ss^T}{s^Ts}
ight\|_F = \|C-A\|_F \end{aligned}$$

because in general

$$\left\|\boldsymbol{u}\boldsymbol{v}^T\right\|_F = \left(\sum_{i,j=1}^n u_i^2 v_j^2\right)^{\frac{1}{2}} = \left(\sum_{i=1}^n u_i^2 \sum_{j=1}^n v_j^2\right)^{\frac{1}{2}} = \left\|\boldsymbol{u}\right\| \left\|\boldsymbol{v}\right\|$$

(4/4).

Proof.

Let B' and B'' two different minimum. Then $\frac{1}{2}(B'+B'')\in\mathcal{B}$ moreover

$$\left\|\boldsymbol{A} - \frac{1}{2}(\boldsymbol{B}' + \boldsymbol{B}'')\right\|_{F} \leq \frac{1}{2}\left\|\boldsymbol{A} - \boldsymbol{B}'\right\|_{F} + \frac{1}{2}\left\|\boldsymbol{A} - \boldsymbol{B}''\right\|_{F}$$

If the inequality is strict we have a contradiction. From the Cauchy-Schwartz inequality we have an equality only when $A - B' = \lambda (A - B'')$ so that

$$B' - \lambda B'' = (1 - \lambda)A$$

and

$$B's - \lambda B''s = (1 - \lambda)As \quad \Rightarrow \quad (1 - \lambda)y = (1 - \lambda)As$$

but this is true only when $\lambda = 1$, i.e. B' = B''.



The update

$$oldsymbol{A}_{k+1} = oldsymbol{A}_k + rac{(oldsymbol{y}_k - oldsymbol{A}_k oldsymbol{s}_k) oldsymbol{s}_k^T}{oldsymbol{s}_k^T oldsymbol{s}_k}$$

satisfy the secant condition: $A_{k+1}s_k = y_k$ and A_{k+1} is the nearest matrix in the Frobenius norm that satisfy the secant condition.

Changing the norm we can have different results and in general you can loose uniqueness of the update.

The Broyden method

Algorithm (The Broyden method)

```
k \leftarrow 0; x_0 and A_0 assigned;
f_0 \leftarrow \mathsf{F}(x_0):
while ||f_k|| > \epsilon do
    Solve for s_k the linear system A_k s_k + f_k = 0;
    x_{k+1} \leftarrow x_k + s_k;
    f_{k+1} \leftarrow \mathsf{F}(x_{k+1});
    y_k \leftarrow f_{k+1} - f_k;
    Update: oldsymbol{A}_{k+1} \leftarrow oldsymbol{A}_k + rac{(oldsymbol{y}_k - oldsymbol{A}_k oldsymbol{s}_k^T)}{oldsymbol{s}_k^T oldsymbol{s}_k};
    k \leftarrow k + 1:
end while
```


Notice that $y_k - A_k s_k = f_{k+1} - f_k + f_k$ so that the update can be written as $A_{k+1} \leftarrow A_k + f_{k+1} s_k^T / s_k^T s_k$ and y_k can be eliminated.

Algorithm (The Broyden method (alternative version))

```
k \leftarrow 0; x and A assigned; f \leftarrow \mathbf{F}(x); while \|f\| > \epsilon do Solve for s the linear system As + f = \mathbf{0}; x \leftarrow x + s; f \leftarrow \mathbf{F}(x); Update: A \leftarrow A + \frac{fs^T}{s^Ts}; k \leftarrow k + 1; end while
```


Theorem

Let $\mathbf{F}(x)$ satisfy the standard regularity conditions with $\nabla \mathbf{F}(x_\star)$ nonsingular. Then there exists positive constants ϵ , δ such that if $\|x_0 - x_\star\| \le \epsilon$ and $\|A_0 - \nabla \mathbf{F}(x_\star)\| \le \delta$, then the sequence $\{x_k\}$ generated by the Broyden method is well defined and converge q-superlinearly to x_\star , i.e.

$$\lim_{k o\infty}rac{\|oldsymbol{x}_{k+1}-oldsymbol{x}_k\|}{\|oldsymbol{x}_k-oldsymbol{x}_\star\|}=0$$

C.G.Broyden, J.E.Dennis, J.J.Moré

On the local and super-linear convergence of quasi-Newton methods.

J. Inst. Math. Appl, 6 222-236, 1973.

Theorem

Let $\mathbf{F}(x) = Ax - b$ where $A \in \mathbb{R}^{n \times n}$. Then the Broyden method converge in at most 2n steps.

Theorem

Let $\mathbf{F}: \mathbb{R}^n \mapsto \mathbb{R}^n$ satisfy the standard regularity conditions with $\nabla \mathbf{F}(x_\star)$ nonsingular. Then there exists positive constants ϵ , δ such that if $\|x_0 - x_\star\| \le \epsilon$ and $\|A_0 - \nabla \mathbf{F}(x_\star)\| \le \delta$, then the sequence $\{x_k\}$ generated by the Broyden method satisfy

$$\|\boldsymbol{x}_{k+2n} - \boldsymbol{x}_{\star}\| \le C \|\boldsymbol{x}_k - \boldsymbol{x}_{\star}\|^2$$

D.M.Gay

Some convergence properties of Broyden's method.

SIAM J. Numer. Anal., 16 623-630, 1979.

Reorganizing Broyden update

- ullet Broyden method needs to solve a linear system for $oldsymbol{A}_k$ at each step
- This can be onerous in terms of CPU cost
- it is possible to update directly the inverse of A_k i.e. it is possible to update $H_k = A_k^{-1}$.
- ullet The update of $oldsymbol{A}_k$ solve the problem of efficiency but do not alleviate the memory occupation
- The matrix A_k can be written as a product of simple matrix, this can save memory if the update are lesser respect to the system dimension.

Sherman-Morrison formula

Sherman-Morrison formula permit to explicit write the inverse of a matrix changed with a rank 1 perturbation

Proposition (Sherman-Morrison formula)

$$(A + uv^T)^{-1} = A^{-1} - \frac{1}{\alpha}A^{-1}uv^TA^{-1}$$

where

$$\alpha = 1 + \boldsymbol{v}^T \boldsymbol{A}^{-1} \boldsymbol{u}$$

The Sherman–Morrison formula can be checked by a direct calculation.

Application of Sherman-Morrison formula

• From the Broyden update formula

$$oldsymbol{A}_{k+1} = oldsymbol{A}_k + rac{oldsymbol{f}_{k+1} oldsymbol{s}_k^T}{oldsymbol{s}_k^T oldsymbol{s}_k}$$

• By using Sherman-Morrison formula

$$egin{aligned} oldsymbol{A}_{k+1}^{-1} &=& oldsymbol{A}_k^{-1} - rac{1}{eta_k} oldsymbol{A}_k^{-1} oldsymbol{f}_{k+1} oldsymbol{s}_k^T oldsymbol{A}_k^{-1} \ eta_k &=& oldsymbol{s}_k^T oldsymbol{s}_k + oldsymbol{s}_k^T oldsymbol{A}_k^{-1} oldsymbol{f}_{k+1} \end{aligned}$$

ullet By setting $oldsymbol{H}_k = oldsymbol{A}_k^{-1}$ we have the update formula for $oldsymbol{H}_k$:

$$egin{aligned} oldsymbol{H}_{k+1} &= oldsymbol{H}_k - rac{1}{eta_k} oldsymbol{H}_k oldsymbol{f}_{k+1} oldsymbol{s}_k^T oldsymbol{H}_k \end{aligned} egin{aligned} eta_k &= oldsymbol{s}_k^T oldsymbol{s}_k + oldsymbol{s}_k^T oldsymbol{H}_k oldsymbol{f}_{k+1} \end{aligned}$$

Application of Sherman-Morrison formula

• The update formula for H_k :

$$egin{aligned} m{H}_{k+1} &= m{H}_k - rac{1}{eta_k} m{H}_k m{f}_{k+1} m{s}_k^T m{H}_k \ eta_k &= m{s}_k^T m{s}_k + m{s}_k^T m{H}_k m{f}_{k+1} \end{aligned}$$

- Can be reorganized as follows
 - **1** Compute $z_{k+1} = H_k f_{k+1}$;
 - 2 Compute $\beta_k = s_k^T s_k + s_k^T z_{k+1}$;

The Broyden method with inverse updated

Algorithm (The Broyden method (updating inverse))

```
k \leftarrow 0; x_0 assigned;
f_0 \leftarrow \mathsf{F}(x_0);
H_0 \leftarrow I or better H_0 \leftarrow \nabla \mathsf{F}(x_0)^{-1};
while ||f_k|| > \epsilon do
    — perform step
    s_k \leftarrow -H_k f_k:
    x_{k+1} \leftarrow x_k + s_k;
    f_{k+1} \leftarrow \mathsf{F}(x_{k+1});
    — update H
    z_{k+1} \leftarrow H_k f_{k+1};
    \beta_k \leftarrow \boldsymbol{s}_k^T \boldsymbol{s}_k + \boldsymbol{s}_k^T \boldsymbol{z}_{k+1};
    oldsymbol{H}_{k+1} \leftarrow (oldsymbol{I} - eta_k^{-1} oldsymbol{z}_{k+1} oldsymbol{s}_k^T) oldsymbol{H}_k;
    k \leftarrow k+1:
end while
```


- If n is very large then the storing of H_k can be very expensive.
- Moreover when n is very large we hope to find a good solution with a number m of iteration with $m \ll n$
- So that instead of storing H_k we can decide to store the vectors z_k and s_k plus the scalars β_k . With this vectors and scalars we can write

$$oldsymbol{H}_k = ig(oldsymbol{I} - eta_{k-1} oldsymbol{z}_k oldsymbol{s}_{k-1}^Tig) \cdots ig(oldsymbol{I} - eta_1 oldsymbol{z}_2 oldsymbol{s}_1^Tig) ig(oldsymbol{I} - eta_0 oldsymbol{z}_1 oldsymbol{s}_0^Tig) oldsymbol{H}_0$$

- Assuming $H_0 = I$ or can be computed on the fly we must store only 2nm + m real number instead of n^2 saving a lot of memory.
- However we can do better. It is possible to eliminate z_k ad store only nm+m real numbers.

• A step of the broyden iterative scheme can be rewritten as

$$egin{aligned} oldsymbol{d}_k &\leftarrow oldsymbol{H}_k oldsymbol{f}_k \ oldsymbol{x}_{k+1} &\leftarrow oldsymbol{x}_k - oldsymbol{d}_k \ oldsymbol{f}_{k+1} &\leftarrow oldsymbol{F}(oldsymbol{x}_{k+1}) \ oldsymbol{z}_{k+1} &\leftarrow oldsymbol{H}_k oldsymbol{f}_{k+1} \ oldsymbol{H}_{k+1} &\leftarrow igg(oldsymbol{I} + rac{oldsymbol{z}_{k+1} oldsymbol{d}_k^T}{oldsymbol{d}_k^T oldsymbol{d}_k} oldsymbol{H}_k \end{aligned}$$

- $oldsymbol{2}$ you can notice that $oldsymbol{z}_k$ and $oldsymbol{d}_k$ are similar and contains a lot of common information.
- ① It is possible exploring the iteration to eliminate z_k from the update formula of H_k so that we can store the whole sequence without the vectors z_k .

$$egin{aligned} m{d}_{k+1} &= m{H}_{k+1} m{f}_{k+1} = \left(m{I} + rac{m{z}_{k+1} m{d}_k^T}{m{d}_k^T m{d}_k - m{d}_k^T m{z}_{k+1}}
ight) m{H}_k m{f}_{k+1} \ &= \left(m{I} + rac{m{z}_{k+1} m{d}_k^T}{m{d}_k^T m{d}_k - m{d}_k^T m{z}_{k+1}}
ight) m{z}_{k+1} \ &= m{z}_{k+1} + rac{m{z}_{k+1} m{d}_k^T m{z}_{k+1}}{m{d}_k^T m{d}_k - m{d}_k^T m{z}_{k+1}} \ &= rac{m{d}_k^T m{d}_k}{m{d}_k^T m{d}_k - m{d}_k^T m{z}_{k+1}} m{z}_{k+1} \end{aligned}$$

substituting in the update formula for $oldsymbol{H}_{k+1}$ we obtain

$$oldsymbol{H}_{k+1} \leftarrow igg(oldsymbol{I} + rac{oldsymbol{d}_{k+1} oldsymbol{d}_k^T}{oldsymbol{d}_k^T oldsymbol{d}_k}igg)oldsymbol{H}_k$$

Substituting into the step of the broyden iterative scheme and assuming d_k known

$$egin{aligned} oldsymbol{x}_{k+1} &\leftarrow oldsymbol{x}_k - oldsymbol{d}_k \ oldsymbol{f}_{k+1} &\leftarrow oldsymbol{\mathsf{F}}(oldsymbol{x}_{k+1}) \ oldsymbol{z}_{k+1} &\leftarrow oldsymbol{H}_k oldsymbol{f}_k oldsymbol{d}_k^T oldsymbol{d}_k \ oldsymbol{d}_k^T oldsymbol{d}_k - oldsymbol{d}_k^T oldsymbol{d}_k \ oldsymbol{d}_k + oldsymbol{1} &\leftarrow oldsymbol{\left(oldsymbol{I} + oldsymbol{d}_k^T oldsymbol{d}_k \ oldsymbol{d}_k^T oldsymbol{d}_k \ oldsymbol{d}_k \ oldsymbol{d}_k \ oldsymbol{d}_k \ oldsymbol{d}_k \ oldsymbol{H}_k \ oldsymbol{d}_k \ oldsy$$

notice that x_{k+1} , f_{k+1} and z_{k+1} are not used in H_{k+1} so that only d_k and its length need to be stored.

Algorithm (The Broyden method (low memory usage))

```
k \leftarrow 0; x assigned;
f \leftarrow \mathsf{F}(x); H_0 \leftarrow \nabla \mathsf{F}(x)^{-1}; d_0 \leftarrow H_0 f; \ell_0 \leftarrow d_0^T d_0;
while ||f|| > \epsilon do
    — perform step
    x \leftarrow x - d_k:
    f \leftarrow \mathsf{F}(x):
    — evaluate H_k f
    z \leftarrow H_0 f:
    for j = 0, 1, ..., k - 1 do
         z \leftarrow z + \left[ (d_i^T z)/\ell_i \right] d_{i+1};
    end for
    — update H_{k+1}
    oldsymbol{d}_{k+1} \leftarrow egin{bmatrix} \ell_k / (\ell_k - oldsymbol{d}_k^T oldsymbol{z}) \end{bmatrix} oldsymbol{z};
    \ell_{k+1} \leftarrow \boldsymbol{d}_{k+1}^T \boldsymbol{d}_{k+1};
    k \leftarrow k+1:
end while
```


Outline

1 The Newton Raphson

2 The Broyden method

The dumped Broyden method

Algorithm (The dumped Broyden method)

```
k \leftarrow 0; x_0 assigned;
f_0 \leftarrow \mathsf{F}(x_0); H_0 \leftarrow \nabla \mathsf{F}(x_0)^{-1};
while ||f_k|| > \epsilon do
    — compute search direction
    d_{\iota} \leftarrow H_{\iota} f_{\iota}:
    Approximate \arg\min_{\lambda>0} \|\mathbf{F}(\mathbf{x}_k - \lambda \mathbf{d}_k)\|^2 by line-search;
    — perform step
    s_k \leftarrow -\lambda_k d_k;
    x_{k+1} \leftarrow x_k + s_k;
    f_{k+1} \leftarrow \mathsf{F}(x_{k+1});
    y_k \leftarrow f_{k+1} - f_k;
     — update H_{k+1}
    oldsymbol{H}_{k+1} \leftarrow oldsymbol{H}_k + rac{(oldsymbol{s}_k - oldsymbol{H}_k oldsymbol{y}_k) oldsymbol{s}_k^T}{oldsymbol{s}_k^T oldsymbol{H}_k oldsymbol{y}_k} oldsymbol{H}_k;
    k \leftarrow k+1:
end while
```


Notice that

$$oldsymbol{H}_k oldsymbol{y}_k = oldsymbol{H}_k oldsymbol{f}_{k+1} - oldsymbol{H}_k oldsymbol{f}_k = oldsymbol{z}_{k+1} - oldsymbol{d}_k, \quad ext{and} \quad oldsymbol{s}_k = -\lambda_k oldsymbol{d}_k$$

and

$$egin{aligned} oldsymbol{H}_{k+1} &\leftarrow oldsymbol{H}_k + rac{(oldsymbol{s}_k - oldsymbol{H}_k oldsymbol{y}_k) oldsymbol{s}_k^T}{oldsymbol{s}_k^T oldsymbol{H}_k oldsymbol{y}_k} oldsymbol{H}_k \ &\leftarrow oldsymbol{H}_k + rac{(-\lambda_k oldsymbol{d}_k - oldsymbol{z}_{k+1} + oldsymbol{d}_k) (-\lambda_k oldsymbol{d}_k^T)}{-\lambda_k oldsymbol{d}_k^T (oldsymbol{z}_{k+1} - oldsymbol{d}_k)} oldsymbol{H}_k \ &\leftarrow igg(oldsymbol{I} + rac{(-\lambda_k oldsymbol{d}_k - oldsymbol{z}_{k+1} + oldsymbol{d}_k) oldsymbol{d}_k^T}{oldsymbol{d}_k^T oldsymbol{Z}_{k+1} - oldsymbol{d}_k)} oldsymbol{H}_k \ &\leftarrow igg(oldsymbol{I} + rac{(oldsymbol{z}_{k+1} + (\lambda_k - 1) oldsymbol{d}_k) oldsymbol{d}_k^T}{oldsymbol{d}_k^T oldsymbol{d}_k - oldsymbol{d}_k^T oldsymbol{z}_{k+1}} igg) oldsymbol{H}_k \end{aligned}$$

A step of the broyden iterative scheme can be rewritten as

$$egin{aligned} oldsymbol{d}_k &\leftarrow oldsymbol{H}_k oldsymbol{f}_k \ oldsymbol{x}_{k+1} &\leftarrow oldsymbol{x}_k - \lambda_k oldsymbol{d}_k \ oldsymbol{f}_{k+1} &\leftarrow oldsymbol{\mathsf{F}}(oldsymbol{x}_{k+1}) \ oldsymbol{z}_{k+1} &\leftarrow oldsymbol{H}_k oldsymbol{f}_{k+1} \ oldsymbol{H}_{k+1} &\leftarrow igg(oldsymbol{I} + rac{(oldsymbol{z}_{k+1} + (\lambda_k - 1)oldsymbol{d}_k)oldsymbol{d}_k^T}{oldsymbol{d}_i^T oldsymbol{d}_k - oldsymbol{d}_i^T oldsymbol{z}_{k+1} \end{pmatrix} oldsymbol{H}_k \end{aligned}$$

$$egin{aligned} m{d}_{k+1} &= m{H}_{k+1} m{f}_{k+1} \ &= igg(m{I} + rac{(m{z}_{k+1} + (\lambda_k - 1) m{d}_k) m{d}_k^T}{m{d}_k^T m{d}_k - m{d}_k^T m{z}_{k+1}} igg) m{H}_k m{f}_{k+1} \ &= igg(m{I} + rac{(m{z}_{k+1} + (\lambda_k - 1) m{d}_k) m{d}_k^T}{m{d}_k^T m{d}_k - m{d}_k^T m{z}_{k+1}} igg) m{z}_{k+1} \ &= m{z}_{k+1} + rac{(m{z}_{k+1} + (\lambda_k - 1) m{d}_k) m{d}_k^T m{z}_{k+1}}{m{d}_k^T m{d}_k - m{d}_k^T m{z}_{k+1}} \ &= rac{(m{d}_k^T m{d}_k) m{z}_{k+1} + (\lambda_k - 1) (m{d}_k^T m{z}_{k+1}) m{d}_k}{m{d}_k^T m{d}_k - m{d}_k^T m{z}_{k+1}} \end{aligned}$$

Solving for z_{k+1}

$$oldsymbol{z}_{k+1} = rac{(oldsymbol{d}_k^Toldsymbol{d}_k - oldsymbol{d}_k^Toldsymbol{z}_{k+1})oldsymbol{d}_{k+1} - (\lambda_k - 1)(oldsymbol{d}_k^Toldsymbol{z}_{k+1})oldsymbol{d}_k}{oldsymbol{d}_k^Toldsymbol{d}_k}$$

and substituting in $oldsymbol{H}_{k+1}$ we have

$$egin{aligned} oldsymbol{H}_{k+1} \leftarrow igg(oldsymbol{I} + rac{(oldsymbol{z}_{k+1} + (\lambda_k - 1)oldsymbol{d}_k)oldsymbol{d}_k^T}{oldsymbol{d}_k^Toldsymbol{d}_k - oldsymbol{d}_k^Toldsymbol{Z}_{k+1}}igg)oldsymbol{H}_k \ \leftarrow igg(oldsymbol{I} + rac{(oldsymbol{d}_{k+1} + (\lambda_k - 1)oldsymbol{d}_k)oldsymbol{d}_k^T}{oldsymbol{d}_k^Toldsymbol{d}_k}igg)oldsymbol{H}_k \end{aligned}$$

Substituting into the step of the broyden iterative scheme and assuming $oldsymbol{d}_k$ known

$$egin{aligned} oldsymbol{x}_{k+1} &\leftarrow oldsymbol{x}_k - \lambda_k oldsymbol{d}_k \ oldsymbol{f}_{k+1} &\leftarrow oldsymbol{\mathsf{F}}(oldsymbol{x}_{k+1}) \ oldsymbol{z}_{k+1} &\leftarrow oldsymbol{H}_k oldsymbol{f}_{k+1} \ oldsymbol{d}_{k+1} &\leftarrow egin{aligned} oldsymbol{d}_k^T oldsymbol{d}_k > 1 oldsymbol{d}_k^T oldsymbol{z}_{k+1} + (\lambda_k - 1)(oldsymbol{d}_k^T oldsymbol{z}_{k+1}) oldsymbol{d}_k \ oldsymbol{d}_k^T oldsymbol{d}_k - oldsymbol{d}_k^T oldsymbol{z}_{k+1} \ oldsymbol{H}_{k+1} &\leftarrow oldsymbol{d} oldsymbol{H}_{k+1} + (\lambda_k - 1) oldsymbol{d}_k) oldsymbol{d}_k^T oldsymbol{d}_k \ oldsymbol{d}_k \ oldsymbol{d}_k^T oldsymbol{d}_k \ oldsymbol{d}_k \ oldsymbol{d}_k^T oldsymbol{d}_k \ ol$$

notice that x_{k+1} , f_{k+1} and z_{k+1} are not used in H_{k+1} so that only d_k and its length need to be stored.

Algorithm (The dumped Broyden method)

```
k \leftarrow 0; x assigned;
f \leftarrow \mathsf{F}(x); H_0 \leftarrow \nabla \mathsf{F}(x)^{-1}; d_0 \leftarrow H_0 f; \ell_0 \leftarrow d_0^T d_0;
while ||f_k|| > \epsilon do
   Approximate \arg\min_{\lambda>0} \|\mathbf{F}(x-\lambda d_k)\|^2 by line-search:
   — perform step
   x \leftarrow x - \lambda_k d_k: f \leftarrow \mathsf{F}(x):
   — evaluate H_k f
   z \leftarrow H_0 f:
   for j = 0, 1, ..., k - 1 do
       z \leftarrow z + \left[ (d_i^T z)/\ell_i \right] (d_{i+1} + (\lambda_i - 1)d_i);
   end for
   — update H_{k+1}
   d_{k+1} \leftarrow \left[\ell_k z + (\lambda_k - 1)(d_k^T z)d_k\right]/(\ell_k - d_k^T z);
   \ell_{k+1} \leftarrow d_{k+1}^T d_{k+1};
   k \leftarrow k+1:
end while
```


References

J. E. Dennis, Jr. and Robert B. Schnabel Numerical Methods for Unconstrained Optimization and Nonlinear Equations SIAM, Classics in Applied Mathematics, **16**, 1996.

