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The problem to solve

Given F: D C R" — R"™
Find . € D for which F(x,) = 0.

Example
Let

F(a:)— x12+:c23+7
C\mt o+l

which has F(x,) = 0 for =, = (1, -2)7.
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The Newton Raphson

Outline

@ The Newton Raphson
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The Newton Raphson The Newton procedure

The Newton procedure (1/3)

@ Consider the following map

F(:U)— x12+x23+7
C\mt -+l

we known an approximation of a root xo ~ (1.1, —1.9)7.

e Setting 1 = xo + p we obtain !

Flao+p) = 1oy ) + (5 105 () + 00l

if 2 is a good approximation of a root of F(x) then O(||p||?)
is a small vector.

Be

'Here O(z) means (O(z),...,O(z))"

Non-linear problems in n variable

The Newton Raphson The Newton procedure

The Newton procedure (2/3)

o Neglecting O(||p||?) and solving

1351\ (22 10.83\ (p1) _
(02)+ (% %) () =

we obtain p = (—0.094438, —0.105562)7".

@ Now we set

1.005562
—2.0055612

331:5130+P=(

B
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The Newton Raphson The Newton procedure

The Newton procedure (3/3)

e Considering
—0.05576 2.0111 12.0668 Q1 2
Fas+a) = (o) + (P 2P%) (2) + 60

o Neglecting O(||q||*) and solving

—0.05576 N 2.0111 12,0668\ (a1 _ g
8107 1 1 @)

we obtain g = (—0.0055466, 0.0055458)7 .
o Now we set x> = =1 + q = (1.000015, —2.000015)7

Be
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The Newton Raphson The Newton procedure

The Newton procedure: a modern point of view (1/2)

The previous procedure can be resumed as follows:

@ Consider the following function F(x). We known an
approximation of a root x.

© Expand by Taylor series
F(z) = F(2o) + VF(zo)(z — o) + O(||z — zo])
@ Drop the term O(|z — x||*) and solve
0 = F(xo) + VF(xzo)(x — x0)

Call 21 this solution.

© Repeat 1 — 3 with 1, xp, @3, ...

B
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The Newton Raphson The Newton procedure

The Newton procedure: a modern point of view (2/2)

Algorithm (Newton iterative scheme)

Let xg assigned, then for k =0,1,2,...
Q@ Solve for py:

VF(zp)pr + F(xr) =0

@ Update

Try1 = Tk + Pk

Non-linear problems in n variable

The Newton Raphson Standard Assumptions

Standard Assumptions

In the study of convergence of numerical scheme, some standard
regularity assumption are assumed for the function F(x).

Assumption (Standard Assumptions)

The function F : D C R™ — R"™ is continuous, differentiable with
Lipschitz derivative VF(x). i.e.

IVF(z) - VF(@y)| <~vlz—-yl  Ve,yecDCR"

Lemma (Taylor like expansion)

Let F(x) satisfy the standard assumptions, then

IF(y) - F(z) - VF(@)(y — z)| < 2l —y|* Va,yeDCR"

B
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The Newton Raphson Standard Assumptions

T favon B S Ao

From basic Calculus:
1
F(y) - F(a) = /0 V(e + t(y — x))(y — @) dt

subtracting on both side VF(x)(y — ) we have

F(y) — F(z) — VF(z)(y —z) =
1
/o [VF(:I: +t(y —x)) — VF(IB)] (y —x)dt

and taking the norm

1
IF(y) - F(z) - VF(@)(y — )] < /O vty — | dt

D/§‘

Non-linear problems in n variable 11 / 62
The Newton Raphson Standard Assumptions

Lemma (Jacobian norm control)

Let F(x) satisfying standard assumptions, and VF(x,) non
singular. Then there exists 6 > 0 such that for all || — x,|| <
we have

271 |[VF(2)| < IVF(2.)] < 2| V()]

and

271 |VF() Y| < |[VF(e) Y| < 2| V()

B

Non-linear problems in n variable 12 / 62




The Newton Raphson Standard Assumptions

Proof. (1/3).
From standard assumptions choosing ¥4 < 27! [|[VF(z,)||
IVF(z)|| < [[VF(z) = VF(z,)[| + [[VF(z.)]]
< vl — x| + | VF(z,)|
< (3/2) [VF(z,)|| < 2[[VF(,)]
again choosing vd < 271 || VF(x,)||
IVF(z,)| < [[VF(z,) — VF(z)|| + [|[VF ()]
< [l — x| + [[VF()|]
< 271 |[VF(z,)|| + | VF(z)]

so that 271 |[VF(z,)|| < [|[VF(z)] .

A\

Be
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The Newton Raphson Standard Assumptions
Proof. (2/3).

From the continuity of the determinant there exists a neighbor
with VF(x) non singular for all ||z — x.|| < 6.

|VF(z)™ — VF(z,)™ |
< |IVF(z) 7| [|[VF(2x) — VF(z)|| || VF(2.) 7|
<yl — . [|VF(@) | | VF(z) |
and choosing ¢ such that 6 ||VF(z,)~!|| <27 we have
|VF(z)™ — VF(z,) | <27 ||VF(z) 7|
and using this last inequality
IVF(2) | < [[VF(22) ™ = V()| + || V()|
< (3/2) [|[VF(z) 7| < 2||VF(z) | | 5
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The Newton Raphson Standard Assumptions

Proof. (3/3).

Using last inequality again
IVF(@) 7| < [|[VF(2)"" = VF(.) || + | VF(z) |
< 271 || VF(z) || + || V()|
so that
270 [ V@) < [|VF(=) |

choosing § such that for all || — x| < J we have VF(x) non
singular and 76 < 271 |[VF(x,)|| and 76 ||VF(z.) || < 27 then
the inequality of the lemma are true. [
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The Newton Raphson Local Convergence of Newton method

Theorem (Local Convergence of Newton method)

Let F(x) satisfying standard assumptions, and x, a simple root
(i.e. VF(x,) non singular). Then, if ||xg — || < § with C§ <1
where

C = || VF(z.)™!|

then, the sequence generated by Newton method satisfies:
Q |z — x| < fork=0,1,23,...
@ |[zrs1 — x| < Cllzk — 2u|? fork=0,1,2,3,. ..

Q limp o T, = x4

@ The point 2 of the theorem is the second g-order of
convergence of Newton method.
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The Newton Raphson Local Convergence of Newton method

Consider a Newton step with ||z — x| < d and
Tpi1 — Tu = T — T — VF(xy) T [F(zg) — F(zy)]
= V() [VF(zk)(zr — @) — F(2) + F(z,)]
taking the norm and using Taylor like lemma
|Zki1 — al <27 2, — o® | VF(z) 7

from Jacobian norm control lemma there exist a d such that
2||VF(xp) 7| = ||[VF(xe) || for all [[zx — @.|| < 6. Reducing
eventually § such that ¢ HVF(:B*)_1|| < 1 we have

ke — @l <7 [ TF@) 7 812k — 2al® < llae — ]

So that by induction we prove point 1. Point 2 and 3 follows
trivially. []

e v fophon B o Conerera o Hevion e

v
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The Newton Raphson Globalizing the Newton procedure

@ The problem of Newton method is that it converge normally
only when xg is near x, a root of the nonlinear system.

@ A way to make a more robust non linear solver is to use the
techniques developed for minimization to make a globally
convergent nonlinear solver.

@ In particular if we consider the merit function
1 2
f(z) = 5 [F()]]

we have that f(x) > 0 and if @, is such that f(x,) = 0 than
we have that

Q x, is a global minimum of f(x);
@ F(x,) =0, i.e. is a solution of the nonlinear system F(x).
@ So that finding a global minimum of the merit function f(x) is
the same of finding a solution of the nonlinear system F(x).

B

Non-linear problems in n variable



The Newton Raphson Globalizing the Newton procedure

@ We can apply for example the gradient method to the merit
function f(x). This produce a slow method.

@ Instead, we can use the Newton method to produce a search
direction. The resulting method is the following

©@ Compute the search direction by solving

@ Find an approximate solution of the problem
oy = argmin g [|[F(xx + ady)| 2,

© Update the solution xx 1 = ¢ + aidy.

@ The previous algorithm work if the direction d is a descent
direction.
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The Newton Raphson Globalizing the Newton procedure

Is d;. a descent direction? (1/2)

Consider the gradient of f(z) = (1/2) ||F(x)||*:

n

50 () = 255 IF@IF = 35, 2 (@)

=X G T

this can be written as

Vi(x) = F(a:)TVF(a:)

B
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The Newton Raphson Globalizing the Newton procedure

Is d;. a descent direction? (2/2)

Now we check Vf(x;)dy:
Vf(xy)dy = F(x)! VF(xy)dy,
= —F(x)" VF(x,)VF(2) 1 F(x4)
= —F(xy)" F(x)
= —|[F(z)|I <0

so that Newton direction is a descent direction.

Be
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The Newton Raphson Globalizing the Newton procedure

s the angle from dj and Vf(x;) bounded from 7 /27 (2/2)

Let 0y the angle form Vf(xy) and dj, then we have

IF (i) | [VF ()~ F ()

Rl
[VF () ()]

IF ()|
— IVF@@R) ()]

cosf, = —

> || VF() Y

so that, if for example || VF ()~ is bounded from below then
the angle 0 is strictly less then /2 radiants. By the Zoutendijk
theorem then the globalized Newton scheme is globally convergent. &
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The Newton Raphson Globalizing the Newton procedure

Algorithm (The globalized Newton method)

k «— 0; x assigned;

f < F(z),

while || fi|| > € do
— Evaluate search direction
Solve VF(x)d = F(x);
— Evaluate dumping factor \
Approximate \ = argmin, -, ||F(z — ady)||* by line-search;
— perform step
T <—x— \d;
f — F(z),
k—Fk+1;

end while

Be
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The Broyden method
Outline

© The Broyden method

B
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The Broyden method

The Broyden method (1/5)

@ Newton method is a fast (g-order 2) numerical scheme to
approximate the root of a function F(x) but needs the
knowledge of the Jacobian VF(x).

@ Sometimes Jacobian is not available or too expensive to
compute, in this case a numerical procedure to approximate
the root which does not use derivative is mandatory.

@ The Newton scheme find successively the root of the affine
approximation

Li(x) = VF(zp)(x —xr) + F(xr) =0
@ Substituting the Jacobian in the affine approximation by Ay
Mk(a:) = Ak(a: — a:k) + F(a:k) =0

and solving successively this affine model produces the family %
of different methods:
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The Broyden method

The Broyden method

Algorithm (Generic Secant iterative scheme)
Let xg and Aq assigned, then for k =0,1,2,...
© Solve for py:

My (pr + x1) = Appr + F(x) =0
@ Update the root approximation

L1 = T + Pk

© Update the affine model and produce Ay 1.
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The Broyden method

The Broyden method

© The way an update of My — My, 1 determine the algorithm.

© A simple update is the forcing of a number of the secant
relation:

Myt1(Trs1—¢) = F(rg1-0), t=1,2,...,m

notice that My 1(xkr1) = F(xpy1) for all Agy.

Q If Ay e R and m=nanddy =xpr1_¢ — Tpy1 are
linearly independent then we have enough linear relation to
determine Ajyyq.

© Unfortunately vectors d, tends to become linearly dependent
so that this approach is very ill conditioned.

© A more feasible approach uses less secant relation and others
conditions to determine Mj. 1. g‘;

Non-linear problems in n variable 27 / 62

The Broyden method

The Broyden method

© The way an update of My — Mj.1 in Broyden scheme is the
following:

@ Mpii1(wr) = F(wk);
® Mj1(x) — My(x) is small in some sense;

@ The first condition imply

Ap1(xr — Tp1) + F(@ps1) = F(ap)

which set n linear equation that do not determine the n?
coefficients of Agq.

© The second condition become
My y1(z) — My(x) = (Agr1 — Ax)(T — x1)

[ Myr1(2) = Mi(2)]| < [|Aks1 — Axll [l — 2]

where ||-|| is some norm. The term || — x| is not
controllable, so a condition should be ||Axi1 — Ag| is &
minimum.
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The Broyden method

The Broyden method

@ Defining

yr = F(xgr1) — F(xr), Sk = T41 — Tk

the Broyden scheme find the update Aj; which satisfy:
O Aki18k = Yk,
0 ||Ari1 — Ax| < ||B — Ag|| for all B such that Bsy = yx.

@ If we choose for the norm ||-|| the Frobenius norm |-||
n 1/2
Al = (3 4)
i,j=1

then the problem admits a unique solution.
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The Broyden method

The Frobenius matrix norm

The Frobenius matrix norm (1/4)

The Frobenius norm ||-|| -

n 1/2
2
HAHF - ( Z Az’j)

i,j=1
Is @ matrix norm, i.e. it satisfy:
O All;>0and Al =0 A=0;
@ M|z = [AllAllp;
Q [[A+ Bl < |Allp+ Bl
O [[AB| < [|Al Bl g

The Frobenius norm is the length of the vector A if we consider A
. 2
as a vector in R"™ .

B
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The Broyden method The Frobenius matrix norm

The Frobenius matrix norm (2/4)

The first two point of the Frobenius norm ||-|| are trivial, to prove
point 3 and 4 we need two classical inequality:

Cauchy-Schwartz inequality
n n 1/2 n 1/2
Zaibié(zaf) (be)
i=1 1=1

=1

The inequality is strict unless a; = \b; for i =1,2,...,n.

v

Triangular inequality
n 1/2 n 1/2 n 1/2
(Gerr) = (5) +(2%)
i=1 —

1=1 =

The inequality is strict unless a; = A\b; for i =1,2,...,n. §‘

v

Non-linear problems in n variable 31 /62

The Broyden method The Frobenius matrix norm

The Frobenius matrix norm (3/4)

Proof of |A + Bl < || Al z+ || Bz
By using triangular inequality

n 1/2
|A+ Bllp = ( > (A + Bij)z)

i,j=1
n 1/2 n 1/2
() + (L)
i,j=1 ij=1
= [Allr +1Bllg-
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The Broyden method The Frobenius matrix norm

The Frobenius matrix norm (4/4)

Proof of |AB|r < [ A| ¢ | Bl|p-
By using Cauchy-Schwartz inequality with

n n o\ 1/2
481, = (Y (X 4un))
1

ij=1 k=

(S () (sm)

<
ij=1 k=1 k'=1
n o n n n 1/2
- (T ) (XX 5)
i=1 k=1 j=1k'=1
= [ Al [|Bllf-

Be
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With the Frobenius matrix norm it is possible to solve the following
problem

Lemma

Let A € R ™ and s,y € R" with s # 0. Consider the set

B={BeR""|Bs=y}
then there exists a unique matrix B € B such that
|A—-Bl|p<||A-C|g for all C € B

moreover B has the following form

(y — As)sT
sTs

B=A+

i.e. B is a rank one perturbation of the matrix A.

i
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The Broyden method The solution of Broyden problem

Proof. (1/4).
First of all notice that B is not empty, in fact

—ysl e B iysT s=uy

sTs sTs

So that the problem is not empty. Next we reformulate the
problem as a constrained minimum problem:

1 n
argmin = Z (Aij — Bij)? subject to Bs = y.
BGR?’LXTL 2 Z’]:l

The solution is a stationary point of the Lagrangian:

9(B,A) = % > (A — By)* + Z/\i(ZBiij - yz)
=1 \j=1

1,7=1

A\

Be
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The Broyden method The solution of Broyden problem

Proof. (2/4).
taking the gradient we have
0
8Bij g(B, )\) = Aij — By + )\Z’Sj =0
0

9(B,A) = ZBiij -y =0
=

O\

The previous equality can be written in matrix form
B=A+ st Bs =1y

so that we can solve for \

A:y__AS

Bs=As+Xsls=y =
sls

next we prove that B is the unique minimum. &
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The Broyden method

Proof. (3/4).
The matrix B is a minimum, in fact
— As)s” — As)s”
15 - Ally = 4+ B2 ) |
s's = s's =
for all C € B we have C's = y so that
(C’s — As)s ssT
15 - ally = | S 72|~ e - a5
F F
T
S8
<l -l | 5| =l - Al
because in general
n 1 n n 1
2 2
ool = (32 802)" = (oD o02) " = Il o
i,j=1 i=1  j=1

The solution of Broyden problem

Be
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The Broyden method
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The solution of Broyden problem

Proof. (4/4).
Let B’ and B” two different minimum. Then (B’ + B") € B
moreover
Aty B <iA-B|,+:]la-B|
2 2 F2 -
If the inequality is strict we have a contradiction. From the
Cauchy—Schwartz inequality we have an equality only when
A — B’ = )\A — B”) so that
- AB"=(1-)\)A

and

B's—AB"s=(1-))As = (1-MNy=(1-))As
but this is true only when A =1, i.e. B’ = B”.
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The Broyden method The solution of Broyden problem

© The update

T
Yr — AkSk)s
Apy1 = A + ( T )si
Sk Sk

satisfy the secant condition: Ajy,18; = yr and Ay is the
nearest matrix in the Frobenius norm that satisfy the secant
condition.

© Changing the norm we can have different results and in
general you can loose uniqueness of the update.
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The Broyden method The solution of Broyden problem

The Broyden method (1/2)

Algorithm (The Broyden method)

k «— 0, g and Ag assigned;
Jo < F(xo),
while || fx|| > ¢ do
Solve for s the linear system Apsi + fr = 0;
Tk+1 < Tk + Sk,
Jry1 < F($k+1)i
Y — Jrv1— S

Update: Ay.q1 «— Aj +

k—k+1;
end while

(yx — Asi)s;

T ’

B
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The Broyden method The solution of Broyden problem

The Broyden method (2/2)

Notice that yx — Axsy = fri1 — fr + fr so that the update can be
written as Ay 1 < Ay + fri18L /st sk and y can be eliminated.

Algorithm (The Broyden method (alternative version))

k «— 0, x and A assigned;

f—F(z);
while || f|| > € do
Solve for s the linear system As + f = 0;

r<— I+ 8,
f — F(z);
T
Update: A — A + f%
sls
k—k-+1;
end while

Be
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The Broyden method The solution of Broyden problem

Broyden algorithm properties (1/2)

Theorem

Let F(x) satisfy the standard regularity conditions with VF(x,)
nonsingular. Then there exists positive constants €, 6 such that if
o — x4|| < € and ||Ag — VF(x4)|| < 9, then the sequence {x}}
generated by the Broyden method is well defined and converge
q-superlinearly to x, i.e.

i k1 — ]| 0
k—oo ||k — 4|

W C.G.Broyden, J.E.Dennis, J.J.Moré
On the local and super-linear convergence of quasi-Newton

methods.
J. Inst. Math. Appl, 6 222-236, 1973. &
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The Broyden method The solution of Broyden problem

Broyden algorithm properties (2/2)

Let F(x) = Ax — b where A € R™*". Then the Broyden method
converge in at most 2n steps.

Theorem

Let F : R"™ — IR"™ satisfy the standard regularity conditions with
VF(x,) nonsingular. Then there exists positive constants €,  such
that if ||xo — .|| < € and || Ao — VF(x4)|| < 6, then the sequence
{x}} generated by the Broyden method satisfy

||wk+2n —x,|| < C Hwkz - w*||2

1 D.M.Gay
Some convergence properties of Broyden's method.
SIAM J. Numer. Anal., 16 623-630, 1979. §
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The Broyden method The solution of Broyden problem

Reorganizing Broyden update

@ Broyden method needs to solve a linear system for Aj at each
step

@ This can be onerous in terms of CPU cost

@ it is possible to update directly the inverse of A; i.e. itis
possible to update Hj = A;l.

@ The update of Ay solve the problem of efficiency but do not
alleviate the memory occupation

@ The matrix A; can be written as a product of simple matrix,
this can save memory if the update are lesser respect to the
system dimension.

B
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The Broyden method The solution of Broyden problem

Sherman-Morrison formula

Sherman-Morrison formula permit to explicit write the inverse of a
matrix changed with a rank 1 perturbation

Proposition (Sherman—Morrison formula)

1
(A+uv’) =471 A tupTA™!

(8

where

a=1+v'A1u

The Sherman—Morrison formula can be checked by a direct
calculation.

Be
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The Broyden method The solution of Broyden problem

Application of Sherman-Morrison formula (1/2)

@ From the Broyden update formula

fk+18;‘g
Apiq = Ay + 250k
sksk

@ By using Sherman—Morrison formula
1
Bk

T T A1
Br = 8i 8k + 8, AL frt1

~1 —1 —1 T 4—1
Ak;+1 = A — AL frrsi Ay

e By setting Hy = A,;l we have the update formula for Hy:

1
Hj.1 = H;, — EkakJHSsz
B = 81,8k + si Hi frn 5
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The Broyden method The solution of Broyden problem

Application of Sherman-Morrison formula (2/2)

@ The update formula for Hy:

1
Hy 1 = Hy, — EkakHS%Hk

T T
Br = 8, 8k + s, Hi fiy1

@ Can be reorganized as follows

© Compute 21 = Hy fry1;
Q@ Compute B, = s}fsk + ?ZZk+1;
© Compute Hyy1= (I — ;" zi118% ) Hy;

Be
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The Broyden method The solution of Broyden problem

The Broyden method with inverse updated

Algorithm (The Broyden method (updating inverse))

k «— 0, o assigned;
fo — F(xo);
Hy « I or better Hy « VF(xq);
while kaH > e do
— perform step
sy «— —Hyfy,
L1 < Tk + Sk,
Jrr1 < F(zpp1);
— update H
zry1 — Hifria,
B — S8kt St Zky1;
Hj 1+ (I — ﬁk_lzk—l—lsg)Hkﬁ
k — k+1;
end while &
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The Broyden method The solution of Broyden problem

@ If n is very large then the storing of Hj can be very expensive.

@ Moreover when n is very large we hope to find a good
solution with a number m of iteration with m << n

@ So that instead of storing H;. we can decide to store the
vectors z; and sj plus the scalars (6. With this vectors and
scalars we can write

Hk = (I — ﬁk_lzksg_l) cet (I — ﬁ;[ZQS,'lT) (I — ﬁozlsg)Ho

@ Assuming Hy = I or can be computed on the fly we must
store only 2 nm + m real number instead of n? saving a lot of
memory.

@ However we can do better. It is possible to eliminate z; ad
store only nm + m real numbers.

Be
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The Broyden method The solution of Broyden problem

Elimination of z; (1/3)

© A step of the broyden iterative scheme can be rewritten as
di — Hyfx
Tpi1 < T — dg
fr+1 — F(@r41)

Zp+1 — Hyifri1

Hop o (I+ Zpy1dy, )Hk:
" dldy, — dlz, 4

© you can notice that z; and dj are similar and contains a lot
of common information.

© It is possible exploring the iteration to eliminate z; from the
update formula of Hj so that we can store the whole
sequence without the vectors zy. &
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The Broyden method The solution of Broyden problem

Elimination of z; (2/3)

T

Zg4+1d;

T T
dpdp — di zp 11

Zk_i_]_dz; )
= |\ I+ 241
( dldy, — dl z;44 -

dit1 = Hi1frv1 = (I )szfk:+1

T
—_— Zrr1dy 241
— ~k+1 T T
dld,

Zk;_|_]_
T T
di dy — di zp 41

substituting in the update formula for Hy 1 we obtain

dp1dE
Hiq — (I+ M) Hy
k

Be
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The Broyden method The solution of Broyden problem

Elimination of z; (3/3)

Substituting into the step of the broyden iterative scheme and
assuming dj known

Tiy1 — T — di
fk:+1 — F(l‘k:+1)
Zp+1 — Hifri1

dldy,
dzdk — dgzkﬂ

dj,1d?
H I+ —% |H
k+1<—( + d;—fdk k

dk:+1 — Zk+1

notice that x;11, fry1 and zpq are not used in Hy; so that
only d;. and its length need to be stored. &
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The Broyden method The solution of Broyden problem

Algorithm (The Broyden method (low memory usage))

k «— 0; x assigned;
[~ F(CE), Hy — VF(CIJ)_l; do — Hyf; lp dgdo,'
while || f|| > € do

— perform step

x<—x—d;

f < F(z);

— evaluate Hy. f

zZ — Hof,'

for j=0,1,....k—1do

Z<— zZ+ [(d]Tz)/Ej]de;

end for

— update Hy, 4

dri1 — [le/(lx — df2)]2;

Uhy1 — diqdiy1;

k — k+1;
end while §‘

v
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The dumped Broyden method
Outline

© The dumped Broyden method
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Algorithm (The dumped Broyden method)

k «— 0; xq assigned;
fo — F(wo),' Hy — VF(:Bo)_l,'
while || fz|| > € do
— compute search direction
dy — Hy fy;
Approximate argmin,-, ||F(zx — Ady)||> by line-search;
— perform step
Sk — _)\k:dk;
Tg+1 < T+ Sk,
fr+1 < F(Tri1);

Y < SJr+1— S
— update Hy 4

s. — H st
Hy, o Hk‘|‘( k . kYk) EFp
s Hyyy,
k — k+1;
end while %

o

Non-linear problems in n variable 55 / 62

The dumped Broyden method

Elimination of z; (1/5)

Notice that
Hyy, = Hy fiy1 — Hifi, = 241 — dg, and s, = =\ di
and

(s — Hryk)si

st Hyyy,

(_)\k:dk — Zk41 dk)(_)\kdz;)
—Mid} (Zk41 — di)
N\ dp — dy)d¥
- (IJr( kjli: Zp+1 + dy) k)Hk
dy (Ze+1 — dy)

A\ — 1)dp)dE
_ (I+(zk+1T+( £ )dy) k)Hk
dkdk_dkzk—H

Hy i «— Hj +

H;,

Hy

B
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The dumped Broyden method

Elimination of z; (2/5)

A step of the broyden iterative scheme can be rewritten as
d, — Hyfr
Tpt1 — Tp — Apdy
fr+1 — F(@ri1)

Zp+1 — Hifri1

(zhg1 + (A — 1)dk)d£>Hk
dZ;dk — d;leﬁ_l

Hk;_|_]_ — (I—l—

Be
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The dumped Broyden method

Elimination of z;

di+1 = Hip1fr+1

_ <I+ (241 + (A — 1)dy)dy
d%dk — d%zkﬂ

(Zh41 + (M — 1)dkz)d;£)
— (I
( Ay - dlm )

(Ze41 + (A — 1di)d] 2141
d%dk — d{zkﬂ

(di di)zrr1 + (A — 1)(d) zr41)dy
d%dk — dekH

)Hk:.fk—i—l

= Zk4+1 T+

B
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The dumped Broyden method

Elimination of z; (4/5)

Solving for zx11

(di di, — df ziy1)dpi1 — (M — 1)(d] zi41)dy,
dld;

Zk+1 =

and substituting in Hy;1 we have

(zhg1 + (A — 1)dk)d;£>Hk
dgdk — d%zk+1

Hj1 — (I+

-1 T
- (14 e om0
dfdk

Be
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The dumped Broyden method

Elimination of z;

Substituting into the step of the broyden iterative scheme and
assuming dj known

Tpy1 — T — A\pdy,

Jret1 — F(zre1)

Zp+1 < Hifria

(di di)zs1 + (M — 1)(d] 2+1)ds

T T

d — 1)d.)dt
(I+(k+1+(>\k )k)k:)Hk
drdy

dk+1 —

notice that @y 11, fry1 and zpq are not used in Hy; so that
only d;. and its length need to be stored. &
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Algorithm (The dumped Broyden method)

k «— 0; x assigned;
[« F(a:), Hy — VF(w)_l; do — Hyf; lp dgdo,'
while || fx|| > € do
Approximate argmin, .o ||[F(z — \dy)||> by line-search;
— perform step
x—x— \edy, f— F(x);
—- evaluate Hy. f
zZ — Hof,'
for j=0,1,....k—1do
z — z+ [(dj 2)/4] (dj1 + (N — 1)d;);
end for
— update Hy, 4
dii1 — [Ekz + (>\k: — 1)(d£z)dk] /(fk = dgz),'
Uhy1 — diqdiy1;
k — k+1;
end while §‘

v
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The dumped Broyden method
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