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Given F: D CR" — R"

The Newton Raph
Find z, € D for which F(z,) = 0 © The Newton Raphson

which has F(z,) = 0 for , = (1,—2)7.
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The Newiton Raphson

The Newton procedure

o Consider the following map

o +ap+1

ﬁ+g+v

we known an approximation of a root o ~ (1.1, ~1.9)""

o Setting ; = xo + p we obtain

F(ao +p) = <163_21> + (ziz 10183> (2) +OUrl

if 2 is a good approximation of a root of F(z) then O(|p|]®)
is a small vector.

"Here B(x) means (O(a

The Newton procedu

o Considering
_ (~0.05576 20111 120668\ (a1 , ., 2
Farva) = (oo )+ (4 B%) (2) + 00
o Neglecting O(||g|) and solving
005576) (20111 12,0668\ (m) _ g
8107 1 1 'y

—0.0055466, 0.0055458)
o Now we set @ = @1 + ¢ = (1.000015, —2.000015)”

we obtain g

I

The Newton proced

o Neglecting O(||p|*) and solving

1351 22 1083\ (p1) _
(0.2)*(1 1)(7)2)70

we obtain p = (—0.094438, —0.105562)" .
@ Now we set

m]:m0+p:<

1.005562
—2.0055612

The Newton procedure: a modern point of view

The previous procedure can be resumed as follows:

@ Consider the following function F(:). We known an
approximation of a root @o.

@ Expand by Taylor series
F(z) = F(o) + VF(zo)(z — o) + O(|lz — xo|*)
@ Drop the term O(||z — o||?) and solve

0 = F(xo) + VF(xo)(z — 20)

Call z; this solution.

Q@ Repeat 1 — 3 with 23, @2, @3,

Non-linear problems
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The Newton procedur: ern point of view Standard Assumptions

In the study of convergence of numerical scheme, some standard
regularity assumption are assumed for the function F(x)

Algorithm (Newton iterative scheme)
Let xq assigned, then for k =0,1,2,...
Q@ Solve for py.:

Assumption (Standard Assumptions)
The function F : D C R™ +— R™ is continuous, differentiable with
Lipschitz derivative VF(z). ie.

VF(zi)pe + Far) =0 [VF(z) - VF(y)| <v[e -yl  Va,yeDCR"

@ Update

Lemma (Taylor like expansion)
Let F(x) satisfy the standard assumptions, then

Thi1 = Tk + Pk

[F(y) - F(2) - VF(z)(y - 2)| < % le-yl* Ve,yeDcR"

From basic Calculus:
Lemma (Jacobian norm control)
Let F(x) satisfying standard assumptions, and VF(x.) non
singular. Then there exists § > 0 such that for all ||z — @,|| < &
we have

.
F(y) - F@) = [ VF(e+t(y— 2))(y - o)
[
subtracting on both side VF(z)(y — ) we have
Fi — F(z) — VF(z —x) =
() Fle) = VRl =) 271 |VF(@)] < |VF(.)] < 2|[VF()]
/o [VF(@ + t(y — ) - VF(@)](y — @) dt nd

and taking the norm 271 |[VF(2) || < || VF(=.) Y| < 2||VF() Y|

1
IF(y) — F(x) - VF(@)(y — )] < / 1ty — | de

Non-linear problems




The Neviton Raphson

Proof. (1/3).

From standard assumptions choosing 70 < 271 | VF(a..)||
[VF@)Il < [VF(z) = VF(z.)]| + [[VF(z.)]
<l — @l + | VF(=.)|
< (3/2) | VF(z)|| < 2| VF(=.)]
again choosing 70 < 271 || VF(x, )|
V(@) < [[VF(z.) = VF(z)] + [VF(2)]
< qllz — @ + | VF()|
< 271 V()| + ([ VF()|
so that 27! | VF(z.)| < |VF(z)|| .

Standard Assumptions |

Proof. [¢]

From the continuity of the determinant there exists a neighbor
with VF(x) non singular for all [z — x| <

[7F (@)t - VF(a) |

< |[VF(@) [ IVF(.) ~ VFG@)] [VFG) |
<y lle -] [VF() | [V

and choosing & such that 48 || VF(2.) 2| < 2 we have
[VF(@) - VF(@,) | < 272 || VF(@) |

and using this last inequality

VR < [[VF() " — V() + |[VF) |
< (3/2) |VF(=) || < 2||VF(=) |

Using last inequality again

[VF(@) | < [IVF@) ™ = TF(@) | + [VF@) |

<27 |VF(@) 7| + [[VF() 7|
so that
271 ||VF() | < (V)|
choosing 4 such that for all [[& — a,|| < & we have VF() non

singular and 76 < 271 | VF(z,)| and 76 | VF(z.) 1| <271 then
the inequality of the lemma are true. (m]

Theorem (Local Convergence of Newton method)

Let F(x) satisfying standard assumptions, and x, a simple root
(i.e. VF(x.) non singular). Then, if ||zo — .|| < § with C5 < 1
where

C=7[VF@)
then, the sequence generated by Newton method satisfies:
Q |mp— .|| <0 fork=0,1,2,3,...
Q@ ||@ps1 — @] < Cllag — || fork=0,1,2,3,...

Q limp oo T = @\

o The point 2 of the theorem is the second g-order of
convergence of Newton method.

ar problems




The Ne = Newton method |

Consider a Newton step with [z, — .|| < § and
Tpp1 — @y = @ — @0 — VF(ai) 7 [F(ap) — F(z.))
= VF(2k) L [VF(me) (@ — @) — F(ai) + F(z,)]
taking the norm and using Taylor like lemma
k1 —all <271 [lzx — | VF(@r) |
from Jacobian norm control lemma there exist a 4 such that
2||VF(ay) Y| > || VF(z,) 2| for all [[&x — @.|| < 6. Reducing
eventually & such that 70 || VF(a,) || < 1 we have
ki1 = @l < 7 [[VF(@) 7| S llzk — 2ol < [l — 2l

So that by induction we prove point 1. Point 2 and 3 follows
trivially. u}

Nonvlinear problems in 1 variable

@ We can apply for example the gradient method to the merit
function (). This produce a slow method.
@ Instead, we can use the Newton method to produce a search
direction. The resulting method is the following
@ Compute the search direction by solving
VF(zx)dy, + F(zx) = 0;
@ Find an approximate solution of the problem
0, = argmin, s [|F(ay + ady)|I;
@ Update the solution a1 = @, + ajdy,
@ The previous algorithm work if the direction dy, is a descent
direction

“The Newton Raphson e Newton procedure.

The problem of Newton method is that it converge normally
only when @ is near , a root of the nonlinear system.

o A way to make a more robust non linear solver is to use the
techniques developed for minimization to make a globally
convergent nonlinear solver.

o In particular if we consider the merit function
1
fl@) =3 [F(a)|?

we have that f(x) > 0 and if @, is such that f(z,) = 0 than
we have that

@ a. is a global minimum of f(z);

@ F(z.) =0, i is a solution of the nonlinear system F(a).

So that finding a global minimum of the merit function f(x) is
the same of finding a solution of the nonlinear system F(z)

n Raphsor

a descent direction?

Consider the gradient of f(z) = (1/2) ||[F(z)|*:

10 )
,EH;F,(Z)

this can be written as




The Newton Raphson Globalizing the Newton

Is dj. a descent direction?

Now we check Vf(ay)dy:
Vi(z)de = F(a) VF(xy)dy
= —F(z) VF(xy) VF(2r) " F(z)
F(x) F(zk)
=~ IF(@)|* <0

so that Newton direction is a descent direction.

k « 0; x assigned;
F < F(x);
while || fi.|| > ¢ do
— Evaluate search direction
Solve VF(z)d = F(x);
— Evaluate dumping factor A
Approximate A = argmin,~ [|F(z — ady,)|® by line-search;
— perform step

@ —x— \d;
f—F(@);
k—k+1;

end while

Let 6, the angle form Vf(xx) and dy, then we have
B Vi(zr)dk
[F @)l [IVF (i)~ F ()]
[F i)l
[IVF (i)~ F i)l

IF (@)l
Z ToF@o 1 [F(n)]

costly, =

> || VF(a) Y

‘71
so that, if for example || VF(2)7*|| is bounded from below then
the angle 6 is strictly less then 7/2 radiants. By the Zoutendijk
theorem then the globalized Newton scheme is globally convergent. B

@ The Broyden method

Non-linear problems




The Broyden method

The Broyden method

@ Newton method is a fast (g-order 2) numerical scheme to
approximate the root of a function F(z) but needs the
knowledge of the Jacobian VF ().

@ Sometimes Jacobian is not available or too expensive to
compute, in this case a numerical procedure to approximate
the root which does not use derivative is mandatory.

@ The Newton scheme find successively the root of the affine
approximation

Li(w) = VF(ap) (@ — 2x) + F(zx) = 0
o Substituting the Jacobian in the affine approximation by Ay
My(e) = Ap(@ — ) + F(@i) = 0

and solving successively this affine model produces the family
of different methods:

5

The Broyden method

The Broyden method

The Broyden method

Algorithm (Generic Secant iterative scheme)

Let xo and Aq assigned, then for k =0,1,2,...
Q Solve for py:

Mi(pi + i) = Agpi + F(g) = 0
@ Update the root approximation
Th+1 = Tk + Pk

@ Update the affine model and produce Aj.1.

The Broyden method

© The way an update of My, — Mj,.1 determine the algorithm.
@ A simple update is the forcing of a number of the secant
relation:

Mya(@ps1—e) = F(@ipa),  (=12,....m

notice that My (k1) = F(@ys1) for all Agyy.
Q If Ap1 € R™ and m = n and dj = @411 — Tpyq are
linearly independent then we have enough linear relation to
determine Agy1.
Unfortunately vectors dy tends to become linearly dependent
so that this approach is very ill conditioned

@ A more feasible approach uses less secant relation and others
conditions to determine M. 1.

varsble

incar problems in 1

@ The way an update of M — My, in Broyden scheme is the
following:
@ Mpyi(zi) = F(a):
@ Mya(z) — My() is small in some sense;
@ The first condition imply

Apia(@r = Tpi1) + F(@pen) = Flay)
which set n linear equation that do not determine the n?
coefficients of Agy1.
© The second condition become
My1(@) = Mi(®) = (Apsr — Ap)(@ — )
1M1 (2) = Mi(@)]| < | A1 — Al lz — 2]
where ||| is some norm. The term [|& — a;|| is not

controllable, so a condition should be || A1 — Agl| is
minimum.
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The Broyden method

@ Defining

yr = F(@e) — Flxn), sk =op1 — @

the Broyden scheme find the update Aj; which satisfy:
= Yk
Il

0 Apasy
@ ||Aj1 — Ayl < |B — Al for all B such that Bsy. = y;

@ If we choose for the norm [|-| the Frobenius norm ||-||,-
n 12
Il = (3 4)
ij=1

then the problem admits a unique solution

The Frobenius matrix norm

(2/4)

The Frobenius matrix norm

The first two point of the Frobenius norm ||-||  are trivial, to prove
point 3 and 4 we need two classical inequality:

Cauchy-Schwartz inequality
n n 12, 1/2
San< (Y e2) (sz)
=1

i=1 i=1

The inequality is strict unless a; = Ab; for i

Triangular inequality

(Goor)" (£ (59)"

i i=

12, o e

The inequality is strict unless a¢; = Ab; for i =1,2,...,n.

varsble

inar problems in 1

The Broyden method

The Frobenius matrix norm

The Frobenius norm |-

n 12
= (3 4)

ij=1
is a matrix norm, i.e. it satisfy:

Q |[Allp = 0and Az =0 A=0;

0 Ay = N llAlF

Q A+ Bllp < ||Allp+Blp:

Q [AB| . < [ Allp |IBlls:
The Frobenius norm is the length of the vector A if we consider A
as a vector in R"

enius matrix n

Proof of |4 + Bl < | Al + | Bl
By using triangular inequality

( Z (A + n,,)2> "

ij=1

(5)" (3

ij=1 ij=1

lA+Bl|p =

IA

1/2
2
)

= lAllp+ 1Bl

Non-linear problems in .

The Frobenius matrix norm

(1/4)




The Broyde

The solution of Broyden pr

enius matrix norm

With the Frobenius matrix norm it is possible to solve the following
problem

proctof 481 < 141 15 [lemma ]
By using Cauchy-Schwartz inequality with

Let A € R™*" and s,y € R™ with s # 0. Consider the set

n n 1/2
(2 (Caum)) B= (B eR™"|Bs =y}

4B

ij=1 k=1
v om N 12 then there exists a unique matrix B € B such that
A2 2 ’
< < 21 (; 2)(X B*’/)) |A-B|p<|A-C|, foralCeB
SHNE
o n o 12 moreover B has the following form
_ 12 2
~((Tra)(sm) e
i=1 k=1 J=1k=1 B=A+ W 29)F
STS
= Al lIBlg-

i.e. B is a rank one perturbation of the matrix A

Nonvlinear problems in 1 variable

T || T

First of all notice that B is not empty, in fact taking the gradient we have
a
1 1 ——g(B.A) = Aij — Bij+ Nis; =0
Lyt en [ﬁysT}s:y ap; 9B = Aij = By + s
- n
So that the problem is not empty. Next we reformulate the %g(l& A) = Z Bijsi—y; =0

problem as a constrained minimum problem: =1

1 The previous equality can be written in matrix form
argmin > S (A= By)?  subject to Bs =y.

BeRnxn i B=A+xsT Bs=y
The solution is a stationary point of the Lagrangian:

oBN) = 5 3 (= By + (X B -

i=1

so that we can solve for A

Bs=As+As's=y A=

} next we prove that B is the unique minimum. &

incar problems in 1 variable




The solution of Broyden problem |

Proof.
The matrix B is a minimum, in fact

B - Alp=

y — As)s”
Sz

P+(

_ [|(y — As)s”
el

sTs

for all C € B we have C's = y so that

(Cs — As)sT o
[|1B - Allp = HT = (C*A)m
F
ssT
<|IC-Allr |75 . lc - Alg

because in general

n % n n 3
ot = (30 2)" = (30230 42) " = ol
¢

J=1

Non-linear problems in 1 variable

@ The update

(i — Axsi)st

A1 = A+ e
S, Sk

satisfy the secant condition: Apy18 =y and Ayyq is the
nearest matrix in the Frobenius norm that satisfy the secant
condition.

@ Changing the norm we can have different results and in
general you can loose uniqueness of the update.

incar problems in 1 variable

The Broyde

The solution of Broyden pr

Proof. (4/4).

Let B’ and B" two different minimum. Then (B’ + B") € B
moreover

‘A - 2B+ B

1 1
| <3l1a-Bl,+31a- 2,
r
If the inequality is strict we have a contradiction. From the
Cauchy-Schwartz inequality we have an equality only when
A — B’ =\ A — B") so that
B —AB"=(1-)MA

and

Bs—AB"s=(1-)As = (1-\y=(1-)\)As

but this is true only when A =1, i.e. B’ = B" m] 5‘

The Broyden me

Algorithm (The Broyden method)

k < 0; xo and A assigned;

fo — F(o),

while || fi| > ¢ do
Solve for sy, the linear system Aysy + fr. = 0;
Tp1 — Tk + Sk
fra1 = F(aes);
e = fra—fi .

e — Arsk)si
Update: Apyq +— Ag + 7(% Ve k3k)S} 5
st sy

k—k+1;

end while




Th solution of Broyden problem |
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The Broyden method The solution of Broyden pr

The Broyden method

Notice that yj — Agsi = fry1— fi + fr so that the update can be
T

written as Ajy1 < Ay + fii18] /st s, and g can be eliminated
Algorithm (The Broyden method (alternative version))
k «— 0; @ and A assigned;
f —F(z);
while || f|| > ¢ do
Solve for s the linear system As + f = 0;

z—zts;
f—F(@); .,
Update: A — A+ 15
s's
k—k+1;
end while

Let F(z) = Ax — b where A € R"*". Then the Broyden method
converge in at most 2n steps.

LetF: — R" satisfy the standard regularity conditions with
VF(x,) nonsingular. Then there exists positive constants €, § such
that if ||@o — .|| < e and || Ag — VF(,)|| < 6, then the sequence
{x1} generated by the Broyden method satisfy

k420 = 2]l < C |k — |2

A D.M.Gay
Some convergence properties of Broyden's method
SIAM J. Numer. Anal., 16 623-630, 1979

incar problems in 1 variable

Broyden algorithm pr

Let F(x) satisfy the standard regularity conditions with VF(z,)
nonsingular. Then there exists positive constants €, 6 such that if
[[£o — @, < € and ||Ag — VF(x,)|| <4, then the sequence {x\}
generated by the Broyden method is well defined and converge
q-superlinearly to x., i.e.

i s il

0
G

[@ C.G.Broyden, J.E.Dennis, J.J.Moré
On the local and super-linear convergence of quasi-Newton
methods.

J. Inst. Math. Appl, 6 2:

anizing Broyden update

o Broyden method needs to solve a linear system for Ay, at each
step

This can be onerous in terms of CPU cost

it is possible to update directly the inverse of Ay i.e. it is
possible to update Hj = A; .

The update of Ay solve the problem of efficiency but do not
alleviate the memory occupation

The matrix Ay, can be written as a product of simple matrix,
this can save memory if the update are lesser respect to the
system dimension.

Non-linear problems in .
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Sherman-Morrison formula

Sherman-Morrison formula permit to explicit write the inverse of a
matrix changed with a rank 1 perturbation

Proposition (Sherman—Morrison formula)

(A+ur?)yt=4"1- L p -ty gt
a
where

a=1+v"A"lu

The Sherman—Morrison formula can be checked by a direct

calculation.

formula

Application of Sherman-Morriso

@ The update formula for Hj:
1
Hiiy = Hy — —H fi1s) H
(

B = stsp+ st Hpfin

o Can be reorganized as follows
@ Compute z41 = Hifiq1;
@ Compute 3, = s] s, + 8] zii1;
@ Compute Hypy= (I — 3 2187 ) Hi;

The Broyden method

The solution of Broyden probl

Application of Sherman-Morrison formula

-1 _
A =

o By setting Hy = A

Hjy

B

“The Broyden method

k — 0; xo assigned;
fo — F(o);

while [|f]| > ¢ do
— perform step
sp < —Hpfy;
Tyl — Tk + Sk/
Fra1 — F(@p);
— update H
Zk41 < Hifrias

0t v
Br  — sipsk+8izrs1)

@ From the Broyden update formula

Fris)

Ak+1:Ak+67

o By using Sherman-Morrison formula

1
AL - A fenst

Lot oA

! we have the update formula for Hj:
1 T
= Hj — EHL.stL Hy,

T T
= 8.8k + sp Hi frn

The Broyden method with inverse updated

Algorithm (The Broyden method (updating inverse))

Hy « I or better Hy — VF(zo)~%;

Hig— (I— B 2418 Hy
k — k+1;
end while

(1

“The solution of Broyden problem




The solution of Broyden problem

The Broyden method

The solution of Broyden problem

Elimination of z

o If n is very large then the storing of H}. can be very expensive.

°

Moreover when 1 is very large we hope to find a good
solution with a number m of iteration with m << n

@ So that instead of storing Hj, we can decide to store the
vectors z;. and sy plus the scalars 3. With this vectors and
scalars we can write

Hy = (I - fiorzis) ) -+ (I - rzas]) (I — Bozsg ) Ho

o Assuming Ho = I or can be computed on the fly we must
store only 271 + m real number instead of 1 saving a lot of
memory.

o However we can do better. It is possible to eliminate z; ad

store only 1171 -+ m real numbers.

Elimination of

@ A step of the broyden iterative scheme can be rewritten as
dy — Hyfi
Tpy1 — o —d
for1 — F(@pa)
zrs1 — Hifen
2p1d] >H
ddy—dlz1) "

@ you can notice that zj and dj. are similar and contains a lot
of common information.

Hpp — (1 +

@ It is possible exploring the iteration to eliminate z; from the
update formula of H}, so that we can store the whole
sequence without the vectors zj. “

2p1d]

di1 = Hipa frin = <I+ )Hh-fk+l

dlzp
T
zp1dy )
= I+ —=—7F— |zrs1
( dTd, —dlz 1
T
Zh+1d) Zh41
=Zkp1t o
dldy — df 241
dl d,
dldy, — df z.41
substituting in the update formula for Hj1 we obtain

dypydf
Hy, I+ ——" |Hy
A\1f~< + dldy k

Zk+1

in 1 varisble

5

Substituting into the step of the broyden iterative scheme and
assuming dj, known

Tpp1 — T — di

freir — F(zpia)

21— Hi Sy
dldy

dip1 — 2kt
dl'd —d} zj.1
& k

dysrd!
Hi (I } ﬁ)m
B

notice that @11, fry1 and g1 are not used in Hj,q so that
only dj and its length need to be stored. B




Algorithm (The Broyden method (low ory usage))
k < 0; @ assigned;
f —F(z); Ho— VF(z)™'; do — Hof; lo— dfdo;
while || f|| > ¢ do

— perform step

@ — x —dy;

f < F(z);

— evaluate Hy.f

z < Hof;

for j=0,1,..., k—1do

= o 2+ [(dF2) /4]y

end for

— update Hyy1

diyy — [G/(4 — df2))2;

by — dfqdiys;

k — k+1;
end while

Algorithm (The dumped Broyden method)

k — 0; xo assigned:

fo — F(zo); Ho — VF(zo) "

while || fi.|| > ¢ do
— compute search direction
dy — Hyfy;
Approximate argminy g [[F(zx — Ady)||> by line-search;
— perform step
sk —Apdi;
Tyl — Tk + Sk

Ferr — F(@ps);
Y < e fir
— update Hj.;
(s — Hym)sl
Hj— Hi+ THoy Hy;
k —k+1;
end while

Outline

Eliminati

Notice that

and

Hpq — Hi +
— Hi+
- <1+
- (I+

Non-linear problems

Hyyy = Hy fr1 — Hifi = 211 — dy,

© The dumped Broyden method

and

(s — Hkyk)ﬁfHk
THuy

(“Medi — 21 + di) (= Md])

—Nedf (2141 — di)

(“Medk =z + dk)dz’-)Hk

d] (2141 — di)

G+ 0~ 1)dk>dZ)Hk

dld, —dlzp 1

8 = —Apdy

H,




The dumped Broyden method

Elimination of z;

A step of the broyden iterative scheme can be rewritten as
dy. — Hifr
Ty — Tp — Ay
Srir — F(zpa)
Zk1 — Hifr

4 et Qe 1)dy)d} >Hk

H, —
k1 < dldy —df 241

Solving for 241

(df dy. — df ziy1)di1 — (M — 1)(d] zx1)di
dTd,

Zi41 =

and substituting in Hy.1 we have

Hey o (14 G+ Q= Ddodl
ke dTdy, —dlz 11
_ (dx 1+ (A — D)di)df
dldy

incar problems in 1 variable

The dumped Broyden method

Elimination of z

dyy = His1frin
“(1+ (Zrt1 + (A = Ddi)df
dldy — df z41

_ (14 et Qe —1dodp
dld— dlzn )7

)kal.-—l

(Zre1 + (s = Dei)d] 21

= Zpp1+
dld;, — d] zj11

_ (didr)zirs + Ok — 1)(df zie1)di

dTdy, —dl 211

Substituting into the step of the broyden iterative scheme and
assuming dy, known

Tpy1 — @ — Medy,

Fre1 — Flagin)

Zps1 — Hpfrn

(dk di)zip1 + (M — 1)(d] zii1)dy
dld, — dl 241

n
Hiy - (1 ‘ Wﬂ);;
d'd

dyiq

notice that @41, fry1 and g1 are not used in Hj,q so that
only dj and its length need to be stored.




Algorithm (The dumped Broyden method)

k < 0; @ assigned;
f —F(z); Ho— VF(x)™'; do — Hof; lo— d}do;
while || fi|| > ¢ do
Approximate argminy.q |[F(z — Adg)|? by line-search;
— perform step
T — @ — \dp; f— F(a);
— evaluate Hy.f
z — Hof;
for j=0,1,..., k—1do
2= 2+ [(df2)/6] (djs + (A - 1)dy);
end for
— update Hy.q
dpyy — [Gz+ (A — 1)(df 2)dx] /(4 — df 2);
by — dfqdiys;
k — k+1;

end while

[ J. Stoer and R. Bulirsch
Introduction to numerical analysis
Springer-Verlag, Texts in Applied Mathematics, 12

[ J. E. Dennis, Jr. and Robert B. Schnabel
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Nonlinear Equations
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