

- Consider the following map

$$
\mathbf{F}(x)=\binom{x_{1}^{2}+x_{2}^{3}+7}{x_{1}+x_{2}+1}
$$

we known an approximation of a root $x_{0} \approx(1.1,-1.9)^{T}$.

- Setting $x_{1}=x_{0}+p$ we obtain ${ }^{1}$

$$
\mathbf{F}\left(x_{0}+\boldsymbol{p}\right)=\binom{1.351}{0.2}+\left(\begin{array}{cc}
2.2 & 10.83 \\
1 & 1
\end{array}\right)\binom{p_{1}}{p_{2}}+\overrightarrow{\mathcal{O}}\left(\|p\|^{2}\right)
$$

if x_{0} is a good approximation of a root of $\mathbf{F}(x)$ then $\overrightarrow{\mathcal{O}}\left(\|p\|^{2}\right)$ is a small vector.

$$
{ }^{1} \text { Here } \overline{\mathcal{O}}(x) \text { means }(\mathcal{O}(x), \ldots, \mathcal{O}(x))^{T}
$$

- Considering

$$
\mathbf{F}\left(\boldsymbol{x}_{1}+\boldsymbol{q}\right)=\binom{-0.05576}{810^{-7}}+\left(\begin{array}{cc}
2.0111 & 12.0668 \\
1 & 1
\end{array}\right)\binom{q_{1}}{q_{2}}+\overrightarrow{\mathcal{O}}\left(\|\boldsymbol{q}\|^{2}\right)
$$

- Neglecting $\overrightarrow{\mathcal{O}}\left(\|q\|^{2}\right)$ and solving

$$
\binom{-0.05576}{810^{-7}}+\left(\begin{array}{cc}
2.0111 & 12.0668 \\
1 & 1
\end{array}\right)\binom{q_{1}}{q_{2}}=\mathbf{0}
$$

we obtain $\boldsymbol{q}=(-0.0055466,0.0055458)^{T}$.

- Now we set $x_{2}=x_{1}+\boldsymbol{q}=(1.000015,-2.000015)^{T}$
- Neglecting $\overrightarrow{\mathcal{O}}\left(\|p\|^{2}\right)$ and solving

$$
\binom{1.351}{0.2}+\left(\begin{array}{cc}
2.2 & 10.83 \\
1 & 1
\end{array}\right)\binom{p_{1}}{p_{2}}=\mathbf{0}
$$

we obtain $p=(-0.094438,-0.105562)^{T}$.

- Now we set

$$
x_{1}=x_{0}+\boldsymbol{p}=\binom{1.005562}{-2.0055612}
$$

The Nerton Rapheon
 The Newton procedure: a modern point of view

The previous procedure can be resumed as follows:

- Consider the following function $\mathbf{F}(x)$. We known an approximation of a root x_{0}.
- Expand by Taylor series

$$
\mathbf{F}(x)=\mathbf{F}\left(x_{0}\right)+\nabla \mathbf{F}\left(x_{0}\right)\left(x-x_{0}\right)+\overrightarrow{\mathcal{O}}\left(\left\|x-x_{0}\right\|^{2}\right)
$$

- Drop the term $\overrightarrow{\mathcal{O}}\left(\left\|x-x_{0}\right\|^{2}\right)$ and solve

$$
\mathbf{0}=\mathbf{F}\left(x_{0}\right)+\nabla \mathbf{F}\left(x_{0}\right)\left(x-x_{0}\right)
$$

Call x_{1} this solution.
Repeat 1 - 3 with $x_{1}, x_{2}, x_{3}, \ldots$
Algorithm (Newton iterative scheme)
Let x_{0} assigned, then for $k=0,1,2, \ldots$
(1) Solve for \boldsymbol{p}_{k} :

$$
\nabla \mathbf{F}\left(\boldsymbol{x}_{k}\right) \boldsymbol{p}_{k}+\mathbf{F}\left(\boldsymbol{x}_{k}\right)=\mathbf{0}
$$

(9) Update
$\boldsymbol{x}_{k+1}=\boldsymbol{x}_{k}+\boldsymbol{p}_{k}$

Non-linear problems in n variable		

In the study of convergence of numerical scheme, some standard regularity assumption are assumed for the function $\mathbf{F}(x)$.

Algorithm (Newton iterative scheme)
Let x_{0} assigned, then for $k=0,1,2, \ldots$
(1) Solve for \boldsymbol{p}_{k} :

$$
\nabla \mathbf{F}\left(x_{k}\right) \boldsymbol{p}_{k}+\mathbf{F}\left(\boldsymbol{x}_{k}\right)=\mathbf{0}
$$

$\boldsymbol{x}_{k+1}=\boldsymbol{x}_{k}+\boldsymbol{p}_{k}$

Proof.

From basic Calculus:

$$
\mathbf{F}(\boldsymbol{y})-\mathbf{F}(x)=\int_{0}^{1} \nabla \mathbf{F}(\boldsymbol{x}+t(\boldsymbol{y}-\boldsymbol{x}))(\boldsymbol{y}-\boldsymbol{x}) d t
$$

subtracting on both side $\nabla \mathbf{F}(\boldsymbol{x})(\boldsymbol{y}-\boldsymbol{x})$ we have

$$
\begin{aligned}
& \mathbf{F}(\boldsymbol{y})-\mathbf{F}(\boldsymbol{x})-\nabla \mathbf{F}(\boldsymbol{x})(\boldsymbol{y}-\boldsymbol{x})= \\
& \quad \int_{0}^{1}[\nabla \mathbf{F}(\boldsymbol{x}+t(\boldsymbol{y}-\boldsymbol{x}))-\nabla \mathbf{F}(\boldsymbol{x})](\boldsymbol{y}-\boldsymbol{x}) d t
\end{aligned}
$$

and taking the norm

$$
\|\mathbf{F}(\boldsymbol{y})-\mathbf{F}(\boldsymbol{x})-\nabla \mathbf{F}(\boldsymbol{x})(\boldsymbol{y}-\boldsymbol{x})\| \leq \int_{0}^{1} \gamma t\|\boldsymbol{y}-\boldsymbol{x}\|^{2} d t
$$

Assumption (Standard Assumptions)

The function $\mathbf{F}: D \subset \mathbb{R}^{n} \mapsto \mathbb{R}^{n}$ is continuous, differentiable with Lipschitz derivative $\nabla \mathbf{F}(\boldsymbol{x})$. i.e.

$$
\|\nabla \mathbf{F}(\boldsymbol{x})-\nabla \mathbf{F}(\boldsymbol{y})\| \leq \gamma\|\boldsymbol{x}-\boldsymbol{y}\| \quad \forall \boldsymbol{x}, \boldsymbol{y} \in D \subset \mathbb{R}^{n}
$$

Lemma (Taylor like expansion)
Let $\mathbf{F}(\boldsymbol{x})$ satisfy the standard assumptions, then
$\|\mathbf{F}(\boldsymbol{y})-\mathbf{F}(\boldsymbol{x})-\nabla \mathbf{F}(\boldsymbol{x})(\boldsymbol{y}-\boldsymbol{x})\| \leq \frac{\gamma}{2}\|\boldsymbol{x}-\boldsymbol{y}\|^{2} \quad \forall \boldsymbol{x}, \boldsymbol{y} \in D \subset \mathbb{R}^{n}$

Lemma (Jacobian norm control)

Let $\mathbf{F}(x)$ satisfying standard assumptions, and $\nabla \mathbf{F}\left(\boldsymbol{x}_{\star}\right)$ non singular. Then there exists $\delta>0$ such that for all $\left\|\boldsymbol{x}-\boldsymbol{x}_{\star}\right\| \leq \delta$ we have

$$
2^{-1}\|\nabla \mathbf{F}(x)\| \leq\left\|\nabla \mathbf{F}\left(x_{\star}\right)\right\| \leq 2\|\nabla \mathbf{F}(x)\|
$$

and

$$
2^{-1}\left\|\nabla \mathbf{F}(x)^{-1}\right\| \leq\left\|\nabla \mathbf{F}\left(x_{\star}\right)^{-1}\right\| \leq 2\left\|\nabla \mathbf{F}(x)^{-1}\right\|
$$

Proof.
(1/3)
From standard assumptions choosing $\gamma \delta \leq 2^{-1}\left\|\nabla \mathbf{F}\left(\boldsymbol{x}_{\star}\right)\right\|$

$$
\begin{aligned}
\|\nabla \mathbf{F}(x)\| & \leq\left\|\nabla \mathbf{F}(x)-\nabla \mathbf{F}\left(x_{\star}\right)\right\|+\left\|\nabla \mathbf{F}\left(x_{\star}\right)\right\| \\
& \leq \gamma\left\|\boldsymbol{x}-\boldsymbol{x}_{\star}\right\|+\left\|\nabla \mathbf{F}\left(x_{\star}\right)\right\| \\
& \leq(3 / 2)\left\|\nabla \mathbf{F}\left(x_{\star}\right)\right\| \leq 2\left\|\nabla \mathbf{F}\left(x_{\star}\right)\right\|
\end{aligned}
$$

again choosing $\gamma \delta \leq 2^{-1}\left\|\nabla \mathbf{F}\left(x_{\star}\right)\right\|$

$$
\begin{aligned}
\left\|\nabla \mathbf{F}\left(x_{\star}\right)\right\| & \leq\left\|\nabla \mathbf{F}\left(x_{\star}\right)-\nabla \mathbf{F}(x)\right\|+\|\nabla \mathbf{F}(x)\| \\
& \leq \gamma\left\|\boldsymbol{x}-\boldsymbol{x}_{\star}\right\|+\|\nabla \mathbf{F}(x)\| \\
& \leq 2^{-1}\left\|\nabla \mathbf{F}\left(x_{\star}\right)\right\|+\|\nabla \mathbf{F}(x)\|
\end{aligned}
$$

so that $2^{-1}\left\|\nabla \mathbf{F}\left(x_{\star}\right)\right\| \leq\|\nabla \mathbf{F}(x)\|$

Proof

Using last inequality again

$$
\begin{aligned}
\left\|\nabla \mathbf{F}(x)^{-1}\right\| & \leq\left\|\nabla \mathbf{F}(x)^{-1}-\nabla \mathbf{F}\left(x_{\star}\right)^{-1}\right\|+\left\|\nabla \mathbf{F}\left(x_{\star}\right)^{-1}\right\| \\
& \leq 2^{-1}\left\|\nabla \mathbf{F}(x)^{-1}\right\|+\left\|\nabla \mathbf{F}\left(x_{\star}\right)^{-1}\right\|
\end{aligned}
$$

so that

$$
2^{-1}\left\|\nabla \mathbf{F}(x)^{-1}\right\| \leq\left\|\nabla \mathbf{F}\left(x_{\star}\right)^{-1}\right\|
$$

choosing δ such that for all $\left\|\boldsymbol{x}-\boldsymbol{x}_{\star}\right\| \leq \delta$ we have $\nabla \mathbf{F}(\boldsymbol{x})$ non singular and $\gamma \delta \leq 2^{-1}\left\|\nabla \mathbf{F}\left(\boldsymbol{x}_{\star}\right)\right\|$ and $\gamma \delta\left\|\nabla \mathbf{F}\left(\boldsymbol{x}_{\star}\right)^{-1}\right\| \leq 2^{-1}$ then the inequality of the lemma are true.

Proof.

From the continuity of the determinant there exists a neighbor with $\nabla \mathbf{F}(\boldsymbol{x})$ non singular for all $\left\|\boldsymbol{x}-\boldsymbol{x}_{\star}\right\| \leq \delta$.

$$
\begin{aligned}
& \left\|\nabla \mathbf{F}(x)^{-1}-\nabla \mathbf{F}\left(x_{\star}\right)^{-1}\right\| \\
& \quad \leq\left\|\nabla \mathbf{F}(x)^{-1}\right\|\left\|\nabla \mathbf{F}\left(x_{\star}\right)-\nabla \mathbf{F}(x)\right\|\left\|\nabla \mathbf{F}\left(x_{\star}\right)^{-1}\right\| \\
& \quad \leq \gamma\left\|x-x_{\star}\right\|\left\|\nabla \mathbf{F}(x)^{-1}\right\|\left\|\nabla \mathbf{F}\left(x_{\star}\right)^{-1}\right\|
\end{aligned}
$$

and choosing δ such that $\gamma \delta\left\|\nabla \mathbf{F}\left(x_{\star}\right)^{-1}\right\| \leq 2^{-1}$ we have

$$
\left\|\nabla \mathbf{F}(x)^{-1}-\nabla \mathbf{F}\left(x_{\star}\right)^{-1}\right\| \leq 2^{-1}\left\|\nabla \mathbf{F}(x)^{-1}\right\|
$$

and using this last inequality

$$
\begin{aligned}
\left\|\nabla \mathbf{F}\left(x_{\star}\right)^{-1}\right\| & \leq\left\|\nabla \mathbf{F}\left(x_{\star}\right)^{-1}-\nabla \mathbf{F}(x)^{-1}\right\|+\left\|\nabla \mathbf{F}(x)^{-1}\right\| \\
& \leq(3 / 2)\left\|\nabla \mathbf{F}(x)^{-1}\right\| \leq 2\left\|\nabla \mathbf{F}(x)^{-1}\right\|
\end{aligned}
$$

Theorem (Local Convergence of Newton method)

Let $\mathbf{F}(x)$ satisfying standard assumptions, and \boldsymbol{x}_{\star} a simple root (i.e. $\nabla \mathbf{F}\left(\boldsymbol{x}_{\star}\right)$ non singular). Then, if $\left\|\boldsymbol{x}_{0}-\boldsymbol{x}_{\star}\right\| \leq \delta$ with $C \delta \leq 1$ where

$$
C=\gamma\left\|\nabla \mathbf{F}\left(\boldsymbol{x}_{\star}\right)^{-1}\right\|
$$

then, the sequence generated by Newton method satisfies:
(1) $\left\|\boldsymbol{x}_{k}-\boldsymbol{x}_{\star}\right\| \leq \delta$ for $k=0,1,2,3, \ldots$
(9) $\left\|x_{k+1}-x_{\star}\right\| \leq C\left\|x_{k}-x_{\star}\right\|^{2}$ for $k=0,1,2,3, \ldots$
(ㅇ) $\lim _{k \mapsto \infty} \boldsymbol{x}_{k}=\boldsymbol{x}_{\star}$

- The point 2 of the theorem is the second q-order of convergence of Newton method.

Proof

Consider a Newton step with $\left\|\boldsymbol{x}_{k}-\boldsymbol{x}_{\star}\right\| \leq \delta$ and

$$
\begin{aligned}
\boldsymbol{x}_{k+1}-\boldsymbol{x}_{\star} & =\boldsymbol{x}_{k}-\boldsymbol{x}_{\star}-\nabla \mathbf{F}\left(\boldsymbol{x}_{k}\right)^{-1}\left[\mathbf{F}\left(x_{k}\right)-\mathbf{F}\left(x_{\star}\right)\right] \\
& =\nabla \mathbf{F}\left(x_{k}\right)^{-1}\left[\nabla \mathbf{F}\left(x_{k}\right)\left(x_{k}-x_{\star}\right)-\mathbf{F}\left(x_{k}\right)+\mathbf{F}\left(x_{\star}\right)\right]
\end{aligned}
$$

taking the norm and using Taylor like lemma

$$
\left\|x_{k+1}-\alpha\right\| \leq 2^{-1} \gamma\left\|x_{k}-\alpha\right\|^{2}\left\|\nabla \mathbf{F}\left(x_{k}\right)^{-1}\right\|
$$

from Jacobian norm control lemma there exist a δ such that $2\left\|\nabla \mathbf{F}\left(x_{k}\right)^{-1}\right\| \geq\left\|\nabla \mathbf{F}\left(x_{\star}\right)^{-1}\right\|$ for all $\left\|\boldsymbol{x}_{k}-\boldsymbol{x}_{\star}\right\| \leq \delta$. Reducing eventually δ such that $\gamma \delta\left\|\nabla \mathbf{F}\left(x_{\star}\right)^{-1}\right\| \leq 1$ we have

$$
\left\|x_{k+1}-x_{\star}\right\| \leq \gamma\left\|\nabla \mathbf{F}\left(\boldsymbol{x}_{\star}\right)^{-1}\right\| \delta\left\|\boldsymbol{x}_{k}-\boldsymbol{x}_{\star}\right\|^{2} \leq\left\|\boldsymbol{x}_{k}-\boldsymbol{x}_{\star}\right\|,
$$

So that by induction we prove point 1 . Point 2 and 3 follows trivially.

- We can apply for example the gradient method to the merit function $f(x)$. This produce a slow method
- Instead, we can use the Newton method to produce a search direction. The resulting method is the following
(1) Compute the search direction by solving $\nabla \mathbf{F}\left(x_{k}\right) d_{k}+\mathbf{F}\left(x_{k}\right)=\mathbf{0}$;
(2) Find an approximate solution of the problem
$\alpha_{k}=\arg \min _{\alpha \geq 0}\left\|\mathbf{F}\left(\boldsymbol{x}_{k}+\alpha \boldsymbol{d}_{k}\right)\right\|^{2} ;$
(-) Update the solution $\boldsymbol{x}_{k+1}=\boldsymbol{x}_{k}+\alpha_{k} \boldsymbol{d}_{k}$
- The previous algorithm work if the direction \boldsymbol{d}_{k} is a descent direction.
- The problem of Newton method is that it converge normally only when x_{0} is near \boldsymbol{x}_{\star} a root of the nonlinear system.
- A way to make a more robust non linear solver is to use the techniques developed for minimization to make a globally convergent nonlinear solver.
- In particular if we consider the merit function

$$
f(x)=\frac{1}{2}\|\mathbf{F}(x)\|^{2}
$$

we have that $f(x) \geq 0$ and if x_{\star} is such that $f\left(x_{\star}\right)=0$ than we have that
(1) x_{\star} is a global minimum of $\mathrm{f}(x)$;

- $\mathbf{F}\left(x_{*}\right)=\mathbf{0}$, i.e. is a solution of the nonlinear system $\mathbf{F}(x)$
- So that finding a global minimum of the merit function $f(x)$ is the same of finding a solution of the nonlinear system $\mathbf{F}(\boldsymbol{x})$

Consider the gradient of $\mathrm{f}(x)=(1 / 2)\|\mathbf{F}(x)\|^{2}$:

$$
\begin{aligned}
\frac{\partial}{\partial x_{k}} \mathrm{f}(\boldsymbol{x}) & =\frac{1}{2} \frac{\partial}{\partial x_{k}}\|\mathbf{F}(\boldsymbol{x})\|^{2}=\frac{1}{2} \frac{\partial}{\partial x_{k}} \sum_{i=1}^{n} F_{i}(\boldsymbol{x})^{2} \\
& =\sum_{i=1}^{n} \frac{\partial F_{i}(\boldsymbol{x})}{\partial x_{k}} F_{i}(\boldsymbol{x})
\end{aligned}
$$

this can be written as

$$
\nabla f(x)=\mathbf{F}(x)^{T} \nabla \mathbf{F}(x)
$$

Now we check $\nabla \mathrm{f}\left(\boldsymbol{x}_{k}\right) \boldsymbol{d}_{k}$:

$$
\begin{aligned}
\nabla \mathrm{f}\left(\boldsymbol{x}_{k}\right) d_{k} & =\mathbf{F}\left(\boldsymbol{x}_{k}\right)^{T} \nabla \mathbf{F}\left(x_{k}\right) \boldsymbol{d}_{k} \\
& =-\mathbf{F}\left(x_{k}\right)^{T} \nabla \mathbf{F}\left(x_{k}\right) \nabla \mathbf{F}\left(x_{k}\right)^{-1} \mathbf{F}\left(x_{k}\right) \\
& =-\mathbf{F}\left(x_{k}\right)^{T} \mathbf{F}\left(x_{k}\right) \\
& =-\left\|\mathbf{F}\left(x_{k}\right)\right\|^{2}<0
\end{aligned}
$$

so that Newton direction is a descent direction.

Is the angle from \boldsymbol{d}_{k} and $\nabla \mathrm{f}\left(\boldsymbol{x}_{k}\right)$ bounded from $\pi / 2$? (2/2)

Let θ_{k} the angle form $\nabla \mathrm{f}\left(\boldsymbol{x}_{k}\right)$ and \boldsymbol{d}_{k}, then we have

$$
\begin{aligned}
\cos \theta_{k} & =-\frac{\nabla \mathrm{f}\left(\boldsymbol{x}_{k}\right) d_{k}}{\left\|\mathbf{F}\left(x_{k}\right)\right\|\left\|\nabla \mathbf{F}\left(\boldsymbol{x}_{k}\right)^{-1} \mathbf{F}\left(x_{k}\right)\right\|} \\
& =\frac{\left\|\mathbf{F}\left(x_{k}\right)\right\|}{\left\|\nabla \mathbf{F}\left(\boldsymbol{x}_{k}\right)^{-1} \mathbf{F}\left(x_{k}\right)\right\|} \\
& \geq \frac{\left\|\mathbf{F}\left(x_{k}\right)\right\|}{\left\|\nabla \mathbf{F}\left(x_{k}\right)^{-1}\right\|\left\|\mathbf{F}\left(x_{k}\right)\right\|} \\
& \geq\left\|\nabla \mathbf{F}\left(x_{k}\right)^{-1}\right\|^{-1}
\end{aligned}
$$

so that, if for example $\left\|\nabla \mathbf{F}(x)^{-1}\right\|$ is bounded from below then the angle θ_{k} is strictly less then $\pi / 2$ radiants. By the Zoutendijk theorem then the globalized Newton scheme is globally convergent.

Non-linear problems in n variable

The Eroveden mettod

Outline

2 The Broyden method
(3) The dumped Broyden method

- Newton method is a fast (q-order 2) numerical scheme to approximate the root of a function $\mathbf{F}(x)$ but needs the knowledge of the Jacobian $\nabla \mathbf{F}(x)$.
- Sometimes Jacobian is not available or too expensive to compute, in this case a numerical procedure to approximate the root which does not use derivative is mandatory.
- The Newton scheme find successively the root of the affine approximation

$$
L_{k}(\boldsymbol{x}) \doteq \nabla \mathbf{F}\left(\boldsymbol{x}_{k}\right)\left(\boldsymbol{x}-\boldsymbol{x}_{k}\right)+\mathbf{F}\left(\boldsymbol{x}_{k}\right)=\mathbf{0}
$$

- Substituting the Jacobian in the affine approximation by \boldsymbol{A}_{k}

$$
M_{k}(\boldsymbol{x}) \doteq \boldsymbol{A}_{k}\left(\boldsymbol{x}-\boldsymbol{x}_{k}\right)+\mathbf{F}\left(\boldsymbol{x}_{k}\right)=\mathbf{0}
$$

Algorithm (Generic Secant iterative scheme)

Let x_{0} and \boldsymbol{A}_{0} assigned, then for $k=0,1,2, \ldots$

- Solve for \boldsymbol{p}_{k} :

$$
M_{k}\left(\boldsymbol{p}_{k}+\boldsymbol{x}_{k}\right)=\boldsymbol{A}_{k} \boldsymbol{p}_{k}+\mathbf{F}\left(\boldsymbol{x}_{k}\right)=\mathbf{0}
$$

- Update the root approximation

$$
\boldsymbol{x}_{k+1}=\boldsymbol{x}_{k}+\boldsymbol{p}_{k}
$$

0
Update the affine model and produce \boldsymbol{A}_{k+1}.
and solving successively this affine model produces the family of different methods:

The Broyden method

The Broyden method
(1) The way an update of $M_{k} \rightarrow M_{k+1}$ determine the algorithm.
(9) A simple update is the forcing of a number of the secant relation:

$$
M_{k+1}\left(x_{k+1-\ell}\right)=\mathbf{F}\left(x_{k+1-\ell}\right), \quad \ell=1,2, \ldots, m
$$

notice that $M_{k+1}\left(\boldsymbol{x}_{k+1}\right)=\mathbf{F}\left(\boldsymbol{x}_{k+1}\right)$ for all \boldsymbol{A}_{k+1}.
(3) If $\boldsymbol{A}_{k+1} \in \mathbb{R}^{n \times n}$ and $m=n$ and $\boldsymbol{d}_{\ell}=\boldsymbol{x}_{k+1-\ell}-\boldsymbol{x}_{k+1}$ are linearly independent then we have enough linear relation to determine \boldsymbol{A}_{k+1}.

- Unfortunately vectors \boldsymbol{d}_{ℓ} tends to become linearly dependent so that this approach is very ill conditioned.
- A more feasible approach uses less secant relation and others conditions to determine M_{k+1}.

Defining

$$
\boldsymbol{y}_{k}=\mathbf{F}\left(\boldsymbol{x}_{k+1}\right)-\mathbf{F}\left(\boldsymbol{x}_{k}\right), \quad \boldsymbol{s}_{k}=\boldsymbol{x}_{k+1}-\boldsymbol{x}_{k}
$$

the Broyden scheme find the update \boldsymbol{A}_{k+1} which satisfy:

- $\boldsymbol{A}_{k+1} \boldsymbol{s}_{k}=\boldsymbol{y}_{k}$;
- $\left\|\boldsymbol{A}_{k+1}-\boldsymbol{A}_{k}\right\| \leq\left\|\boldsymbol{B}-\boldsymbol{A}_{k}\right\|$ for all \boldsymbol{B} such that $\boldsymbol{B} \boldsymbol{s}_{k}=\boldsymbol{y}_{k}$.
- If we choose for the norm $\|\cdot\|$ the Frobenius norm $\|\cdot\|_{F}$

$$
\|\boldsymbol{A}\|_{F}=\left(\sum_{i, j=1}^{n} A_{i j}^{2}\right)^{1 / 2}
$$

then the problem admits a unique solution.
The Frobenius norm $\|\cdot\|_{F}$

$$
\|\boldsymbol{A}\|_{F}=\left(\sum_{i, j=1}^{n} A_{i j}^{2}\right)^{1 / 2}
$$

is a matrix norm, i.e. it satisfy:
(- $\|\boldsymbol{A}\|_{F} \geq 0$ and $\|\boldsymbol{A}\|_{F}=0 \Longleftrightarrow \boldsymbol{A}=\mathbf{0}$;
(- $\|\lambda \boldsymbol{A}\|_{F}=|\lambda|\|\boldsymbol{A}\|_{F}$;

- $\|\boldsymbol{A}+\boldsymbol{B}\|_{F} \leq\|\boldsymbol{A}\|_{F}+\|\boldsymbol{B}\|_{F}$;
- $\|\boldsymbol{A} \boldsymbol{B}\|_{F} \leq\|\boldsymbol{A}\|_{F}\|\boldsymbol{B}\|_{F}$;

The Frobenius norm is the length of the vector \boldsymbol{A} if we consider \boldsymbol{A} as a vector in $\mathbb{R}^{n^{2}}$.

The Eroden method	The Froberins matiox na
The Frobenius matrix norm	(3/4)

Proof of $\|\boldsymbol{A}+\boldsymbol{B}\|_{F} \leq\|\boldsymbol{A}\|_{F}+\|\boldsymbol{B}\|_{F}$.
By using triangular inequality

$$
\begin{aligned}
\|\boldsymbol{A}+\boldsymbol{B}\|_{F} & =\left(\sum_{i, j=1}^{n}\left(A_{i j}+B_{i j}\right)^{2}\right)^{1 / 2} \\
& \leq\left(\sum_{i, j=1}^{n} A_{i j}^{2}\right)^{1 / 2}+\left(\sum_{i, j=1}^{n} B_{i j}^{2}\right)^{1 / 2} \\
& =\|\boldsymbol{A}\|_{F}+\|\boldsymbol{B}\|_{F} .
\end{aligned}
$$

$$
\left(\sum_{i=1}^{n}\left(a_{i}+b_{i}\right)^{2}\right)^{1 / 2} \leq\left(\sum_{i=1}^{n} a_{i}^{2}\right)^{1 / 2}+\left(\sum_{i=1}^{n} b_{i}^{2}\right)^{1 / 2}
$$

The inequality is strict unless $a_{i}=\lambda b_{i}$ for $i=1,2, \ldots, n$.

Proof of $\|\boldsymbol{A} \boldsymbol{B}\|_{F} \leq\|\boldsymbol{A}\|_{F}\|\boldsymbol{B}\|_{F}$.
By using Cauchy-Schwartz inequality with

$$
\begin{aligned}
\|\boldsymbol{A} \boldsymbol{B}\|_{F} & =\left(\sum_{i, j=1}^{n}\left(\sum_{k=1}^{n} A_{i k} B_{k j}\right)^{2}\right)^{1 / 2} \\
& \leq\left(\sum_{i, j=1}^{n}\left(\sum_{k=1}^{n} A_{i k}^{2}\right)\left(\sum_{k^{\prime}=1}^{n} B_{k^{\prime} j}^{2}\right)\right)^{1 / 2} \\
& =\left(\left(\sum_{i=1}^{n} \sum_{k=1}^{n} A_{i k}^{2}\right)\left(\sum_{j=1}^{n} \sum_{k^{\prime}=1}^{n} B_{k^{\prime} j}^{2}\right)\right)^{1 / 2} \\
& =\|\boldsymbol{A}\|_{F}\|\boldsymbol{B}\|_{F} .
\end{aligned}
$$

With the Frobenius matrix norm it is possible to solve the following problem

Lemma
Let $\boldsymbol{A} \in \mathbb{R}^{n \times n}$ and $s, \boldsymbol{y} \in \mathbb{R}^{n}$ with $\boldsymbol{s} \neq \mathbf{0}$. Consider the set

$$
\mathcal{B}=\left\{\boldsymbol{B} \in \mathbb{R}^{n \times n} \mid \boldsymbol{B} \boldsymbol{s}=\boldsymbol{y}\right\}
$$

then there exists a unique matrix $\boldsymbol{B} \in \mathcal{B}$ such that

$$
\|\boldsymbol{A}-\boldsymbol{B}\|_{F} \leq\|\boldsymbol{A}-\boldsymbol{C}\|_{F} \quad \text { for all } \boldsymbol{C} \in \mathcal{B}
$$

moreover \boldsymbol{B} has the following form

$$
\boldsymbol{B}=\boldsymbol{A}+\frac{(\boldsymbol{y}-\boldsymbol{A} s) s^{T}}{\boldsymbol{s}^{T} \boldsymbol{s}}
$$

i.e. \boldsymbol{B} is a rank one perturbation of the matrix \boldsymbol{A}.

Proof

First of all notice that \mathcal{B} is not empty, in fact

$$
\frac{1}{\boldsymbol{s}^{T} \boldsymbol{s}} \boldsymbol{y} \boldsymbol{s}^{T} \in \mathcal{B} \quad\left[\frac{1}{\boldsymbol{s}^{T} \boldsymbol{s}} \boldsymbol{y} \boldsymbol{s}^{T}\right] \boldsymbol{s}=\boldsymbol{y}
$$

So that the problem is not empty. Next we reformulate the problem as a constrained minimum problem:

$$
\underset{\boldsymbol{B} \in \mathbb{R}^{n \times n}}{\arg \min } \frac{1}{2} \sum_{i, j=1}^{n}\left(A_{i j}-B_{i j}\right)^{2} \quad \text { subject to } \boldsymbol{B} \boldsymbol{s}=\boldsymbol{y} .
$$

The solution is a stationary point of the Lagrangian:

$$
g(\boldsymbol{B}, \boldsymbol{\lambda})=\frac{1}{2} \sum_{i, j=1}^{n}\left(A_{i j}-B_{i j}\right)^{2}+\sum_{i=1} \lambda_{i}\left(\sum_{j=1}^{n} B_{i j} s_{j}-y_{i}\right)
$$

Proof

taking the gradient we have

$$
\begin{aligned}
\frac{\partial}{\partial B_{i j}} g(\boldsymbol{B}, \boldsymbol{\lambda}) & =A_{i j}-B_{i j}+\lambda_{i} s_{j}=0 \\
\frac{\partial}{\partial \lambda_{i}} g(\boldsymbol{B}, \boldsymbol{\lambda}) & =\sum_{j=1}^{n} B_{i j} s_{j}-y_{j}=0
\end{aligned}
$$

The previous equality can be written in matrix form

$$
\boldsymbol{B}=\boldsymbol{A}+\boldsymbol{\lambda} \boldsymbol{s}^{T} \quad \boldsymbol{B} \boldsymbol{s}=\boldsymbol{y}
$$

so that we can solve for $\boldsymbol{\lambda}$

$$
\boldsymbol{B} \boldsymbol{s}=\boldsymbol{A} \boldsymbol{s}+\boldsymbol{\lambda} \boldsymbol{s}^{T} \boldsymbol{s}=\boldsymbol{y} \quad \boldsymbol{\lambda}=\frac{\boldsymbol{y}-\boldsymbol{A} \boldsymbol{s}}{\boldsymbol{s}^{T} \boldsymbol{s}}
$$

next we prove that B is the unique minimum.

Proof

The matrix \boldsymbol{B} is a minimum, in fact

$$
\|\boldsymbol{B}-\boldsymbol{A}\|_{F}=\left\|\boldsymbol{A}+\frac{(\boldsymbol{y}-\boldsymbol{A} \boldsymbol{s}) s^{T}}{\boldsymbol{s}^{T} \boldsymbol{s}}-\boldsymbol{A}\right\|_{F}=\left\|\frac{(\boldsymbol{y}-\boldsymbol{A} \boldsymbol{s}) \boldsymbol{s}^{T}}{\boldsymbol{s}^{T} \boldsymbol{s}}\right\|_{F}
$$

for all $\boldsymbol{C} \in \mathcal{B}$ we have $\boldsymbol{C s}=\boldsymbol{y}$ so that

$$
\begin{aligned}
\|\boldsymbol{B}-\boldsymbol{A}\|_{F} & =\left\|\frac{(\boldsymbol{C s}-\boldsymbol{A} \boldsymbol{s}) \boldsymbol{s}^{T}}{\boldsymbol{s}^{T} \boldsymbol{s}}\right\|_{F}=\left\|(\boldsymbol{C}-\boldsymbol{A}) \frac{\boldsymbol{s} \boldsymbol{s}^{T}}{\boldsymbol{s}^{T} \boldsymbol{s}}\right\|_{F} \\
& \leq\|\boldsymbol{C}-\boldsymbol{A}\|_{F}\left\|\frac{\boldsymbol{s} \boldsymbol{s}^{T}}{\boldsymbol{s}^{T} \boldsymbol{s}}\right\|_{F}=\|\boldsymbol{C}-\boldsymbol{A}\|_{F}
\end{aligned}
$$

because in general

$$
\left\|\boldsymbol{u} \boldsymbol{v}^{T}\right\|_{F}=\left(\sum_{i, j=1}^{n} u_{i}^{2} v_{j}^{2}\right)^{\frac{1}{2}}=\left(\sum_{i=1}^{n} u_{i}^{2} \sum_{j=1}^{n} v_{j}^{2}\right)^{\frac{1}{2}}=\|\boldsymbol{u}\|\|\boldsymbol{v}\|
$$

- The update

$$
\boldsymbol{A}_{k+1}=\boldsymbol{A}_{k}+\frac{\left(\boldsymbol{y}_{k}-\boldsymbol{A}_{k} \boldsymbol{s}_{k}\right) \boldsymbol{s}_{k}^{T}}{\boldsymbol{s}_{k}^{T} \boldsymbol{s}_{k}}
$$

satisfy the secant condition: $A_{k+1} s_{k}=y_{k}$ and A_{k+1} is the nearest matrix in the Frobenius norm that satisfy the secant condition.

- Changing the norm we can have different results and in general you can loose uniqueness of the update.

Proof.

Let \boldsymbol{B}^{\prime} and $\boldsymbol{B}^{\prime \prime}$ two different minimum. Then $\frac{1}{2}\left(\boldsymbol{B}^{\prime}+\boldsymbol{B}^{\prime \prime}\right) \in \mathcal{B}$ moreover

$$
\left\|\boldsymbol{A}-\frac{1}{2}\left(\boldsymbol{B}^{\prime}+\boldsymbol{B}^{\prime \prime}\right)\right\|_{F} \leq \frac{1}{2}\left\|\boldsymbol{A}-\boldsymbol{B}^{\prime}\right\|_{F}+\frac{1}{2}\left\|\boldsymbol{A}-\boldsymbol{B}^{\prime \prime}\right\|_{F}
$$

If the inequality is strict we have a contradiction. From the Cauchy-Schwartz inequality we have an equality only when $\boldsymbol{A}-\boldsymbol{B}^{\prime}=\lambda\left(\boldsymbol{A}-\boldsymbol{B}^{\prime \prime}\right)$ so that

$$
\boldsymbol{B}^{\prime}-\lambda \boldsymbol{B}^{\prime \prime}=(1-\lambda) \boldsymbol{A}
$$

and

$$
\boldsymbol{B}^{\prime} \boldsymbol{s}-\lambda \boldsymbol{B}^{\prime \prime} \boldsymbol{s}=(1-\lambda) \boldsymbol{A} \boldsymbol{s} \quad \Rightarrow \quad(1-\lambda) \boldsymbol{y}=(1-\lambda) \boldsymbol{A} \boldsymbol{s}
$$

but this is true only when $\lambda=1$, i.e. $\boldsymbol{B}^{\prime}=\boldsymbol{B}^{\prime \prime}$.

Non-linear problems in n variable

Algorithm (The Broyden method)

$$
\begin{aligned}
& k \leftarrow 0 ; \boldsymbol{x}_{0} \text { and } \boldsymbol{A}_{0} \text { assigned; } \\
& \boldsymbol{f}_{0} \leftarrow \mathbf{F}\left(\boldsymbol{x}_{0}\right) \text {; } \\
& \text { while }\left\|\boldsymbol{f}_{k}\right\|>\in \text { do } \\
& \text { Solve for } \boldsymbol{s}_{k} \text { the linear system } \boldsymbol{A}_{k} \boldsymbol{s}_{k}+\boldsymbol{f}_{k}=\mathbf{0} \text {; } \\
& \boldsymbol{x}_{k+1} \leftarrow \boldsymbol{x}_{k}+\boldsymbol{s}_{k} ; \\
& \boldsymbol{f}_{k+1} \leftarrow \mathbf{F}\left(\boldsymbol{x}_{k+1}\right) ; \\
& \boldsymbol{y}_{k} \leftarrow \boldsymbol{f}_{k+1}-\boldsymbol{f}_{k} ; \\
& \quad \text { Update: } \boldsymbol{A}_{k+1} \leftarrow \boldsymbol{A}_{k}+\frac{\left(\boldsymbol{y}_{k}-\boldsymbol{A}_{k} \boldsymbol{s}_{k}\right) \boldsymbol{s}_{k}^{T}}{\boldsymbol{s}_{k}^{T} \boldsymbol{s}_{k}} ; \\
& \quad k \leftarrow k+1 \text {; } \\
& \text { end while }
\end{aligned}
$$

Notice that $\boldsymbol{y}_{k}-\boldsymbol{A}_{k} \boldsymbol{s}_{k}=\boldsymbol{f}_{k+1}-\boldsymbol{f}_{k}+\boldsymbol{f}_{k}$ so that the update can be written as $\boldsymbol{A}_{k+1} \leftarrow \boldsymbol{A}_{k}+\boldsymbol{f}_{k+1} \boldsymbol{s}_{k}^{T} / \boldsymbol{s}_{k}^{T} \boldsymbol{s}_{k}$ and \boldsymbol{y}_{k} can be eliminated.

```
Algorithm (The Broyden method (alternative version))
    \(k \leftarrow 0 ; \boldsymbol{x}\) and \(\boldsymbol{A}\) assigned;
    \(f \leftarrow \mathbf{F}(x)\);
    while \(\|\boldsymbol{f}\|>\epsilon\) do
        Solve for \(\boldsymbol{s}\) the linear system \(\boldsymbol{A} \boldsymbol{s}+\boldsymbol{f}=\mathbf{0}\);
        \(\boldsymbol{x} \leftarrow \boldsymbol{x}+\boldsymbol{s}\);
        \(f \leftarrow \mathbf{F}(x)\);
        Update: \(\boldsymbol{A} \leftarrow \boldsymbol{A}+\frac{\boldsymbol{f s} \boldsymbol{s}^{T}}{\boldsymbol{s}^{T} \boldsymbol{s}}\)
        \(k \leftarrow k+1\);
    end while
```


Theorem

Let $\mathbf{F}(\boldsymbol{x})=\boldsymbol{A x}-\boldsymbol{b}$ where $\boldsymbol{A} \in \mathbb{R}^{n \times n}$. Then the Broyden method converge in at most $2 n$ steps.

Theorem

Let $\mathbf{F}: \mathbb{R}^{n} \mapsto \mathbb{R}^{n}$ satisfy the standard regularity conditions with $\nabla \mathbf{F}\left(x_{\star}\right)$ nonsingular. Then there exists positive constants ϵ, δ such that if $\left\|x_{0}-x_{\star}\right\| \leq \epsilon$ and $\left\|A_{0}-\nabla \mathbf{F}\left(x_{\star}\right)\right\| \leq \delta$, then the sequence $\left\{\boldsymbol{x}_{k}\right\}$ generated by the Broyden method satisfy

$$
\left\|x_{k+2 n}-x_{\star}\right\| \leq C\left\|x_{k}-x_{\star}\right\|^{2}
$$

目 D.M.Gay

Some convergence properties of Broyden's method.
SIAM J. Numer. Anal., 16 623-630, 1979.

Theorem

Let $\mathbf{F}(x)$ satisfy the standard regularity conditions with $\nabla \mathbf{F}\left(x_{\star}\right)$ nonsingular. Then there exists positive constants ϵ, δ such that if $\left\|x_{0}-x_{\star}\right\| \leq \epsilon$ and $\left\|\boldsymbol{A}_{0}-\nabla \mathbf{F}\left(x_{\star}\right)\right\| \leq \delta$, then the sequence $\left\{\boldsymbol{x}_{k}\right\}$ generated by the Broyden method is well defined and converge q-superlinearly to x_{\star}, i.e.

$$
\lim _{k \rightarrow \infty} \frac{\left\|x_{k+1}-x_{k}\right\|}{\left\|x_{k}-x_{\star}\right\|}=0
$$

C. G. Broyden, J.E.Dennis, J.J.Moré

On the local and super-linear convergence of quasi-Newton methods.
J. Inst. Math. Appl, 6 222-236, 1973.
The Eroyden nethod

- Broyden method needs to solve a linear system for \boldsymbol{A}_{k} at each step
- This can be onerous in terms of CPU cost
- it is possible to update directly the inverse of \boldsymbol{A}_{k} i.e. it is possible to update $\boldsymbol{H}_{k}=\boldsymbol{A}_{k}^{-1}$.
- The update of \boldsymbol{A}_{k} solve the problem of efficiency but do not alleviate the memory occupation
- The matrix \boldsymbol{A}_{k} can be written as a product of simple matrix, this can save memory if the update are lesser respect to the system dimension.

Sherman-Morrison formula permit to explicit write the inverse of a matrix changed with a rank 1 perturbation

Proposition (Sherman-Morrison formula)

$$
\begin{gathered}
\left(\boldsymbol{A}+\boldsymbol{u} \boldsymbol{v}^{T}\right)^{-1}=\boldsymbol{A}^{-1}-\frac{1}{\alpha} \boldsymbol{A}^{-1} \boldsymbol{u} \boldsymbol{v}^{T} \boldsymbol{A}^{-1} \\
\text { where } \\
\alpha=1+\boldsymbol{v}^{T} \boldsymbol{A}^{-1} \boldsymbol{u}
\end{gathered}
$$

The Sherman-Morrison formula can be checked by a direct calculation.

- The update formula for \boldsymbol{H}_{k} :

$$
\begin{aligned}
\boldsymbol{H}_{k+1} & =\boldsymbol{H}_{k}-\frac{1}{\beta_{k}} \boldsymbol{H}_{k} \boldsymbol{f}_{k+1} \boldsymbol{s}_{k}^{T} \boldsymbol{H}_{k} \\
\beta_{k} & =\boldsymbol{s}_{k}^{T} \boldsymbol{s}_{k}+\boldsymbol{s}_{k}^{T} \boldsymbol{H}_{k} \boldsymbol{f}_{k+1}
\end{aligned}
$$

- Can be reorganized as follows
- Compute $\boldsymbol{z}_{k+1}=\boldsymbol{H}_{k} \boldsymbol{f}_{k+1}$;
(0) Compute $\beta_{k}=\boldsymbol{s}_{k}^{T} \boldsymbol{s}_{k}+\boldsymbol{s}_{k}^{T} \boldsymbol{z}_{k+1}$;
- Compute $\boldsymbol{H}_{k+1}=\left(\boldsymbol{I}-\beta_{k}^{-1} \boldsymbol{z}_{k+1} \boldsymbol{s}_{k}^{T}\right) \boldsymbol{H}_{k}$;
- From the Broyden update formula

$$
\boldsymbol{A}_{k+1}=\boldsymbol{A}_{k}+\frac{\boldsymbol{f}_{k+1} \boldsymbol{s}_{k}^{T}}{\boldsymbol{s}_{k}^{T} \boldsymbol{s}_{k}}
$$

- By using Sherman-Morrison formula

$$
\begin{aligned}
\boldsymbol{A}_{k+1}^{-1} & =\boldsymbol{A}_{k}^{-1}-\frac{1}{\beta_{k}} \boldsymbol{A}_{k}^{-1} \boldsymbol{f}_{k+1} \boldsymbol{s}_{k}^{T} \boldsymbol{A}_{k}^{-1} \\
\beta_{k} & =\boldsymbol{s}_{k}^{T} \boldsymbol{s}_{k}+\boldsymbol{s}_{k}^{T} \boldsymbol{A}_{k}^{-1} \boldsymbol{f}_{k+1}
\end{aligned}
$$

- By setting $\boldsymbol{H}_{k}=\boldsymbol{A}_{k}^{-1}$ we have the update formula for \boldsymbol{H}_{k} :

$$
\begin{aligned}
\boldsymbol{H}_{k+1} & =\boldsymbol{H}_{k}-\frac{1}{\beta_{k}} \boldsymbol{H}_{k} \boldsymbol{f}_{k+1} \boldsymbol{s}_{k}^{T} \boldsymbol{H}_{k} \\
\beta_{k} & =\boldsymbol{s}_{k}^{T} \boldsymbol{s}_{k}+\boldsymbol{s}_{k}^{T} \boldsymbol{H}_{k} \boldsymbol{f}_{k+1}
\end{aligned}
$$

```
Algorithm (The Broyden method (updating inverse))
```

 \(k \leftarrow 0 ; \boldsymbol{x}_{0}\) assigned;
 \(f_{0} \leftarrow \mathbf{F}\left(x_{0}\right)\);
 \(\boldsymbol{H}_{0} \leftarrow \boldsymbol{I}\) or better \(\boldsymbol{H}_{0} \leftarrow \nabla \mathbf{F}\left(x_{0}\right)^{-1}\);
 while \(\left\|f_{k}\right\|>\epsilon\) do
 - perform step
 \(\boldsymbol{s}_{k} \quad \leftarrow-\boldsymbol{H}_{k} \boldsymbol{f}_{k} ;\)
 \(\boldsymbol{x}_{k+1} \leftarrow \boldsymbol{x}_{k}+\boldsymbol{s}_{k}\);
 \(f_{k+1} \leftarrow \mathbf{F}\left(x_{k+1}\right)\);
 - update \(\boldsymbol{H}\)
 \(\boldsymbol{z}_{k+1} \leftarrow \boldsymbol{H}_{k} \boldsymbol{f}_{k+1} ;\)
 \(\beta_{k} \leftarrow \boldsymbol{s}_{k}^{T} \boldsymbol{s}_{k}+\boldsymbol{s}_{k}^{T} \boldsymbol{z}_{k+1}\);
 \(\boldsymbol{H}_{k+1} \leftarrow\left(\boldsymbol{I}-\beta_{k}^{-1} z_{k+1} \boldsymbol{s}_{k}^{T}\right) \boldsymbol{H}_{k} ;\)
 \(k \quad \leftarrow k+1\);
 end while
 - If n is very large then the storing of \boldsymbol{H}_{k} can be very expensive.
- Moreover when n is very large we hope to find a good solution with a number m of iteration with $m \lll n$
- So that instead of storing \boldsymbol{H}_{k} we can decide to store the vectors z_{k} and s_{k} plus the scalars β_{k}. With this vectors and scalars we can write

$$
\boldsymbol{H}_{k}=\left(\boldsymbol{I}-\beta_{k-1} \boldsymbol{z}_{k} \boldsymbol{s}_{k-1}^{T}\right) \cdots\left(\boldsymbol{I}-\beta_{1} \boldsymbol{z}_{2} s_{1}^{T}\right)\left(\boldsymbol{I}-\beta_{0} \boldsymbol{z}_{1} s_{0}^{T}\right) \boldsymbol{H}_{0}
$$

- Assuming $\boldsymbol{H}_{0}=\boldsymbol{I}$ or can be computed on the fly we must store only $2 n m+m$ real number instead of n^{2} saving a lot of memory.
- However we can do better. It is possible to eliminate z_{k} ad store only $n m+m$ real numbers.

$$
\begin{aligned}
\boldsymbol{d}_{k+1}=\boldsymbol{H}_{k+1} \boldsymbol{f}_{k+1} & =\left(\boldsymbol{I}+\frac{\boldsymbol{z}_{k+1} \boldsymbol{d}_{k}^{T}}{\boldsymbol{d}_{k}^{T} \boldsymbol{d}_{k}-\boldsymbol{d}_{k}^{T} \boldsymbol{z}_{k+1}}\right) \boldsymbol{H}_{k} \boldsymbol{f}_{k+1} \\
& =\left(\boldsymbol{I}+\frac{\boldsymbol{z}_{k+1} \boldsymbol{d}_{k}^{T}}{\boldsymbol{d}_{k}^{T} \boldsymbol{d}_{k}-\boldsymbol{d}_{k}^{T} \boldsymbol{z}_{k+1}}\right) \boldsymbol{z}_{k+1} \\
& =\boldsymbol{z}_{k+1}+\frac{\boldsymbol{z}_{k+1} \boldsymbol{d}_{k}^{T} \boldsymbol{z}_{k+1}}{\boldsymbol{d}_{k}^{T} \boldsymbol{d}_{k}-\boldsymbol{d}_{k}^{T} \boldsymbol{z}_{k+1}} \\
& =\frac{\boldsymbol{d}_{k}^{T} \boldsymbol{d}_{k}}{\boldsymbol{d}_{k}^{T} \boldsymbol{d}_{k}-\boldsymbol{d}_{k}^{T} \boldsymbol{z}_{k+1}} \boldsymbol{z}_{k+1}
\end{aligned}
$$

substituting in the update formula for \boldsymbol{H}_{k+1} we obtain

$$
\boldsymbol{H}_{k+1} \leftarrow\left(\boldsymbol{I}+\frac{\boldsymbol{d}_{k+1} \boldsymbol{d}_{k}^{T}}{\boldsymbol{d}_{k}^{T} \boldsymbol{d}_{k}}\right) \boldsymbol{H}_{k}
$$

(1) A step of the broyden iterative scheme can be rewritten as

$$
\begin{aligned}
\boldsymbol{d}_{k} & \leftarrow \boldsymbol{H}_{k} \boldsymbol{f}_{k} \\
\boldsymbol{x}_{k+1} & \leftarrow \boldsymbol{x}_{k}-\boldsymbol{d}_{k} \\
\boldsymbol{f}_{k+1} & \leftarrow \mathbf{F}\left(\boldsymbol{x}_{k+1}\right) \\
\boldsymbol{z}_{k+1} & \leftarrow \boldsymbol{H}_{k} \boldsymbol{f}_{k+1} \\
\boldsymbol{H}_{k+1} & \leftarrow\left(\boldsymbol{I}+\frac{\boldsymbol{z}_{k+1} \boldsymbol{d}_{k}^{T}}{\boldsymbol{d}_{k}^{T} \boldsymbol{d}_{k}-\boldsymbol{d}_{k}^{T} \boldsymbol{z}_{k+1}}\right) \boldsymbol{H}_{k}
\end{aligned}
$$

© you can notice that \boldsymbol{z}_{k} and \boldsymbol{d}_{k} are similar and contains a lot of common information.

- It is possible exploring the iteration to eliminate \boldsymbol{z}_{k} from the update formula of \boldsymbol{H}_{k} so that we can store the whole sequence without the vectors \boldsymbol{z}_{k}.

Non-linear problems in n variable

Substituting into the step of the broyden iterative scheme and assuming \boldsymbol{d}_{k} known

$$
\begin{aligned}
\boldsymbol{x}_{k+1} & \leftarrow \boldsymbol{x}_{k}-\boldsymbol{d}_{k} \\
\boldsymbol{f}_{k+1} & \leftarrow \mathbf{F}\left(\boldsymbol{x}_{k+1}\right) \\
\boldsymbol{z}_{k+1} & \leftarrow \boldsymbol{H}_{k} \boldsymbol{f}_{k+1} \\
\boldsymbol{d}_{k+1} & \leftarrow \frac{\boldsymbol{d}_{k}^{T} \boldsymbol{d}_{k}}{\boldsymbol{d}_{k}^{T} \boldsymbol{d}_{k}-\boldsymbol{d}_{k}^{T} \boldsymbol{z}_{k+1}} \boldsymbol{z}_{k+1} \\
\boldsymbol{H}_{k+1} & \leftarrow\left(\boldsymbol{I}+\frac{\boldsymbol{d}_{k+1} \boldsymbol{d}_{k}^{T}}{\boldsymbol{d}_{k}^{T} \boldsymbol{d}_{k}}\right) \boldsymbol{H}_{k}
\end{aligned}
$$

notice that $\boldsymbol{x}_{k+1}, \boldsymbol{f}_{k+1}$ and \boldsymbol{z}_{k+1} are not used in \boldsymbol{H}_{k+1} so that only \boldsymbol{d}_{k} and its length need to be stored.
(1) The Newton Raphson
(2) The Broyden method
(3) The dumped Broyden method

The dumpeef Eroyden method

Elimination of \boldsymbol{z}_{k}
Notice that

$$
\boldsymbol{H}_{k} \boldsymbol{y}_{k}=\boldsymbol{H}_{k} \boldsymbol{f}_{k+1}-\boldsymbol{H}_{k} \boldsymbol{f}_{k}=\boldsymbol{z}_{k+1}-\boldsymbol{d}_{k}, \quad \text { and } \quad \boldsymbol{s}_{k}=-\lambda_{k} \boldsymbol{d}_{k}
$$

and

$$
\begin{aligned}
\boldsymbol{H}_{k+1} & \leftarrow \boldsymbol{H}_{k}+\frac{\left(s_{k}-\boldsymbol{H}_{k} \boldsymbol{y}_{k}\right) \boldsymbol{s}_{k}^{T}}{\boldsymbol{s}_{k}^{T} \boldsymbol{H}_{k} \boldsymbol{y}_{k}} \boldsymbol{H}_{k} \\
& \leftarrow \boldsymbol{H}_{k}+\frac{\left(-\lambda_{k} \boldsymbol{d}_{k}-\boldsymbol{z}_{k+1}+\boldsymbol{d}_{k}\right)\left(-\lambda_{k} \boldsymbol{d}_{k}^{T}\right)}{-\lambda_{k} \boldsymbol{d}_{k}^{T}\left(\boldsymbol{z}_{k+1}-\boldsymbol{d}_{k}\right)} \boldsymbol{H}_{k} \\
& \leftarrow\left(\boldsymbol{I}+\frac{\left(-\lambda_{k} \boldsymbol{d}_{k}-\boldsymbol{z}_{k+1}+\boldsymbol{d}_{k}\right) \boldsymbol{d}_{k}^{T}}{\boldsymbol{d}_{k}^{T}\left(\boldsymbol{z}_{k+1}-\boldsymbol{d}_{k}\right)}\right) \boldsymbol{H}_{k} \\
& \leftarrow\left(\boldsymbol{I}+\frac{\left(\boldsymbol{z}_{k+1}+\left(\lambda_{k}-1\right) \boldsymbol{d}_{k}\right) \boldsymbol{d}_{k}^{T}}{\boldsymbol{d}_{k}^{T} \boldsymbol{d}_{k}-\boldsymbol{d}_{k}^{T} \boldsymbol{z}_{k+1}}\right) \boldsymbol{H}_{k}
\end{aligned}
$$

A step of the broyden iterative scheme can be rewritten as

$$
\begin{aligned}
\boldsymbol{d}_{k} & \leftarrow \boldsymbol{H}_{k} \boldsymbol{f}_{k} \\
\boldsymbol{x}_{k+1} & \leftarrow \boldsymbol{x}_{k}-\lambda_{k} \boldsymbol{d}_{k} \\
\boldsymbol{f}_{k+1} & \leftarrow \mathbf{F}\left(\boldsymbol{x}_{k+1}\right) \\
\boldsymbol{z}_{k+1} & \leftarrow \boldsymbol{H}_{k} \boldsymbol{f}_{k+1} \\
\boldsymbol{H}_{k+1} & \leftarrow\left(\boldsymbol{I}+\frac{\left(\boldsymbol{z}_{k+1}+\left(\lambda_{k}-1\right) \boldsymbol{d}_{k}\right) \boldsymbol{d}_{k}^{T}}{\boldsymbol{d}_{k}^{T} \boldsymbol{d}_{k}-\boldsymbol{d}_{k}^{T} \boldsymbol{z}_{k+1}}\right) \boldsymbol{H}_{k}
\end{aligned}
$$

$$
\begin{aligned}
\boldsymbol{d}_{k+1} & =\boldsymbol{H}_{k+1} \boldsymbol{f}_{k+1} \\
& =\left(\boldsymbol{I}+\frac{\left(\boldsymbol{z}_{k+1}+\left(\lambda_{k}-1\right) \boldsymbol{d}_{k}\right) \boldsymbol{d}_{k}^{T}}{\boldsymbol{d}_{k}^{T} \boldsymbol{d}_{k}-\boldsymbol{d}_{k}^{T} \boldsymbol{z}_{k+1}}\right) \boldsymbol{H}_{k} \boldsymbol{f}_{k+1} \\
& =\left(\boldsymbol{I}+\frac{\left(\boldsymbol{z}_{k+1}+\left(\lambda_{k}-1\right) \boldsymbol{d}_{k}\right) \boldsymbol{d}_{k}^{T}}{\boldsymbol{d}_{k}^{T} \boldsymbol{d}_{k}-\boldsymbol{d}_{k}^{T} \boldsymbol{z}_{k+1}}\right) \boldsymbol{z}_{k+1} \\
& =\boldsymbol{z}_{k+1}+\frac{\left(\boldsymbol{z}_{k+1}+\left(\lambda_{k}-1\right) \boldsymbol{d}_{k}\right) \boldsymbol{d}_{k}^{T} \boldsymbol{z}_{k+1}}{\boldsymbol{d}_{k}^{T} \boldsymbol{d}_{k}-\boldsymbol{d}_{k}^{T} \boldsymbol{z}_{k+1}} \\
& =\frac{\left(\boldsymbol{d}_{k}^{T} \boldsymbol{d}_{k}\right) \boldsymbol{z}_{k+1}+\left(\lambda_{k}-1\right)\left(\boldsymbol{d}_{k}^{T} \boldsymbol{z}_{k+1}\right) \boldsymbol{d}_{k}}{\boldsymbol{d}_{k}^{T} \boldsymbol{d}_{k}-\boldsymbol{d}_{k}^{T} \boldsymbol{z}_{k+1}}
\end{aligned}
$$

Solving for \boldsymbol{z}_{k+1}

$$
\boldsymbol{z}_{k+1}=\frac{\left(\boldsymbol{d}_{k}^{T} \boldsymbol{d}_{k}-\boldsymbol{d}_{k}^{T} \boldsymbol{z}_{k+1}\right) \boldsymbol{d}_{k+1}-\left(\lambda_{k}-1\right)\left(\boldsymbol{d}_{k}^{T} \boldsymbol{z}_{k+1}\right) \boldsymbol{d}_{k}}{\boldsymbol{d}_{k}^{T} \boldsymbol{d}_{k}}
$$

and substituting in \boldsymbol{H}_{k+1} we have

$$
\begin{aligned}
\boldsymbol{H}_{k+1} & \leftarrow\left(\boldsymbol{I}+\frac{\left(\boldsymbol{z}_{k+1}+\left(\lambda_{k}-1\right) \boldsymbol{d}_{k}\right) \boldsymbol{d}_{k}^{T}}{\boldsymbol{d}_{k}^{T} \boldsymbol{d}_{k}-\boldsymbol{d}_{k}^{T} \boldsymbol{z}_{k+1}}\right) \boldsymbol{H}_{k} \\
& \leftarrow\left(\boldsymbol{I}+\frac{\left(\boldsymbol{d}_{k+1}+\left(\lambda_{k}-1\right) \boldsymbol{d}_{k}\right) \boldsymbol{d}_{k}^{T}}{\boldsymbol{d}_{k}^{T} \boldsymbol{d}_{k}}\right) \boldsymbol{H}_{k}
\end{aligned}
$$

Elimination of \boldsymbol{z}_{k}

Substituting into the step of the broyden iterative scheme and assuming \boldsymbol{d}_{k} known

$$
\begin{aligned}
& \boldsymbol{x}_{k+1} \leftarrow \boldsymbol{x}_{k}-\lambda_{k} \boldsymbol{d}_{k} \\
& \boldsymbol{f}_{k+1} \leftarrow \mathbf{F}\left(\boldsymbol{x}_{k+1}\right) \\
& \boldsymbol{z}_{k+1} \leftarrow \boldsymbol{H}_{k} \boldsymbol{f}_{k+1} \\
& \boldsymbol{d}_{k+1} \leftarrow \frac{\left(\boldsymbol{d}_{k}^{T} \boldsymbol{d}_{k}\right) \boldsymbol{z}_{k+1}+\left(\lambda_{k}-1\right)\left(\boldsymbol{d}_{k}^{T} \boldsymbol{z}_{k+1}\right) \boldsymbol{d}_{k}}{\boldsymbol{d}_{k}^{T} \boldsymbol{d}_{k}-\boldsymbol{d}_{k}^{T} \boldsymbol{z}_{k+1}} \\
& \boldsymbol{H}_{k+1} \leftarrow\left(\boldsymbol{I}+\frac{\left(\boldsymbol{d}_{k+1}+\left(\lambda_{k}-1\right) \boldsymbol{d}_{k}\right) \boldsymbol{d}_{k}^{T}}{\boldsymbol{d}_{k}^{T} \boldsymbol{d}_{k}}\right) \boldsymbol{H}_{k}
\end{aligned}
$$

notice that $\boldsymbol{x}_{k+1}, \boldsymbol{f}_{k+1}$ and \boldsymbol{z}_{k+1} are not used in \boldsymbol{H}_{k+1} so that only \boldsymbol{d}_{k} and its length need to be stored.
$k \leftarrow 0 ; x$ assigned;
$\boldsymbol{f} \leftarrow \mathbf{F}(\boldsymbol{x}) ; \boldsymbol{H}_{0} \leftarrow \nabla \mathbf{F}(\boldsymbol{x})^{-1} ; \boldsymbol{d}_{0} \leftarrow \boldsymbol{H}_{0} \boldsymbol{f} ; \ell_{0} \leftarrow \boldsymbol{d}_{0}^{T} \boldsymbol{d}_{0} ;$
while $\left\|\boldsymbol{f}_{k}\right\|>\epsilon$ do
Approximate $\arg \min _{\lambda>0}\left\|\mathbf{F}\left(x-\lambda d_{k}\right)\right\|^{2}$ by line-search; - perform step
$\boldsymbol{x} \leftarrow \boldsymbol{x}-\lambda_{k} \boldsymbol{d}_{k} ; \boldsymbol{f} \leftarrow \mathbf{F}(\boldsymbol{x})$;

- evaluate $H_{k} f$
$z \leftarrow H_{0} f ;$
for $j=0,1, \ldots, k-1$ do
$\boldsymbol{z} \leftarrow \boldsymbol{z}+\left[\left(\boldsymbol{d}_{j}^{T} \boldsymbol{z}\right) / \ell_{j}\right]\left(\boldsymbol{d}_{j+1}+\left(\lambda_{j}-1\right) \boldsymbol{d}_{j}\right) ;$
end for
- update \boldsymbol{H}_{k+1}
$\boldsymbol{d}_{k+1} \leftarrow\left[\ell_{k} \boldsymbol{z}+\left(\lambda_{k}-1\right)\left(\boldsymbol{d}_{k}^{T} \boldsymbol{z}\right) \boldsymbol{d}_{k}\right] /\left(\ell_{k}-\boldsymbol{d}_{k}^{T} \boldsymbol{z}\right) ;$ $\ell_{k+1} \leftarrow \boldsymbol{d}_{k+1}^{T} \boldsymbol{d}_{k+1} ;$ $k \quad \leftarrow k+1$;
end while

图 J. Stoer and R. Bulirsch
Introduction to numerical analysis
Springer-Verlag, Texts in Applied Mathematics, 12, 2002.
图 J. E. Dennis, Jr. and Robert B. Schnabel
Numerical Methods for Unconstrained Optimization and Nonlinear Equations
SIAM, Classics in Applied Mathematics, 16, 1996.

