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The Trust Region method Introduction

Newton and quasi-Newton methods search a solution
iteratively by choosing at each step a search direction and
minimize in this direction.

An alternative approach is to to find a direction and a
step-length, then if the step is successful in some sense the
step is accepted. Otherwise another direction and step-length
is chosen.

The choice of the step-length and direction is algorithm
dependent but a successful approach is the one based on trust
region.
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The Trust Region method Introduction

Newton and quasi-Newton at each step (approximately) solve
the minimization problem

min m(xk + s) = f(xk) +∇f(xk)s +
1

2
sT Hks

in the case Hk is symmetric and positive definite (SPD).

If Hk is SPD the minimum is

s = −H−1
k gk, gk = ∇f(xk)

T

and s is the quasi-Newton step.

If Hk = ∇2f(xk) and is SPD, then s = −H−1
k gk is the

Newton step.
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The Trust Region method Introduction

If Hk is not positive definite, the search direction −H−1
k gk

may fail to be a descent direction and the previous
minimization problem can have no solution.

The problem is that the model m(xk + s) is an approximation
of f(x)

m(xk + s) ≈ f(xk + s)

and this approximation is valid only in a small neighbors of xk.

So that an alternative minimization problem is the following

min m(xk + s) = f(xk) +∇f(xk)s +
1

2
sT Hks,

Subject to ‖s‖ ≤ δk

δk is the trust region of the model m(x), i.e. the region where
we trust the model is valid.
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The Trust Region method The generic trust region algorithm

Algorithm (Generic trust region algorithm)

x assigned; δ assigned;
g ← ∇f(x)T ; H ← ∇2f(x)−1;
while ‖g‖ > ε do

s ← arg min‖s‖≤δ m(x + s) = f(x) + gT s + 1
2sT Hs;

pred ← m(x + s)−m(x);
ared ← f(x + s)− f(x);
if (ared/pred) < η1 then

x← x; δ ← δγ1; — reject step, reduce δ
else

x← x + s; — accept step, update H
if (ared/pred) > η2 then

δ ← max{δ, γ2 ‖s‖}; — enlarge δ
end if

end if
end while
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The Trust Region method A fundamental lemma

The previous algorithm is based on two keys ingredients:
1 The ratio r = (ared/pred) which is the ratio of the actual

reduction and the predicted reduction.
2 Enlarge or reduce the trust region δ.

If the ratio r is between 0 < η1 < r < η2 < 1 we have that
the model is quite appropriate; we accept the step and do not
modify the trust region.

If the ratio r is small r ≤ η1 we have that the model is not
appropriate; we do not accept the step and we must reduce
the trust region by a factor γ1 < 1

If the ratio r is large r ≥ η2 we have that the model is very
appropriate; we do accept the step and we enlarge the trust
region factor γ2 > 1

The algorithm is quite insensitive to the constant η1 and η2.
Typical values are η1 = 0.25, η2 = 0.75, γ1 = 0.5 and γ2 = 3.
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The Trust Region method A fundamental lemma

Lemma

Let f : Rn 7→ R be twice continuously differentiable, H ∈ Rn×n

symmetric and positive definite. Then the problem

min m(x + s) = f(x) +∇f(x)s +
1

2
sT Hs,

Subject to ‖s‖ ≤ δ

is solved by

s(µ)
.
= −(H + µI)−1g, g = ∇f(x)T

for the unique µ ≥ 0 such that ‖s(µ)‖ = δ, unless ‖s(0)‖ ≤ δ, in
which case s(0) is the solution. For any µ ≥ 0, s(µ) defines a
descent direction for f from x.

Trust Region Method 8 / 36



The Trust Region method A fundamental lemma

Proof. (1/2).

If ‖s(0)‖ ≤ δ then s(0) is the global minimum inside the trust
region. Otherwise consider the Lagrangian

L(s, µ) = a + gT s +
1

2
sT Hs +

1

2
µ(sT s− δ2),

where a = f(x) and g = ∇f(x)T . Then we have

∂L
∂s

(s, µ) = Hs + µs + g = 0 ⇒ s = −(H + µI)−1g

and sT s = δ2. Remember that if H is SPD then H + µI is SPD
for all µ ≥ 0. Moreover the inverse of an SPD matrix is SPD. From

gT s = −gT (H + µI)−1g < 0 for all µ ≥ 0

follows that s(µ) is a descent direction for all µ ≥ 0.
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The Trust Region method A fundamental lemma

Proof. (2/2).

To prove the uniqueness consider expand the gradient g with the
eigenvectors of H

g =
n∑

i=1

αiui

H is SPD so that ui can be chosen orthonormal. It follows

(H + µI)−1g = (H + µI)−1
n∑

i=1

αiui =
n∑

i=1

αi

λi + µ
ui

∥∥(H + µI)−1g
∥∥2

=
n∑

i=1

α2
i

(λi + µ)2

and
∥∥(H + µI)−1g

∥∥ is a monotonically decreasing function of
µ.
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The Trust Region method A fundamental lemma

Remark

As a consequence of the previous Lemma we have:

as the ray of the trust region becomes smaller as the scalar µ
becomes larger. This means that the search direction become
more and more oriented toward the gradient direction.

as the ray of the trust region becomes larger as the scalar µ
becomes smaller. This means that the search direction
become more and more oriented toward the Newton direction.

Thus a trust region technique not only change the size of the
step-length but also its direction. This results in a more robust
numerical technique. The price to pay is that the solution of the
minimization is more costly than the inexact line search.
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The Trust Region method Solving the constrained minimization problem

Solving the constrained minimization problem

As for the line-search problem we have many alternative for solving
the constrained minimization problem:

We can solve accurately the constrained minimization
problem. For example by an iterative method.

We can approximate the solution of the constrained
minimization problem.

as for the line search the accurate solution of the constrained
minimization problem is not paying while a good cheap
approximations is normally better performing.
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The exact solution of trust region step
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The exact solution of trust region step The Newton approach

The Newton approach (1/5)

Consider the Lagrangian

L(s, µ) = a + gT s +
1

2
sT Hs +

1

2
µ(sT s− δ2),

where a = f(x) and g = ∇f(x)T .

Then we can try to solve the nonlinear system

∂L
∂(s, µ)

(s, µ) =

(
Hs + µs + g
(sT s− δ2)/2

)
=

(
0
0

)
Using Newton method we have(

sk+1

µk+1

)
=

(
sk

µk

)
−

(
H + µI s

sT 0

)−1 (
Hsk + µksk + g
(sT

k sk − δ2)/2

)
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The exact solution of trust region step The Newton approach

The Newton approach (2/5)

A better approach is given by solving Φ(µ) = 0 where

Φ(µ) = ‖s(µ)‖ − δ, and s(µ) = −(H + µI)−1g

To build Newton method we need to evaluate

Φ(µ)′ =
s(µ)T s(µ)′

‖s(µ)‖
, s(µ)′ = (H + µI)−2g

where to evaluate s(µ)′ we differentiate the relation

Hs(µ) + µs(µ) = g ⇒ Hs(µ)′ + µs(µ)′ + s(µ) = 0

Putting all in a Newton step we obtain

µk+1 = µk −
‖s(µk)‖

s(µk)T s(µk)′
(‖s(µk)‖ − δ)
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The exact solution of trust region step The Newton approach

The Newton approach (3/5)

Newton step can be reorganized as follows

sk = −(H + µI)−1g

s′k = −(H + µI)−1sk

β =
√

sT
k sk

µk+1 = µk −
β(β − δ)

sT
k s′k

Thus Newton step require two linear system solution per step.
However the coefficient matrix is the same so that only one
LU factorization, thus the cost per step is essentially due to
the LU factorization.
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The exact solution of trust region step The Newton approach

The Newton approach (4/5)

Evaluating Φ(µ)′′ we have

Φ(µ)′′ =
‖s(µ)‖2 + s(µ)T s(µ)′′

‖s(µ)‖
+

(s(µ)T s(µ)′)2

‖s(µ)‖2

where

s(µ)′′ = 0

In fact, from

(H + µI)s(µ)′ = s(µ)

we have

Hs(µ)′′ + µs(µ)′′ + s(µ)′ = s(µ)′ ⇒ s(µ)′′ = 0.

Then for all µ ≥ 0 we have Φ′′(µ) > 0.
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The exact solution of trust region step The Newton approach

The Newton approach (5/5)

From Φ′′(µ) > 0 we have that Newton step underestimates µ
at each step.

Φ(µ)

µµ?

δ

‖s(µ)‖
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The exact solution of trust region step The Model approach

If we develop the vector g with the orthonormal bases given
by the eigenvectors of H we have

g =
n∑

i=1

αiui

Using this expression to evaluate s(µ) we have

s(µ) = −(H + µI)−1g =
n∑

i=1

αi

µ + λi
ui

‖s(µ)‖ =

( n∑
i=1

α2
i

(µ + λi)2

)1/2

This expression suggest to use as a model for Φ(µ) the
following expression

mk(µ) =
αk

βk + µ
− δ
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The exact solution of trust region step The Model approach

The model consists of two parameter αk and βk. To set this
parameter we can impose

mk(µk) =
αk

βk + µk
− δ = Φ(µk)

mk(µk)
′ = − αk

(βk + µk)2
= Φ(µk)

′

solving for αk and βk we have

αk = −(Φ(µk) + δ)2

Φ(µk)′
βk = −Φ(µk) + δ

Φ(µk)′
− µk

where

Φ(µk) = ‖s(µk)‖ − δ Φ(µk)
′ = −s(µk)

T (H + µkI)−1s(µk)

‖s(µk)‖2

Having αk and βk it is possible to solve mk(µ) = 0 obtaining

µk+1 =
αk

δ
− βk
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The exact solution of trust region step The Model approach

Substituting αk and βk the step become

µk+1 = µk −
Φ(µk)

Φ′(µk)
− Φ(µk)

2

Φ′(µk)δ
= µk −

Φ(µk)

Φ′(µk)

(
1 +

Φ(µk)

δ

)
Comparing with the Newton step

µk+1 = µk −
Φ(µk)

Φ′(µk)

we see that this method perform larger step by a factor
1 + Φ(µk)δ

−1.

Notice that 1 + Φ(µk)δ
−1 converge to 1 as µk → µ?. So that

this iteration become the Newton iteration as µk becomes
near the solution.
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The exact solution of trust region step The Model approach

Algorithm (Exact trust region algorithm)

µ, g, H assigned;
s← (H + µI)−1g;
while |‖s‖ − δ| > ε do

— compute the model
s′ ← (H + µI)−1s;
Φ ← ‖s‖ − δ;
Φ′ ← −(sT s′)/(sT s)
α← −(Φ + δ)2/Φ′;
β ← −(Φ + δ)/Φ′ − µ;
— update µ and s

µ← α

δ
− β;

s← (H + µI)−1g;
end while
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The dogleg trust region step
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The dogleg trust region step The DogLeg approach

The DogLeg approach (1/3)

The computation of the µ such that ‖s(µ)‖ = δ of the exact
trust region computation can be very expensive.

An alternative was proposed by Powell:

M.J.D. Powell
A hybrid method for nonlinear equations
in: Numerical Methods for Nonlinear Algebraic Equations
ed. Ph. Rabinowitz, Gordon and Breach, pages 87-114,
1970.

where instead of computing exactly the curve s(µ) a piecewise
linear approximation sdl(µ) is used in computation.

This approximation also permits to solve ‖sdl(µ)‖ = δ
explicitly.
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The dogleg trust region step The DogLeg approach

The DogLeg approach (2/3)

Form the definition of s(µ) = −(H + µI)−1g it follows

s(0) = −H−1g, lim
µ→∞

s(µ)′

‖s(µ)′‖
=

g

‖g‖

i.e. the curve start from the Newton step and reduce to zero
in the direction of the gradient step.

The direction −g is a descent direction, so that a first piece of
the piecewise approximation should be a straight line from x
to the minimum of mk(x− λg). The minimum λ? is found at

λ? =
‖g‖2

gT Hg

Having reached the minimum if the −g direction we can now
go to the point x + s(0) = x−Hg with another straight line.
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The dogleg trust region step The DogLeg approach

The DogLeg approach (3/3)

We denote by

sg = −g
‖g‖2

gT Hg
, sn = −H−1g

respectively the step due to the unconstrained minimization in
the gradient direction and in the Newton direction.

The piecewise linear curve connecting x + sn, x + sg and x is
the DogLeg curve1 xdl(µ) = x + sdl(µ) where

sdl(µ) =

{
µsg + (1− µ)sn for µ ∈ [0, 1]

(2− µ)sg for µ ∈ [1, 2]

1notice that s(µ) is parametrized in the interval [0,∞] while sdl(µ) is
parametrized in the interval [0, 2]
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The dogleg trust region step The DogLeg approach

Lemma

Consider the dogleg curve connecting x + sn, x + sg and x. The
curve can be expressed as xdl(µ) = x + sdl(µ) where

sdl(µ) =

{
µsg + (1− µ)sn for µ ∈ [0, 1]

(2− µ)sg for µ ∈ [1, 2]

for this curve if sg is not parallel to sn we have that the function

d(µ) = ‖xdl(µ)− x‖ = ‖sdl(µ)‖

is strictly monotone decreasing, moreover the direction s(µ) is a
descent direction for all µ ∈ [0, 2].
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The dogleg trust region step The DogLeg approach

Proof. (1/5).

In order to have a unique solution to the problem ‖sdl(µ)‖ = δ we
must have that ‖sdl(µ)‖ is a monotone decreasing function:

‖sdl(µ)‖2 =

{
µ2s2

g + (1− µ)2s2
n + 2µ(1− µ)sT

g sn µ ∈ [0, 1]

(2− µ)2s2
g µ ∈ [1, 2]

To check monotonicity we take first derivative

d

dµ
‖sdl(µ)‖2

=

{
2µs2

g − 2(1− µ)s2
n + (2− 4µ)sT

g sn µ ∈ [0, 1]

(2µ− 4)s2
g µ ∈ [1, 2]

=

{
2µ(s2

g + s2
n − 2sT

g sn)− 2s2
n + 2sT

g sn µ ∈ [0, 1]

(2µ− 4)s2
g µ ∈ [1, 2]
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The dogleg trust region step The DogLeg approach

Proof. (2/5).

Notice that (2µ− 4) < 0 for µ ∈ [1, 2] so that we need only to
check that

2µ(s2
g + s2

n − 2sT
g sn)− 2s2

n + 2sT
g sn < 0 for µ ∈ [0, 1]

Form the Cauchy-Schwartz inequality we have

s2
g + s2

n − 2sT
g sn ≥ s2

g + s2
n − 2 ‖sg‖ ‖sn‖

= (‖sg‖ − ‖sn‖)2 ≥ 0

Then it is enough to check the inequality for µ = 1

2(s2
g + s2

n − 2sT
g sn)− 2s2

n + 2sT
g sn = 2s2

g − 2sT
g sn

i.e. we must check s2
g − sT

g sn < 0.
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The dogleg trust region step The DogLeg approach

Proof. (3/5).

From the definition of sg and sn we have

s2
g − sT

g sn = λ2
? ‖g‖

2 − λ?g
T H−1g

= λ?

[
‖g‖2

gT Hg
‖g‖2 − gT H−1g

]
=

λ?

gT Hg

[
‖g‖4 − (gT Hg)(gT H−1g)

]
So that we must prove that

‖g‖4 < (gT Hg)(gT H−1g)
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The dogleg trust region step The DogLeg approach

Proof. (4/5).

Expanding g by a set of orthonormal eigenvectors of H we have
g =

∑n
i=1 αiui and the the previous inequality becomes

‖g‖4 =

( n∑
i=1

α2
i

)2

=

( n∑
i=1

(
αiλ

1/2
i

)(
αiλ

−1/2
i

))2

≤
( n∑

i=1

α2
i λi

)( n∑
i=1

α2
i λ
−1
i

)
=

(
gHg

)(
gH−1g

)
from the Cauchy–Schwartz inequality the previous inequality is
strict unless

αiλi = cαi, i = 1, 2, . . . , n

this means that λi = c that for all αi 6= 0. This imply
H−1g = c−1g, i,e, Newton step and gradient step are parallel.
But this is excluded in the lemma hypothesis.
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The dogleg trust region step The DogLeg approach

Proof. (5/5).

To prove that sdl(µ) is a descent direction it is enough top notice
that

for µ ∈ [0, 1] the direction sdl(µ) is a convex combination of
sg and sn.

for µ ∈ [1, 2) the direction sdl(µ) is parallel to sg.

so that it is enough to verify that sg and sn are descent direction.
For sg we have

sT
g g = −λ?g

T g < 0

For sn we have

sT
ng = −gT H−1g < 0
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The dogleg trust region step The DogLeg approach

Using the previous Lemma we can prove

Lemma

If ‖sdl(0)‖ ≥ δ then there is unique point µ ∈ [0, 2] such that
‖sdl(µ)‖ = δ.

Proof.

It is enough to notice that sdl(2) = 0 and that ‖sdl(µ)‖ is strictly
monotonically descendent.

The approximate solution of the constrained minimization can be
obtained by this simple algorithm

1 if δ ≤ ‖sg‖ we set sdl = −δsg/ ‖sg‖;
2 if δ ≤ ‖sn‖ we set sdl = αsg + (1− α)sn; where α is the root

in the interval [0, 1] of:

α2 ‖sg‖2 + (1− α)2 ‖sn‖2 + 2α(1− α)sT
g sn = δ2

3 if δ > ‖sn‖ we set sdl = sn;
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The dogleg trust region step The DogLeg approach

Solving

α2 ‖sg‖2 + (1− α)2 ‖sn‖2 + 2α(1− α)sT
g sn = δ2

we have that if ‖sg‖ ≤ δ ≤ ‖sn‖ the root in [0, 1] is given by:

∆ = ‖sg‖2 + ‖sn‖2 − 2sT
g sn = ‖sg − sn‖2

α =
‖sn‖2 − sT

g sn −
√

(sT
g sn)2 − ‖sg‖2 ‖sn‖2 + δ2∆

∆

to avoid cancellation the computation formula is the following

α =
1

∆

‖sn‖4 − 2sT
g sn ‖sn‖2 + ‖sg‖2 ‖sn‖2 − δ2∆

‖sn‖2 − sT
g sn +

√
(sT

g sn)2 − ‖sg‖2 ‖sn‖2 + δ2∆

=
‖sn‖2 − δ2

‖sn‖2 − sT
g sn +

√
(sT

g sn)2 − ‖sg‖2 ‖sn‖2 + δ2 ‖sg − sn‖2
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The dogleg trust region step The DogLeg approach

Algorithm (Computing DogLeg step)

dogleg(sg, sn, δ);
a ← ‖sg‖2;
b ← ‖sn‖2;
c ← ‖sg − sn‖2;
d ← (a + b− c)/2;

α ← b− δ2

b− d +
√

d2 − ab + δ2c
;

sdl← αsg + (1− α)sn;
return sdl;
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The dogleg trust region step The DogLeg approach
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