

The problem

Definition (Global minimum)

Given a function $\phi : [a, b] \mapsto \mathbb{R}$, a point $x^* \in [a, b]$ is a global minimum if

 $\phi(x^{\star}) \leq \phi(x), \qquad \forall x \in [a, b].$

Definition (Local minimum)

Given a function $\phi : [a, b] \mapsto \mathbb{R}$, a point $x^* \in [a, b]$ is a local minimum if there exist a $\delta > 0$ such that

 $\phi(x^{\star}) \leq \phi(x), \qquad \forall x \in [a, b] \cap (x^{\star} - \delta, x^{\star} + \delta).$

Finding a global minimum is generally not an easy task even in the 1D case. The algorithms presented in the following approximate local minima.

<ロト < 回 > < 国 > < 国 > < 国 >

One-Dimensional Minimization

Interval of Searching

- In many practical problem, φ(x) is defined in the interval (-∞,∞); if φ(x) is continuous and coercive (i.e. lim_{x→±∞} f(x) = +∞), then there exists a global minimum.
- A simple algorithm can determine an interval [a, b] which contains a local minimum. The method searches 3 consecutive points a, η, b such that φ(a) > φ(η) and φ(b) > φ(η) in this way the interval [a, b] certainly contains a local minima.
- In practice the method start from a point a and a step-length h > 0; if φ(a) > φ(a + h) then the step-length k > h is increased until we have φ(a + k) > φ(a + h).
- if $\phi(a) < \phi(a+h)$, then the step-length k > h is increased until we have $\phi(a+h-k) > \phi(a)$.
- This method is called forward-backward method.

Interval of Search

Algorithm (forward-backward method)

- Let us be given α and h > 0 and a multiplicative factor t > 1 (usually 2).
- If φ(α) > φ(α + h) goto forward step otherwise goto backward step
- **3** forward step: $a \leftarrow \alpha$; $\eta \leftarrow \alpha + h$;

 - 2 if $\phi(b) \ge \phi(\eta)$ then return [a, b];
 - **3** $a \leftarrow \eta; \quad \eta \leftarrow b;$
 - goto step 1;
- backward step: $\eta \leftarrow \alpha$; $b \leftarrow \alpha + h$;

 - 2 if $\phi(a) \ge \phi(\eta)$ then return [a, b];

 - goto step 1;

One-Dimensional Minimization

Unimodal function

Definition (Unimodal function)

A function $\phi(x)$ is unimodal in [a, b] if there exists an $x^* \in (a, b)$ such that $\phi(x)$ is strictly decreasing on $[a, x^*)$ and strictly increasing on $(x^*, b]$.

Another equivalent definition is the following one

Definition (Unimodal function)

A function $\phi(x)$ is unimodal in [a, b] if there exists an $x^* \in (a, b)$ such that for all $a < \alpha < \beta < b$ we have:

- if $\beta < x^*$ then $\phi(\alpha) > \phi(\beta)$;
- if $\alpha > x^*$ then $\phi(\alpha) < \phi(\beta)$;

《曰》《卽》《臣》《臣》

Unimodal function

Golden search and Fibonacci search are based on the following theorem

Theorem (Unimodal function)

Let $\phi(x)$ unimodal in [a, b] and let be $a < \alpha < \beta < b$. Then

- if $\phi(\alpha) \leq \phi(\beta)$ then $\phi(x)$ is unimodal in $[a, \beta]$
- 2 if $\phi(\alpha) \ge \phi(\beta)$ then $\phi(x)$ is unimodal in $[\alpha, b]$

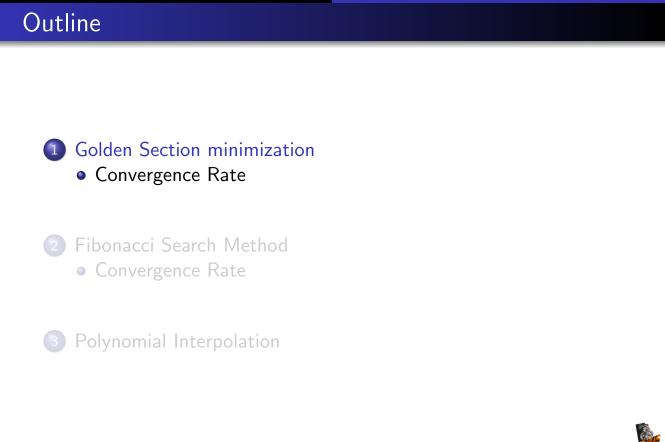
Proof.

- From definition φ(x) is strictly decreasing over [a, x*), since φ(α) ≤ φ(β) then x* ∈ (a, β).
- **2** From definition $\phi(x)$ is strictly increasing over $(x^*, b]$, since $\phi(\alpha) \ge \phi(\beta)$ then $x^* \in (\alpha, b)$.

In both cases the function is unimodal in the respective intervals.

One-Dimensional Minimization

Golden Section minimization



▲□▶ ▲圖▶ ▲厘▶ ▲厘▶

Let $\phi(x)$ an unimodal function on [a, b], the golden section scheme produce a series of intervals $[a_k, b_k]$ where

• $[a_0, b_0] = [a, b];$

•
$$[a_{k+1}, b_{k+1}] \subset [a_k, b_k];$$

• $\lim_{k \to \infty} b_k = \lim_{k \to \infty} a_k = x^*$;

Algorithm (Generic Search Algorithm)

1 Let $a_0 = a$, $b_0 = b$

- 2 for k = 0, 1, 2, ...
 - choose $a_k < \lambda_k < \mu_k < b_k$;
 - if $\phi(\lambda_k) \le \phi(\mu_k)$ then $a_{k+1} = a_k$ and $b_{k+1} = \mu_k$; • if $\phi(\lambda_k) > \phi(\mu_k)$ then $a_{k+1} = \lambda_k$ and $b_{k+1} = b_k$;
- **One-Dimensional Minimization**

Golden Section minimization

Golden Section minimization

• When an algorithm for choosing the observations λ_k and μ_k is defined, the generic search algorithm is determined.

◆□ ▶ ◆酉 ▶ ◆ 厘 ▶ ◆ 厘 ▶

《曰》《曰》《曰》《曰》

- Apparently the previous algorithm needs the evaluation of $\phi(\lambda_k)$ and $\phi(\mu_k)$ at each iteration.
- In the golden section algorithm, a fixed reduction of the interval τ is used, i.e:

$$b_{k+1} - a_{k+1} = \tau(b_k - a_k)$$

• Due to symmetry the observations are determined as follows

$$\lambda_k = b_k - \tau(b_k - a_k)$$
 $\mu_k = a_k + \tau(b_k - a_k)$

• By a carefully choice of τ , golden search algorithm permits to evaluate only one observation per step.

Golden Section minimization

Consider case 1 in the generic search: then,

$$\lambda_k = b_k - au(b_k - a_k), \qquad \mu_k = a_k + au(b_k - a_k)$$

and

$$a_{k+1} = a_k, \qquad b_{k+1} = \mu_k = a_k + \tau(b_k - a_k)$$

Now, evaluate

$$\lambda_{k+1} = b_{k+1} - \tau(b_{k+1} - a_{k+1}) = a_k + (\tau - \tau^2)(b_k - a_k)$$
$$\mu_{k+1} = a_{k+1} + \tau(b_{k+1} - a_{k+1}) = a_k + \tau^2(b_k - a_k)$$

The only value that can be reused is λ_k so that we try $\lambda_{k+1} = \lambda_k$ and $\mu_{k+1} = \lambda_k$.

One-Dimensional Minimization

Golden Section minimization

Golden Section minimization

• If $\lambda_{k+1} = \lambda_k$, then

$$b_k - \tau (b_k - a_k) = a_k + (\tau - \tau^2)(b_k - a_k)$$

▲□▶ ▲□▶ ▲ □▶ ▲ □▶

▲□▶ ▲圖▶ ▲厘▶ ▲厘▶

and $1 - \tau = \tau - \tau^2 \implies \tau = 1$. In this case there is no reduction so that λ_{k+1} must be computed.

• If $\mu_{k+1} = \lambda_k$, then

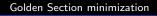
$$b_k - \tau(b_k - a_k) = a_k + \tau^2(b_k - a_k)$$

and

$$1 - \tau = \tau^2 \qquad \Rightarrow \qquad \tau^{\pm} = \frac{-1 \pm \sqrt{5}}{2}$$

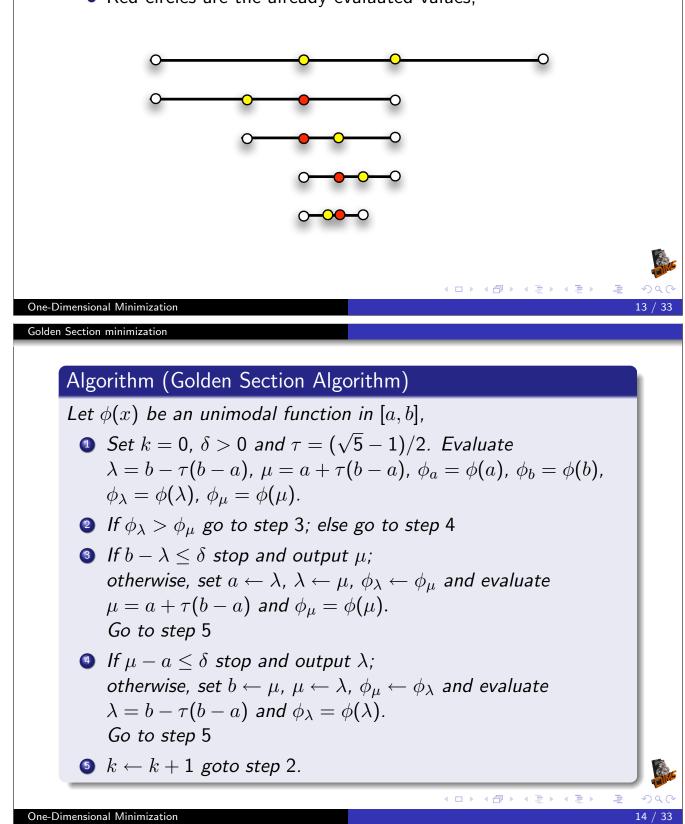
By choosing the positive root, we have $\tau = (\sqrt{5} - 1)/2 \approx 0.618$. In this case, μ_{k+1} does not need to be computed.

One-Dimensional Minimization



Graphical structure of the Golden Section algorithm.

- White circles are the extrema of the successive
- Yellow circles are the newly evaluated values;
- Red circles are the already evaluated values;



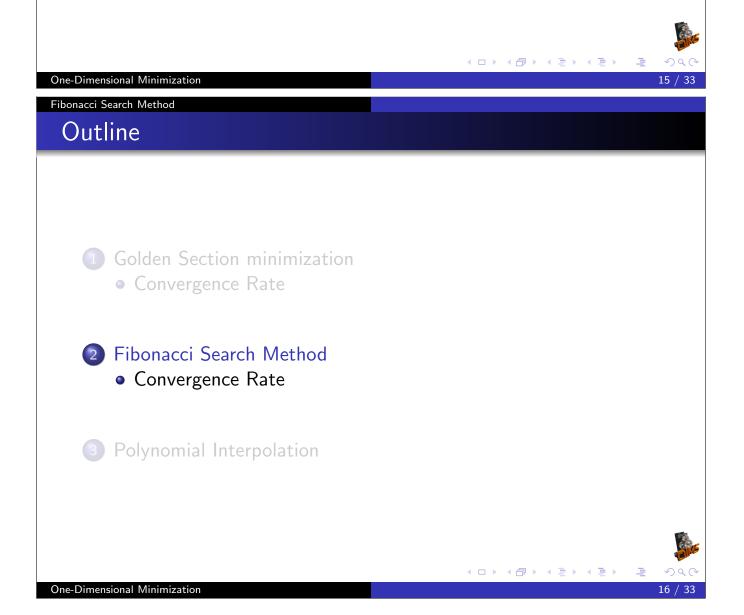
Golden Section convergence rate

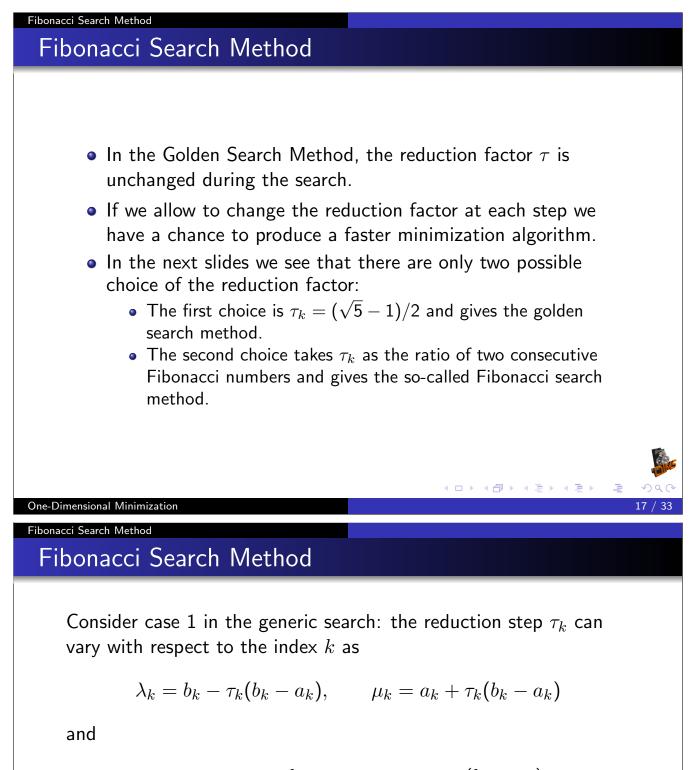
- At each iteration the interval length containing the minimum of φ(x) is reduced by τ so that b_k a_k = τ^k(b₀ a₀).
- Due to the fact that $x^* \in [a_k, b_k]$ for all k then we have:

$$(b_k - x^{\star}) \le (b_k - a_k) \le \tau^k (b_0 - a_0)$$

 $(x^{\star} - a_k) \le (b_k - a_k) \le \tau^k (b_0 - a_0)$

• This means that $\{a_k\}$ and $\{b_k\}$ are *r*-linearly convergent sequence with coefficient $\tau \approx 0.618$.





$$a_{k+1} = a_k, \qquad b_{k+1} = \mu_k = a_k + \tau_k (b_k - a_k)$$

Now, evaluate

$$\lambda_{k+1} = b_{k+1} - \tau_{k+1}(b_{k+1} - a_{k+1}) = a_k + (\tau_k - \tau_k \tau_{k+1})(b_k - a_k)$$
$$\mu_{k+1} = a_{k+1} + \tau_{k+1}(b_{k+1} - a_{k+1}) = a_k + \tau_k \tau_{k+1}(b_k - a_k)$$

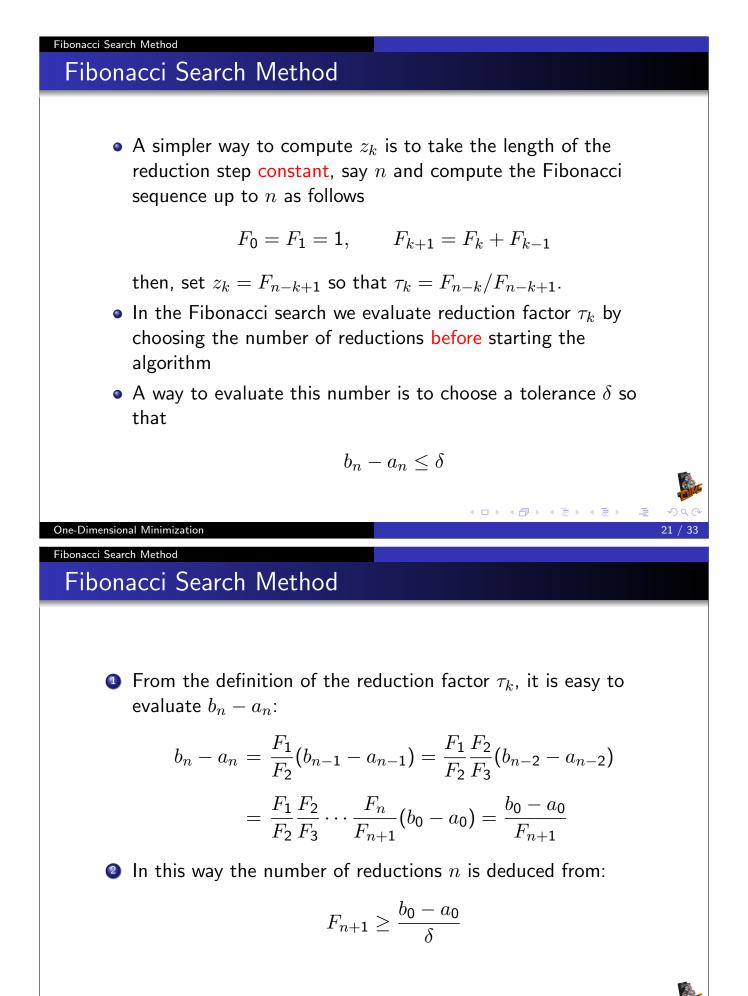
The only value that can be reused is λ_k , so that we try $\lambda_{k+1} = \lambda_k$ and $\mu_{k+1} = \lambda_k$.

<ロト < 四ト < 臣ト < 臣ト

Fibonacci Search Method

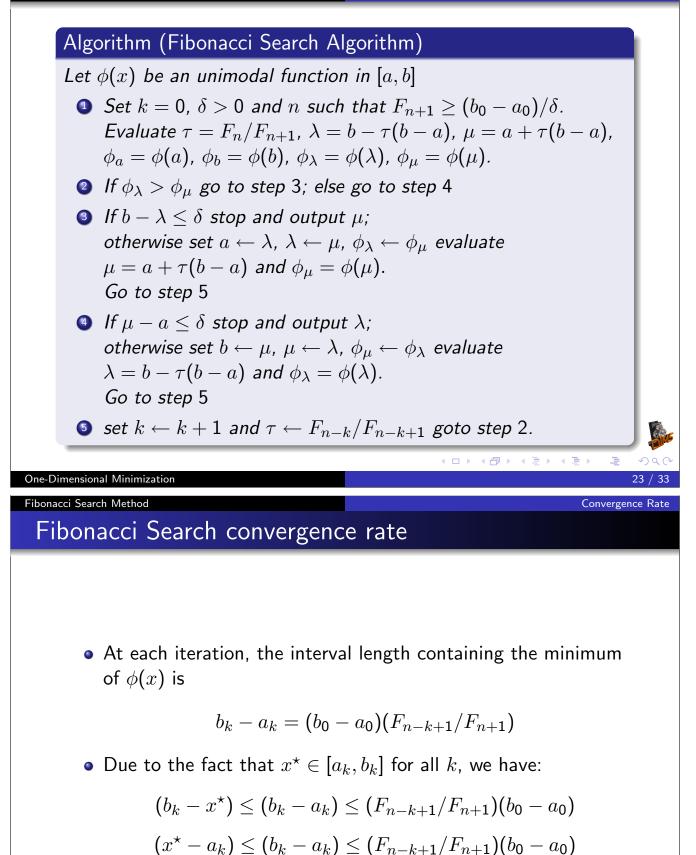
• If $\lambda_{k+1} = \lambda_k$, then $b_k - \tau_k (b_k - a_k) = a_k + (\tau_k - \tau_k \tau_{k+1})(b_k - a_k)$ and $1 - \tau_k = \tau_k - \tau_k \tau_{k+1}$. By searching a solution of the form $\tau_k = z_{k+1}/z_k$, we have the recurrence relation: $z_k - 2z_{k+1} + z_{k+2} = 0$ which has a generic solution of the form $z_k = c_1 + c_2(k+1)$ In general, we have $\lim_{k\to\infty} \tau_k = 1$, so that reduction is asymptomatically worse than golden section. <ロト < 回 > < 回 > < 回 > < 回 > **One-Dimensional Minimization** 19 ′ 33 Fibonacci Search Method Fibonacci Search Method • If $\mu_{k+1} = \lambda_k$, then $b_k - \tau_k (b_k - a_k) = a_k + \tau_k \tau_{k+1} (b_k - a_k)$ and $1 - \tau_k = \tau_k \tau_{k+1}$. By searching a solution of the form $\tau_k = z_{k+1}/z_k$, we have the recurrence relation: $z_k = z_{k+1} + z_{k+2}$ which is a reverse Fibonacci succession. The computation of z_k involves complex number.

▲□▶ ▲□▶ ▲□▶ ▲□▶



22 / 33

◆□▶ ◆□▶ ◆豆▶ ◆豆♪



▲□▶ ▲圖▶ ▲圖▶ ▲圖

Convergence Rate

Fibonacci Search Method

Fibonacci Search convergence rate

• To estimate convergence rate we need the expression of F_k

$$F_{k} = \frac{1}{\sqrt{5}} \left\{ \left(\frac{1 + \sqrt{5}}{2} \right)^{k+1} - \left(\frac{1 - \sqrt{5}}{2} \right)^{k+1} \right\}$$

• and for large k

$$F_k \approx \frac{1}{\sqrt{5}} \left(\frac{1 + \sqrt{5}}{2} \right)^{k+1}$$

• in this way we can approximate

$$\frac{F_{n-k+1}}{F_{n+1}} \approx \left(\frac{1+\sqrt{5}}{2}\right)^{-k} = \left(\frac{\sqrt{5}-1}{2}\right)^k$$

< □ >

<ロト < 回 > < 国 > < 国 > < 国 >

< E

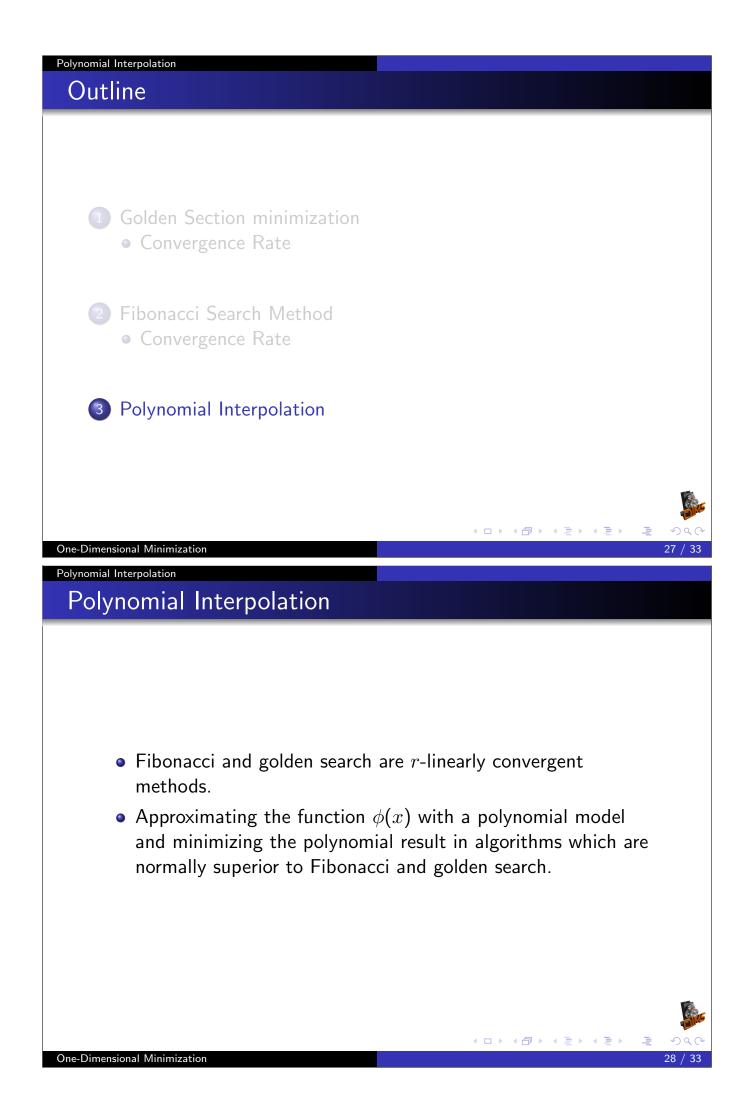
Convergence Rate

One-Dimensional Minimization

Fibonacci Search Method

Fibonacci Search convergence rate

- This means that $\{a_k\}$ and $\{b_k\}$ are *r*-linearly convergent sequences with coefficient $\tau \approx 0.618$.
- So, golden search and Fibonacci search perform similarly for large *n*. Golden search is easier, for this reason, normally Golden search is preferre to Fibonacci search.



Polynomial Interpolation

Polynomial Interpolation

- Suppose that an initial guess x₀ is known, and the interval [0, x₀] contains a minimum.
- We can form the quadratic approximation p(x) to $\phi(x)$ by interpolating $\phi(0)$, $\phi(x_0)$ and $\phi'(0)$.

$$q(x) = \frac{\phi(x_0) - \phi(0) - x_0 \phi'(0)}{x_0^2} x^2 + \phi'(0)x + \phi(0).$$

The new trial minimum is defined as the minimum of the polynomial approximation q(x), an takes the value:

$$x_1 = -\frac{\phi'(0)x_0^2}{2[\phi(x_0) - \phi(0) - \phi'(0)x_0]}$$

<ロト < 回 > < 回 > < 回 > < 回 >

<ロト < 回 > < 国 > < 国 > < 国 >

One-Dimensional Minimization

Polynomial Interpolation

Polynomial Interpolation

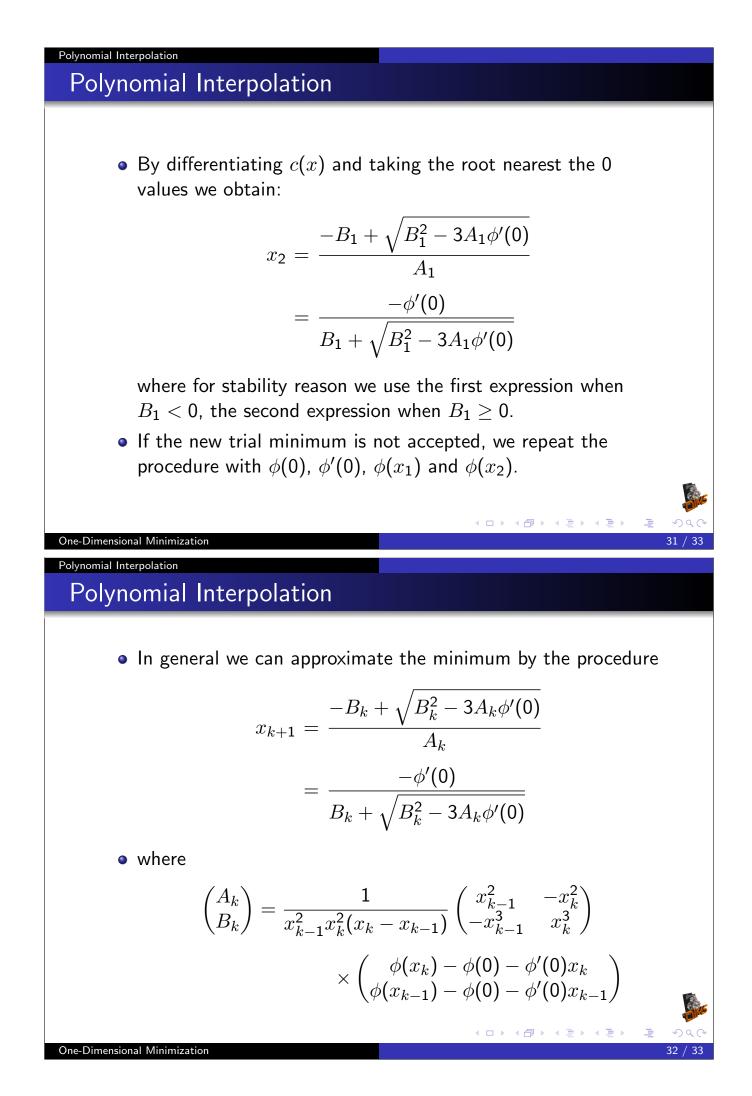
• If $\phi'(x_1)$ is small enough (we are near a stationary point) we can stop the iteration, otherwise we can construct a cubic polynomial that interpolates $\phi(0)$, $\phi'(0)$, $\phi(x_0)$ and $\phi(x_1)$.

$$c(x) = A_1 x^3 + B_1 x^2 + \phi'(0) x + \phi(0).$$

where

$$\begin{pmatrix} A_1 \\ B_1 \end{pmatrix} = \frac{1}{x_0^2 x_1^2 (x_1 - x_0)} \begin{pmatrix} x_0^2 & -x_1^2 \\ -x_0^3 & x_1^3 \end{pmatrix} \begin{pmatrix} \phi(x_1) - \phi(0) - \phi'(0) x_1 \\ \phi(x_0) - \phi(0) - \phi'(0) x_0 \end{pmatrix}$$

The new trial minimum is defined as the minimum of the polynomial approximation c(x).



References	
References	
J. Stoer and R. Bulirsch Introduction to numerical analysis Springer-Verlag, Texts in Applied Mathematics, 12 , 2002.	
J. E. Dennis, Jr. and Robert B. Schnabel Numerical Methods for Unconstrained Optimization and Nonlinear Equations SIAM, Classics in Applied Mathematics, 16 , 1996.	
✓ □ ▷ < ⓓ ▷ < ≧ ▷ < ≧ ▷ < One-Dimensional Minimization	= ♥) Q (♥ 33 / 33