
One-Dimensional Minimization
Lectures for PHD course on

Non-linear equations and numerical optimization

Enrico Bertolazzi

DIMS – Università di Trento

March 2005

One-Dimensional Minimization 1 / 33

Outline

1 Golden Section minimization
Convergence Rate

2 Fibonacci Search Method
Convergence Rate

3 Polynomial Interpolation

One-Dimensional Minimization 2 / 33

The problem

Definition (Global minimum)

Given a function φ : [a, b] 7→ R, a point x? ∈ [a, b] is a global
minimum if

φ(x?) ≤ φ(x), ∀x ∈ [a, b].

Definition (Local minimum)

Given a function φ : [a, b] 7→ R, a point x? ∈ [a, b] is a local
minimum if there exist a δ > 0 such that

φ(x?) ≤ φ(x), ∀x ∈ [a, b] ∩ (x? − δ, x? + δ).

Finding a global minimum is generally not an easy task even in the
1D case. The algorithms presented in the following approximate
local minima.

One-Dimensional Minimization 3 / 33

Interval of Searching

In many practical problem, φ(x) is defined in the interval
(−∞,∞); if φ(x) is continuous and coercive (i.e.
limx 7→±∞ f(x) = +∞), then there exists a global minimum.

A simple algorithm can determine an interval [a, b] which
contains a local minimum. The method searches 3 consecutive
points a, η, b such that φ(a) > φ(η) and φ(b) > φ(η) in this
way the interval [a, b] certainly contains a local minima.

In practice the method start from a point a and a step-length
h > 0; if φ(a) > φ(a + h) then the step-length k > h is
increased until we have φ(a + k) > φ(a + h).

if φ(a) < φ(a + h), then the step-length k > h is increased
until we have φ(a + h− k) > φ(a).

This method is called forward-backward method.

One-Dimensional Minimization 4 / 33



Interval of Search

Algorithm (forward-backward method)

1 Let us be given α and h > 0 and a multiplicative factor t > 1
(usually 2).

2 If φ(α) > φ(α + h) goto forward step
otherwise goto backward step

3 forward step: a← α; η ← α + h;
1 h← h t; b← a + h;
2 if φ(b) ≥ φ(η) then return [a, b];
3 a← η; η ← b;
4 goto step 1;

4 backward step: η ← α; b← α + h;
1 h← h t; a← b− h;
2 if φ(a) ≥ φ(η) then return [a, b];
3 b← η; η ← a;
4 goto step 1;

One-Dimensional Minimization 5 / 33

Unimodal function

Definition (Unimodal function)

A function φ(x) is unimodal in [a, b] if there exists an x? ∈ (a, b)
such that φ(x) is strictly decreasing on [a, x?) and strictly
increasing on (x?, b].

Another equivalent definition is the following one

Definition (Unimodal function)

A function φ(x) is unimodal in [a, b] if there exists an x? ∈ (a, b)
such that for all a < α < β < b we have:

if β < x? then φ(α) > φ(β);

if α > x? then φ(α) < φ(β);

One-Dimensional Minimization 6 / 33

Unimodal function

Golden search and Fibonacci search are based on the following
theorem

Theorem (Unimodal function)

Let φ(x) unimodal in [a, b] and let be a < α < β < b. Then

1 if φ(α) ≤ φ(β) then φ(x) is unimodal in [a, β]

2 if φ(α) ≥ φ(β) then φ(x) is unimodal in [α, b]

Proof.
1 From definition φ(x) is strictly decreasing over [a, x?), since

φ(α) ≤ φ(β) then x? ∈ (a, β).

2 From definition φ(x) is strictly increasing over (x?, b], since
φ(α) ≥ φ(β) then x? ∈ (α, b).

In both cases the function is unimodal in the respective
intervals.

One-Dimensional Minimization 7 / 33

Golden Section minimization

Outline

1 Golden Section minimization
Convergence Rate

2 Fibonacci Search Method
Convergence Rate

3 Polynomial Interpolation

One-Dimensional Minimization 8 / 33



Golden Section minimization

Golden Section minimization

Let φ(x) an unimodal function on [a, b], the golden section scheme
produce a series of intervals [ak, bk] where

[a0, b0] = [a, b];

[ak+1, bk+1] ⊂ [ak, bk];

limk 7→∞ bk = limk 7→∞ ak = x?;

Algorithm (Generic Search Algorithm)

1 Let a0 = a, b0 = b

2 for k = 0, 1, 2, . . .
choose ak < λk < µk < bk;

1 if φ(λk) ≤ φ(µk) then ak+1 = ak and bk+1 = µk;
2 if φ(λk) > φ(µk) then ak+1 = λk and bk+1 = bk;

One-Dimensional Minimization 9 / 33

Golden Section minimization

Golden Section minimization

When an algorithm for choosing the observations λk and µk is
defined, the generic search algorithm is determined.

Apparently the previous algorithm needs the evaluation of
φ(λk) and φ(µk) at each iteration.

In the golden section algorithm, a fixed reduction of the
interval τ is used, i.e:

bk+1 − ak+1 = τ(bk − ak)

Due to symmetry the observations are determined as follows

λk = bk − τ(bk − ak)

µk = ak + τ(bk − ak)

By a carefully choice of τ , golden search algorithm permits to
evaluate only one observation per step.

One-Dimensional Minimization 10 / 33

Golden Section minimization

Golden Section minimization

Consider case 1 in the generic search: then,

λk = bk − τ(bk − ak), µk = ak + τ(bk − ak)

and

ak+1 = ak, bk+1 = µk = ak + τ(bk − ak)

Now, evaluate

λk+1 = bk+1 − τ(bk+1 − ak+1) = ak + (τ − τ2)(bk − ak)

µk+1 = ak+1 + τ(bk+1 − ak+1) = ak + τ2(bk − ak)

The only value that can be reused is λk so that we try λk+1 = λk

and µk+1 = λk.

One-Dimensional Minimization 11 / 33

Golden Section minimization

Golden Section minimization

If λk+1 = λk, then

bk − τ(bk − ak) = ak + (τ − τ2)(bk − ak)

and 1− τ = τ − τ2 ⇒ τ = 1. In this case there is no
reduction so that λk+1 must be computed.

If µk+1 = λk, then

bk − τ(bk − ak) = ak + τ2(bk − ak)

and

1− τ = τ2 ⇒ τ± =
−1±

√
5

2

By choosing the positive root, we have
τ = (

√
5− 1)/2 ≈ 0.618. In this case, µk+1 does not need to

be computed.

One-Dimensional Minimization 12 / 33



Golden Section minimization

Golden Section minimization

Graphical structure of the Golden Section algorithm.

White circles are the extrema of the successive

Yellow circles are the newly evaluated values;

Red circles are the already evaluated values;

One-Dimensional Minimization 13 / 33

Golden Section minimization

Algorithm (Golden Section Algorithm)

Let φ(x) be an unimodal function in [a, b],

1 Set k = 0, δ > 0 and τ = (
√

5− 1)/2. Evaluate
λ = b− τ(b− a), µ = a + τ(b− a), φa = φ(a), φb = φ(b),
φλ = φ(λ), φµ = φ(µ).

2 If φλ > φµ go to step 3; else go to step 4

3 If b− λ ≤ δ stop and output µ;
otherwise, set a← λ, λ← µ, φλ ← φµ and evaluate
µ = a + τ(b− a) and φµ = φ(µ).
Go to step 5

4 If µ− a ≤ δ stop and output λ;
otherwise, set b← µ, µ← λ, φµ ← φλ and evaluate
λ = b− τ(b− a) and φλ = φ(λ).
Go to step 5

5 k ← k + 1 goto step 2.

One-Dimensional Minimization 14 / 33

Golden Section minimization Convergence Rate

Golden Section convergence rate

At each iteration the interval length containing the minimum
of φ(x) is reduced by τ so that bk − ak = τk(b0 − a0).

Due to the fact that x? ∈ [ak, bk] for all k then we have:

(bk − x?) ≤ (bk − ak) ≤ τk(b0 − a0)

(x? − ak) ≤ (bk − ak) ≤ τk(b0 − a0)

This means that {ak} and {bk} are r-linearly convergent
sequence with coefficient τ ≈ 0.618.

One-Dimensional Minimization 15 / 33

Fibonacci Search Method

Outline

1 Golden Section minimization
Convergence Rate

2 Fibonacci Search Method
Convergence Rate

3 Polynomial Interpolation

One-Dimensional Minimization 16 / 33



Fibonacci Search Method

Fibonacci Search Method

In the Golden Search Method, the reduction factor τ is
unchanged during the search.

If we allow to change the reduction factor at each step we
have a chance to produce a faster minimization algorithm.

In the next slides we see that there are only two possible
choice of the reduction factor:

The first choice is τk = (
√

5− 1)/2 and gives the golden
search method.
The second choice takes τk as the ratio of two consecutive
Fibonacci numbers and gives the so-called Fibonacci search
method.

One-Dimensional Minimization 17 / 33

Fibonacci Search Method

Fibonacci Search Method

Consider case 1 in the generic search: the reduction step τk can
vary with respect to the index k as

λk = bk − τk(bk − ak), µk = ak + τk(bk − ak)

and

ak+1 = ak, bk+1 = µk = ak + τk(bk − ak)

Now, evaluate

λk+1 = bk+1 − τk+1(bk+1 − ak+1) = ak + (τk − τkτk+1)(bk − ak)

µk+1 = ak+1 + τk+1(bk+1 − ak+1) = ak + τkτk+1(bk − ak)

The only value that can be reused is λk, so that we try λk+1 = λk

and µk+1 = λk.

One-Dimensional Minimization 18 / 33

Fibonacci Search Method

Fibonacci Search Method

If λk+1 = λk, then

bk − τk(bk − ak) = ak + (τk − τkτk+1)(bk − ak)

and 1− τk = τk − τkτk+1. By searching a solution of the form
τk = zk+1/zk, we have the recurrence relation:

zk − 2zk+1 + zk+2 = 0

which has a generic solution of the form

zk = c1 + c2(k + 1)

In general, we have limk 7→∞ τk = 1, so that reduction is
asymptomatically worse than golden section.

One-Dimensional Minimization 19 / 33

Fibonacci Search Method

Fibonacci Search Method

If µk+1 = λk, then

bk − τk(bk − ak) = ak + τkτk+1(bk − ak)

and 1− τk = τkτk+1. By searching a solution of the form
τk = zk+1/zk, we have the recurrence relation:

zk = zk+1 + zk+2

which is a reverse Fibonacci succession. The computation of
zk involves complex number.

One-Dimensional Minimization 20 / 33



Fibonacci Search Method

Fibonacci Search Method

A simpler way to compute zk is to take the length of the
reduction step constant, say n and compute the Fibonacci
sequence up to n as follows

F0 = F1 = 1, Fk+1 = Fk + Fk−1

then, set zk = Fn−k+1 so that τk = Fn−k/Fn−k+1.

In the Fibonacci search we evaluate reduction factor τk by
choosing the number of reductions before starting the
algorithm

A way to evaluate this number is to choose a tolerance δ so
that

bn − an ≤ δ

One-Dimensional Minimization 21 / 33

Fibonacci Search Method

Fibonacci Search Method

1 From the definition of the reduction factor τk, it is easy to
evaluate bn − an:

bn − an =
F1

F2
(bn−1 − an−1) =

F1

F2

F2

F3
(bn−2 − an−2)

=
F1

F2

F2

F3
· · · Fn

Fn+1
(b0 − a0) =

b0 − a0

Fn+1

2 In this way the number of reductions n is deduced from:

Fn+1 ≥
b0 − a0

δ

One-Dimensional Minimization 22 / 33

Fibonacci Search Method

Algorithm (Fibonacci Search Algorithm)

Let φ(x) be an unimodal function in [a, b]

1 Set k = 0, δ > 0 and n such that Fn+1 ≥ (b0 − a0)/δ.
Evaluate τ = Fn/Fn+1, λ = b− τ(b− a), µ = a + τ(b− a),
φa = φ(a), φb = φ(b), φλ = φ(λ), φµ = φ(µ).

2 If φλ > φµ go to step 3; else go to step 4

3 If b− λ ≤ δ stop and output µ;
otherwise set a← λ, λ← µ, φλ ← φµ evaluate
µ = a + τ(b− a) and φµ = φ(µ).
Go to step 5

4 If µ− a ≤ δ stop and output λ;
otherwise set b← µ, µ← λ, φµ ← φλ evaluate
λ = b− τ(b− a) and φλ = φ(λ).
Go to step 5

5 set k ← k + 1 and τ ← Fn−k/Fn−k+1 goto step 2.

One-Dimensional Minimization 23 / 33

Fibonacci Search Method Convergence Rate

Fibonacci Search convergence rate

At each iteration, the interval length containing the minimum
of φ(x) is

bk − ak = (b0 − a0)(Fn−k+1/Fn+1)

Due to the fact that x? ∈ [ak, bk] for all k, we have:

(bk − x?) ≤ (bk − ak) ≤ (Fn−k+1/Fn+1)(b0 − a0)

(x? − ak) ≤ (bk − ak) ≤ (Fn−k+1/Fn+1)(b0 − a0)

One-Dimensional Minimization 24 / 33



Fibonacci Search Method Convergence Rate

Fibonacci Search convergence rate

To estimate convergence rate we need the expression of Fk

Fk =
1√
5


(

1 +
√

5

2

)k+1

−

(
1−
√

5

2

)k+1


and for large k

Fk ≈
1√
5

(
1 +
√

5

2

)k+1

in this way we can approximate

Fn−k+1

Fn+1
≈

(
1 +
√

5

2

)−k

=

(√
5− 1

2

)k

One-Dimensional Minimization 25 / 33

Fibonacci Search Method Convergence Rate

Fibonacci Search convergence rate

This means that {ak} and {bk} are r-linearly convergent
sequences with coefficient τ ≈ 0.618.

So, golden search and Fibonacci search perform similarly for
large n. Golden search is easier, for this reason, normally
Golden search is preferre to Fibonacci search.

One-Dimensional Minimization 26 / 33

Polynomial Interpolation

Outline

1 Golden Section minimization
Convergence Rate

2 Fibonacci Search Method
Convergence Rate

3 Polynomial Interpolation

One-Dimensional Minimization 27 / 33

Polynomial Interpolation

Polynomial Interpolation

Fibonacci and golden search are r-linearly convergent
methods.

Approximating the function φ(x) with a polynomial model
and minimizing the polynomial result in algorithms which are
normally superior to Fibonacci and golden search.

One-Dimensional Minimization 28 / 33



Polynomial Interpolation

Polynomial Interpolation

Suppose that an initial guess x0 is known, and the interval
[0, x0] contains a minimum.

We can form the quadratic approximation p(x) to φ(x) by
interpolating φ(0), φ(x0) and φ′(0).

q(x) =
φ(x0)− φ(0)− x0φ

′(0)

x2
0

x2 + φ′(0)x + φ(0).

The new trial minimum is defined as the minimum of the
polynomial approximation q(x), an takes the value:

x1 = − φ′(0)x2
0

2
[
φ(x0)− φ(0)− φ′(0)x0

]

One-Dimensional Minimization 29 / 33

Polynomial Interpolation

Polynomial Interpolation

If φ′(x1) is small enough (we are near a stationary point) we
can stop the iteration, otherwise we can construct a cubic
polynomial that interpolates φ(0), φ′(0), φ(x0) and φ(x1).

c(x) = A1x
3 + B1x

2 + φ′(0)x + φ(0).

where(
A1

B1

)
=

1

x2
0x

2
1(x1 − x0)

(
x2

0 −x2
1

−x3
0 x3

1

)(
φ(x1)− φ(0)− φ′(0)x1

φ(x0)− φ(0)− φ′(0)x0

)
The new trial minimum is defined as the minimum of the
polynomial approximation c(x).

One-Dimensional Minimization 30 / 33

Polynomial Interpolation

Polynomial Interpolation

By differentiating c(x) and taking the root nearest the 0
values we obtain:

x2 =
−B1 +

√
B2

1 − 3A1φ′(0)

A1

=
−φ′(0)

B1 +
√

B2
1 − 3A1φ′(0)

where for stability reason we use the first expression when
B1 < 0, the second expression when B1 ≥ 0.

If the new trial minimum is not accepted, we repeat the
procedure with φ(0), φ′(0), φ(x1) and φ(x2).

One-Dimensional Minimization 31 / 33

Polynomial Interpolation

Polynomial Interpolation

In general we can approximate the minimum by the procedure

xk+1 =
−Bk +

√
B2

k − 3Akφ′(0)

Ak

=
−φ′(0)

Bk +
√

B2
k − 3Akφ′(0)

where (
Ak

Bk

)
=

1

x2
k−1x

2
k(xk − xk−1)

(
x2

k−1 −x2
k

−x3
k−1 x3

k

)

×
(

φ(xk)− φ(0)− φ′(0)xk

φ(xk−1)− φ(0)− φ′(0)xk−1

)

One-Dimensional Minimization 32 / 33



References

References

J. Stoer and R. Bulirsch
Introduction to numerical analysis
Springer-Verlag, Texts in Applied Mathematics, 12, 2002.

J. E. Dennis, Jr. and Robert B. Schnabel
Numerical Methods for Unconstrained Optimization and
Nonlinear Equations
SIAM, Classics in Applied Mathematics, 16, 1996.

One-Dimensional Minimization 33 / 33


