

## Interval of Search

## Algorithm (forward-backward method)

(0) Let us be given $\alpha$ and $h>0$ and a multiplicative factor $t>1$ (usually 2).

- If $\phi(\alpha)>\phi(\alpha+h)$ goto forward step otherwise goto backward step
- forward step: $a \leftarrow \alpha ; \eta \leftarrow \alpha+h$;
- $h \leftarrow h t ; \quad b \leftarrow a+h$;
- if $\phi(b) \geq \phi(\eta)$ then return $[a, b]$,
- $a \leftarrow \eta ; \eta \leftarrow b$;
- goto step 1 ;
(0) backward step: $\eta \leftarrow \alpha$; $b \leftarrow \alpha+h$;
- $h \leftarrow h t ; a \leftarrow b-h$;
- if $\phi(a) \geq \phi(\eta)$ then return $[a, b]$;
$b \leftarrow \eta ; \eta \leftarrow a$;
- goto step 1 ;


## Unimodal function

Golden search and Fibonacci search are based on the following theorem

## Theorem (Unimodal function)

Let $\phi(x)$ unimodal in $[a, b]$ and let be $a<\alpha<\beta<b$. Then

- if $\phi(\alpha) \leq \phi(\beta)$ then $\phi(x)$ is unimodal in $[a, \beta]$
- if $\phi(\alpha) \geq \phi(\beta)$ then $\phi(x)$ is unimodal in $[\alpha, b]$


## Proof.

(0) From definition $\phi(x)$ is strictly decreasing over $\left[a, x^{\star}\right)$, since $\phi(\alpha) \leq \phi(\beta)$ then $x^{\star} \in(a, \beta)$.

- From definition $\phi(x)$ is strictly increasing over $\left(x^{\star}, b\right]$, since $\phi(\alpha) \geq \phi(\beta)$ then $x^{\star} \in(\alpha, b)$.

In both cases the function is unimodal in the respective intervals.

## Definition (Unimodal function)

A function $\phi(x)$ is unimodal in $[a, b]$ if there exists an $x^{\star} \in(a, b)$ such that $\phi(x)$ is strictly decreasing on $\left[a, x^{\star}\right)$ and strictly increasing on $\left(x^{\star}, b\right]$.

Another equivalent definition is the following one

## Definition (Unimodal function)

A function $\phi(x)$ is unimodal in $[a, b]$ if there exists an $x^{\star} \in(a, b)$ such that for all $a<\alpha<\beta<b$ we have:

- if $\beta<x^{\star}$ then $\phi(\alpha)>\phi(\beta)$;
- if $\alpha>x^{\star}$ then $\phi(\alpha)<\phi(\beta)$;


## One-Dimensional Minimization

## Golden Section minimization

## Outline

(1) Golden Section minimization

- Convergence Rate
(2) Fibonacci Search Method - Convergence Rate
(3) Polynomial Interpolation

Let $\phi(x)$ an unimodal function on $[a, b]$, the golden section scheme produce a series of intervals $\left[a_{k}, b_{k}\right]$ where

- $\left[a_{0}, b_{0}\right]=[a, b] ;$
- $\left[a_{k+1}, b_{k+1}\right] \subset\left[a_{k}, b_{k}\right] ;$
- $\lim _{k \mapsto \infty} b_{k}=\lim _{k \mapsto \infty} a_{k}=x^{*} ;$


## Algorithm (Generic Search Algorithm)

(- Let $a_{0}=a, b_{0}=b$

- for $k=0,1,2, \ldots$
choose $a_{k}<\lambda_{k}<\mu_{k}<b_{k}$;
- if $\phi\left(\lambda_{k}\right) \leq \phi\left(\mu_{k}\right)$ then $a_{k+1}=a_{k}$ and $b_{k+1}=\mu_{k}$;
(1f $\phi\left(\lambda_{k}\right)>\phi\left(\mu_{k}\right)$ then $a_{k+1}=\lambda_{k}$ and $b_{k+1}=b_{k}$;


## Golden Section minimization

## Golden Section minimization

Consider case 1 in the generic search: then,

$$
\lambda_{k}=b_{k}-\tau\left(b_{k}-a_{k}\right), \quad \mu_{k}=a_{k}+\tau\left(b_{k}-a_{k}\right)
$$

and

$$
a_{k+1}=a_{k}, \quad b_{k+1}=\mu_{k}=a_{k}+\tau\left(b_{k}-a_{k}\right)
$$

Now, evaluate

$$
\begin{aligned}
& \lambda_{k+1}=b_{k+1}-\tau\left(b_{k+1}-a_{k+1}\right)=a_{k}+\left(\tau-\tau^{2}\right)\left(b_{k}-a_{k}\right) \\
& \mu_{k+1}=a_{k+1}+\tau\left(b_{k+1}-a_{k+1}\right)=a_{k}+\tau^{2}\left(b_{k}-a_{k}\right)
\end{aligned}
$$

The only value that can be reused is $\lambda_{k}$ so that we try $\lambda_{k+1}=\lambda_{k}$ and $\mu_{k+1}=\lambda_{k}$.

Graphical structure of the Golden Section algorithm.

- White circles are the extrema of the successive
- Yellow circles are the newly evaluated values;
- Red circles are the already evaluated values;



## Golden Section convergence rate

- At each iteration the interval length containing the minimum of $\phi(x)$ is reduced by $\tau$ so that $b_{k}-a_{k}=\tau^{k}\left(b_{0}-a_{0}\right)$.
- Due to the fact that $x^{\star} \in\left[a_{k}, b_{k}\right]$ for all $k$ then we have:

$$
\begin{aligned}
& \left(b_{k}-x^{\star}\right) \leq\left(b_{k}-a_{k}\right) \leq \tau^{k}\left(b_{0}-a_{0}\right) \\
& \left(x^{\star}-a_{k}\right) \leq\left(b_{k}-a_{k}\right) \leq \tau^{k}\left(b_{0}-a_{0}\right)
\end{aligned}
$$

- This means that $\left\{a_{k}\right\}$ and $\left\{b_{k}\right\}$ are $r$-linearly convergent sequence with coefficient $\tau \approx 0.618$.


## Algorithm (Golden Section Algorithm)

Let $\phi(x)$ be an unimodal function in $[a, b]$,
(1) Set $k=0, \delta>0$ and $\tau=(\sqrt{5}-1) / 2$. Evaluate $\lambda=b-\tau(b-a), \mu=a+\tau(b-a), \phi_{a}=\phi(a), \phi_{b}=\phi(b)$, $\phi_{\lambda}=\phi(\lambda), \phi_{\mu}=\phi(\mu)$.

- If $\phi_{\lambda}>\phi_{\mu}$ go to step 3; else go to step 4
- If $b-\lambda \leq \delta$ stop and output $\mu$; otherwise, set $a \leftarrow \lambda, \lambda \leftarrow \mu, \phi_{\lambda} \leftarrow \phi_{\mu}$ and evaluate $\mu=a+\tau(b-a)$ and $\phi_{\mu}=\phi(\mu)$.
Go to step 5
- If $\mu-a \leq \delta$ stop and output $\lambda$; otherwise, set $b \leftarrow \mu, \mu \leftarrow \lambda, \phi_{\mu} \leftarrow \phi_{\lambda}$ and evaluate $\lambda=b-\tau(b-a)$ and $\phi_{\lambda}=\phi(\lambda)$.
Go to step 5
- $k \leftarrow k+1$ goto step 2 .


## Fibonacci Search Method

Outline
(1) Golden Section minimization

- Convergence Rate
(2) Fibonacci Search Method
- Convergence Rate
(3) Polynomial Interpolation
- In the Golden Search Method, the reduction factor $\tau$ is unchanged during the search.
- If we allow to change the reduction factor at each step we have a chance to produce a faster minimization algorithm.
- In the next slides we see that there are only two possible choice of the reduction factor:
- The first choice is $\tau_{k}=(\sqrt{5}-1) / 2$ and gives the golden search method.
- The second choice takes $\tau_{k}$ as the ratio of two consecutive Fibonacci numbers and gives the so-called Fibonacci search method.

Consider case 1 in the generic search: the reduction step $\tau_{k}$ can vary with respect to the index $k$ as

$$
\lambda_{k}=b_{k}-\tau_{k}\left(b_{k}-a_{k}\right), \quad \mu_{k}=a_{k}+\tau_{k}\left(b_{k}-a_{k}\right)
$$

and

$$
a_{k+1}=a_{k}, \quad b_{k+1}=\mu_{k}=a_{k}+\tau_{k}\left(b_{k}-a_{k}\right)
$$

Now, evaluate
$\lambda_{k+1}=b_{k+1}-\tau_{k+1}\left(b_{k+1}-a_{k+1}\right)=a_{k}+\left(\tau_{k}-\tau_{k} \tau_{k+1}\right)\left(b_{k}-a_{k}\right)$
$\mu_{k+1}=a_{k+1}+\tau_{k+1}\left(b_{k+1}-a_{k+1}\right)=a_{k}+\tau_{k} \tau_{k+1}\left(b_{k}-a_{k}\right)$
The only value that can be reused is $\lambda_{k}$, so that we try $\lambda_{k+1}=\lambda_{k}$ and $\mu_{k+1}=\lambda_{k}$.

## One-Dimensional Minimization

## Fibonacci Search Method

## Fibonacci Search Method

- If $\mu_{k+1}=\lambda_{k}$, then

$$
b_{k}-\tau_{k}\left(b_{k}-a_{k}\right)=a_{k}+\tau_{k} \tau_{k+1}\left(b_{k}-a_{k}\right)
$$

and $1-\tau_{k}=\tau_{k} \tau_{k+1}$. By searching a solution of the form $\tau_{k}=z_{k+1} / z_{k}$, we have the recurrence relation:

$$
z_{k}=z_{k+1}+z_{k+2}
$$

which is a reverse Fibonacci succession. The computation of $z_{k}$ involves complex number.

In general, we have $\lim _{k \mapsto \infty} \tau_{k}=1$, so that reduction is asymptomatically worse than golden section.

- A simpler way to compute $z_{k}$ is to take the length of the reduction step constant, say $n$ and compute the Fibonacci sequence up to $n$ as follows

$$
F_{0}=F_{1}=1, \quad F_{k+1}=F_{k}+F_{k-1}
$$

then, set $z_{k}=F_{n-k+1}$ so that $\tau_{k}=F_{n-k} / F_{n-k+1}$.

- In the Fibonacci search we evaluate reduction factor $\tau_{k}$ by choosing the number of reductions before starting the algorithm
- A way to evaluate this number is to choose a tolerance $\delta$ so that

$$
b_{n}-a_{n} \leq \delta
$$

## Algorithm (Fibonacci Search Algorithm)

Let $\phi(x)$ be an unimodal function in $[a, b]$

- Set $k=0, \delta>0$ and $n$ such that $F_{n+1} \geq\left(b_{0}-a_{0}\right) / \delta$. Evaluate $\tau=F_{n} / F_{n+1}, \lambda=b-\tau(b-a), \mu=a+\tau(b-a)$, $\phi_{a}=\phi(a), \phi_{b}=\phi(b), \phi_{\lambda}=\phi(\lambda), \phi_{\mu}=\phi(\mu)$.
- If $\phi_{\lambda}>\phi_{\mu}$ go to step 3 ; else go to step 4
- If $b-\lambda \leq \delta$ stop and output $\mu$; otherwise set $a \leftarrow \lambda, \lambda \leftarrow \mu, \phi_{\lambda} \leftarrow \phi_{\mu}$ evaluate $\mu=a+\tau(b-a)$ and $\phi_{\mu}=\phi(\mu)$.
Go to step 5
- If $\mu-a \leq \delta$ stop and output $\lambda$; otherwise set $b \leftarrow \mu, \mu \leftarrow \lambda, \phi_{\mu} \leftarrow \phi_{\lambda}$ evaluate $\lambda=b-\tau(b-a)$ and $\phi_{\lambda}=\phi(\lambda)$.
Go to step 5
- set $k \leftarrow k+1$ and $\tau \leftarrow F_{n-k} / F_{n-k+1}$ goto step 2 .
(1) From the definition of the reduction factor $\tau_{k}$, it is easy to evaluate $b_{n}-a_{n}$ :

$$
\begin{aligned}
b_{n}-a_{n} & =\frac{F_{1}}{F_{2}}\left(b_{n-1}-a_{n-1}\right)=\frac{F_{1}}{F_{2}} \frac{F_{2}}{F_{3}}\left(b_{n-2}-a_{n-2}\right) \\
& =\frac{F_{1}}{F_{2}} \frac{F_{2}}{F_{3}} \cdots \frac{F_{n}}{F_{n+1}}\left(b_{0}-a_{0}\right)=\frac{b_{0}-a_{0}}{F_{n+1}}
\end{aligned}
$$

( In this way the number of reductions $n$ is deduced from:

$$
F_{n+1} \geq \frac{b_{0}-a_{0}}{\delta}
$$

## Fibonacci Search convergence rate

- At each iteration, the interval length containing the minimum of $\phi(x)$ is

$$
b_{k}-a_{k}=\left(b_{0}-a_{0}\right)\left(F_{n-k+1} / F_{n+1}\right)
$$

- Due to the fact that $x^{\star} \in\left[a_{k}, b_{k}\right]$ for all $k$, we have:

$$
\begin{aligned}
& \left(b_{k}-x^{\star}\right) \leq\left(b_{k}-a_{k}\right) \leq\left(F_{n-k+1} / F_{n+1}\right)\left(b_{0}-a_{0}\right) \\
& \left(x^{\star}-a_{k}\right) \leq\left(b_{k}-a_{k}\right) \leq\left(F_{n-k+1} / F_{n+1}\right)\left(b_{0}-a_{0}\right)
\end{aligned}
$$

- To estimate convergence rate we need the expression of $F_{k}$

$$
F_{k}=\frac{1}{\sqrt{5}}\left\{\left(\frac{1+\sqrt{5}}{2}\right)^{k+1}-\left(\frac{1-\sqrt{5}}{2}\right)^{k+1}\right\}
$$

- and for large $k$

$$
F_{k} \approx \frac{1}{\sqrt{5}}\left(\frac{1+\sqrt{5}}{2}\right)^{k+1}
$$

- in this way we can approximate

$$
\frac{F_{n-k+1}}{F_{n+1}} \approx\left(\frac{1+\sqrt{5}}{2}\right)^{-k}=\left(\frac{\sqrt{5}-1}{2}\right)^{k}
$$

## Outline

Golden Section minimization- Convergence RateFibonacci Search Method
- Convergence RatePolynomial Interpolation
- This means that $\left\{a_{k}\right\}$ and $\left\{b_{k}\right\}$ are $r$-linearly convergent sequences with coefficient $\tau \approx 0.618$.
- So, golden search and Fibonacci search perform similarly for large $n$. Golden search is easier, for this reason, normally Golden search is preferre to Fibonacci search.
- Fibonacci and golden search are $r$-linearly convergent methods.
- Approximating the function $\phi(x)$ with a polynomial model and minimizing the polynomial result in algorithms which are normally superior to Fibonacci and golden search.
- Suppose that an initial guess $x_{0}$ is known, and the interval [ $0, x_{0}$ ] contains a minimum.
- We can form the quadratic approximation $p(x)$ to $\phi(x)$ by interpolating $\phi(0), \phi\left(x_{0}\right)$ and $\phi^{\prime}(0)$.

$$
q(x)=\frac{\phi\left(x_{0}\right)-\phi(0)-x_{0} \phi^{\prime}(0)}{x_{0}^{2}} x^{2}+\phi^{\prime}(0) x+\phi(0) .
$$

The new trial minimum is defined as the minimum of the polynomial approximation $q(x)$, an takes the value:

$$
x_{1}=-\frac{\phi^{\prime}(0) x_{0}^{2}}{2\left[\phi\left(x_{0}\right)-\phi(0)-\phi^{\prime}(0) x_{0}\right]}
$$

## Polynomial Interpolation

- By differentiating $c(x)$ and taking the root nearest the 0 values we obtain:

$$
\begin{aligned}
x_{2} & =\frac{-B_{1}+\sqrt{B_{1}^{2}-3 A_{1} \phi^{\prime}(0)}}{A_{1}} \\
& =\frac{-\phi^{\prime}(0)}{B_{1}+\sqrt{B_{1}^{2}-3 A_{1} \phi^{\prime}(0)}}
\end{aligned}
$$

where for stability reason we use the first expression when $B_{1}<0$, the second expression when $B_{1} \geq 0$.

- If the new trial minimum is not accepted, we repeat the procedure with $\phi(0), \phi^{\prime}(0), \phi\left(x_{1}\right)$ and $\phi\left(x_{2}\right)$.
- If $\phi^{\prime}\left(x_{1}\right)$ is small enough (we are near a stationary point) we can stop the iteration, otherwise we can construct a cubic polynomial that interpolates $\phi(0), \phi^{\prime}(0), \phi\left(x_{0}\right)$ and $\phi\left(x_{1}\right)$.

$$
c(x)=A_{1} x^{3}+B_{1} x^{2}+\phi^{\prime}(0) x+\phi(0) .
$$

where
$\binom{A_{1}}{B_{1}}=\frac{1}{x_{0}^{2} x_{1}^{2}\left(x_{1}-x_{0}\right)}\left(\begin{array}{cc}x_{0}^{2} & -x_{1}^{2} \\ -x_{0}^{3} & x_{1}^{3}\end{array}\right)\binom{\phi\left(x_{1}\right)-\phi(0)-\phi^{\prime}(0) x_{1}}{\phi\left(x_{0}\right)-\phi(0)-\phi^{\prime}(0) x_{0}}$
The new trial minimum is defined as the minimum of the polynomial approximation $c(x)$.

## Polynomial Interpolation

## Polynomial Interpolation

- In general we can approximate the minimum by the procedure

$$
\begin{aligned}
x_{k+1} & =\frac{-B_{k}+\sqrt{B_{k}^{2}-3 A_{k} \phi^{\prime}(0)}}{A_{k}} \\
& =\frac{-\phi^{\prime}(0)}{B_{k}+\sqrt{B_{k}^{2}-3 A_{k} \phi^{\prime}(0)}}
\end{aligned}
$$

- where

$$
\begin{array}{r}
\binom{A_{k}}{B_{k}}=\frac{1}{x_{k-1}^{2} x_{k}^{2}\left(x_{k}-x_{k-1}\right)}\left(\begin{array}{cc}
x_{k-1}^{2} & -x_{k}^{2} \\
-x_{k-1}^{3} & x_{k}^{3}
\end{array}\right) \\
\times\binom{\phi\left(x_{k}\right)-\phi(0)-\phi^{\prime}(0) x_{k}}{\phi\left(x_{k-1}\right)-\phi(0)-\phi^{\prime}(0) x_{k-1}}
\end{array}
$$

目 J. Stoer and R. Bulirsch
Introduction to numerical analysis
Springer-Verlag, Texts in Applied Mathematics, 12, 2002.
R J. E. Dennis, Jr. and Robert B. Schnabel
Numerical Methods for Unconstrained Optimization and Nonlinear Equations
SIAM, Classics in Applied Mathematics, 16, 1996.

