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Definition (Global minimum)

Given a function ¢ : [a,b] — R, a point a* € [a,b] is a global
minimum if

é(z*) < ol

Va € [a,b].

Definition (Local minimum)

Given a function ¢ : [a,b] — R, a point x* € [a,b] is a local
minimum if there exist a § > 0 such that

B(a*) < d(a), V€ [ab]N (@ — 82" +6).

Finding a global minimum is generally not an easy task even in the
1D case. The algorithms presented in the following approximate
local minima.
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One-Dimensional Minimization

@ Golden Section minimization
@ Convergence Rate

@ Fibonacci Search Method
@ Convergence Rate

@ Polynomial Interpolation

Interval of Searchi

o In many practical problem, ¢(x) is defined in the interval
(—00, 00); if ¢(x) is continuous and coercive (i.e

fiMay 00 f(ar) = +00), then there exists a global minimum

A simple algorithm can determine an interval [a, b] which
contains a local minimum. The method searches 3 consecutive
points a, 7, b such that ¢(a) > ¢(n) and ¢(b) > ¢(n) in this
way the interval [a, b] certainly contains a local minima.

o In practice the method start from a point a and a step-length
h > 0; if ¢(a) > ¢(a+ h) then the step-length k > h is
increased until we have ¢(a + k) > ¢(a + h).

if ¢(a) < @(a + h), then the step-length k > h is increased
until we have ¢(a + h — k) > ¢(a)

°

This method is called forward-backward method. b

One-Dimensions! Minimization




Interval of Search

Algorithm (forward-backward method)

@ Let us be given e and h > 0 and a multiplicative factor t >
(usually 2).

@ If ¢(a) > ¢(a + h) goto forward step
otherwise goto backward step

Q@ forward step: a — a; 7 — a+ h;

©® heht; b—a+h;
@ if ¢(b) > ¢(n) then return [a,b];
@ a—1n neb;

@ goto step I;

Q@ backward step: ) — a; b«
©® h—ht; a—b—h;
@ if ¢(a) > ¢(n) then return [a,b];
Q@ bemn neua
@ goto step I;

a+h;

1

nimodal functiol

Golden search and Fibonacci search are based on the following
theorem
Theorem (Unimodal function)
Let ¢(x) unimodal in [a,b] and let be a < o < 3 < b. Then
@ if é(a) < ¢(8) then ¢(x) is unimodal in [a, 5]
Q if ¢(a) > ¢(B) then ¢(x) is unimodal in [c, b]

Proof.
@ From definition ¢(x) is strictly decreasing over [a, z*), since
d(a) < ¢(3) then z* € (a, B).
@ From definition ¢(x) is strictly increasing over (a*, ], since
#(a) > #(B) then =* € (a, b).
In both cases the function is unimodal in the respective
intervals.

|
Unimodal function

Definition (Unimodal function)

A function ¢(x) is unimodal in [a,b] if there exists an z* € (a, b)
such that ¢(x) is strictly decreasing on [a,2*) and strictly
increasing on (z*,b].

Another equivalent definition is the following one

Definition (Unimodal function)

A function ¢(x) is unimodal in [a,b] if there exists an x* € (a,b)
such that for all a < a < 8 < b we have:

o if B < a* then ¢(ar) > ¢(B);
o ifa > a* then ¢(a) < ¢(S);

@ Golden Section minimization
o Convergence Rate
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Golden Section minimization

Golden Section mimimization

Let ¢(x) an unimodal function on [a, b], the golden section scheme
produce a series of intervals [ay, b;] where

o [ag, bo] = [a,0];
o a1, bpia] C [ag, bil;

o limpce b = limyoo ag

Algorithm (Generic Search Algorithm)
Q Letag=a,bp=0b
Q fork=0,1,2,...
choose aj, < A\, < pg < b,
@ if o(\) < @(pux) then ags1 = ai and by = fuix;
@ if 9(Ar) > ¢(ux) then ag1 = i and byiy = by;

Golden Section minimization

Consider case 1 in the generic search: then,
o= b = 7(be —ax), e = ap +7(bp — ar)
and
Gper = ane brss = = ag + 7(bg — ax)
Now, evaluate
Mot = bt = 7Ok — 1) = ag + (7 = 7°) (0 — ar)
fiy1 = igr 4 T(bksr — aggn) = ag + 730 — ax)

The only value that can be reused is \;; so that we try A\ji1 = A
and firs1 = M.

Golden Section minimization

o When an algorithm for choosing the observations A and . is
defined, the generic search algorithm is determined.

Apparently the previous algorithm needs the evaluation of
&(Ar) and ¢(p) at each iteration.

In the golden section algorithm, a fixed reduction of the
interval 7 is used, i.e:

bis1 = agp1 = (b — ax)
o Due to symmetry the observations are determined as follows
Ao = by — 7(b — az)

e = ax + 7(bx — ax)

By a carefully choice of 7, golden search algorithm permits to
evaluate only one observation per step.

Golden Section minimizati

o If g1 = Mg, then

by, — (b — ai) = a + (1 — 72)(be — ax)
andl—7=7-72 = 7= 1. In this case there is no
reduction so that A1 must be computed

I {1541 = Ap, then

by, — 7(by, — ar) = ag + 72(by, — ax)

L 1445
= A= V7
2
By choosing the positive root, we have
7= (V5 —1)/2~0.618. In this case, y1.41 does not need to
be computed.




Golden Section minimization

Algorithm (Golden Section Algorithm)

Graphical structure of the Golden Section algorithm. Let ¢() be an unimodal function in [a,b],
o White circles are the extrema of the successive @ Setk=0,0>0andr=(v5—1)/2. Evaluate
o Yellow circles are the newly evaluated values; A=b-1(b—a), p=a+7(b—a), ¢a = d(a), $ = (b),

ox = 0(N), ¢ = d(n)
Q If gx > ¢, go to step 3; else go to step 4
o

o Red circles are the already evaluated values;

Ifb— X < 6 stop and output j1;

e e otherwise, set a — A, \ — i, ¢ — ¢y, and evaluate
o—o00——o——0 p=a+7(b—a)and ¢, = ().
Go to step 5
o—e——0—=0 .
Q Ifpu—a <4 stop and output A;
o—e—0—0 otherwise, set b «— p, jt — X, ¢, < ¢ and evaluate
X=b—7(b—a) and 6y = $()).
R Go to step 5
| 9 Q@ k — k+1 goto step 2 | 9

Golden Secti ergence rate

@ At each iteration the interval length containing the minimum
of ¢(x) is reduced by 7 so that by, — aj = 7¥(bo — ao)
o Due to the fact that 2* € [ay, by] for all k then we have

(b — ) < (b — ag) < 7(bo — ag) @ Fibonacci Search Method

(2" — ai) < (b — ax) < 7"(bo — ao) o Convergence Rate

@ This means that {az} and {b;} are r-linearly convergent
sequence with coefficient 7 ~ 0.618.




Fibonacci Search Method

Fibonacci Search Metho

Fibonacci Search Method

Fibonacci Search Method

@ In the Golden Search Method, the reduction factor 7 is
unchanged during the search
o If we allow to change the reduction factor at each step we
have a chance to produce a faster minimization algorithm.
@ In the next slides we see that there are only two possible
choice of the reduction factor:
o The first choice is 7. = (v/5 — 1)/2 and gives the golden
search method
@ The second choice takes 7 as the ratio of two consecutive
Fibonacci numbers and gives the so-called Fibonacci search
method.

o If \ps1 = Ag, then

b — bk — @) = ag + (7 — Tim1) bk — ax)

Tk — TkTk+1. By searching a solution of the form
, we have the recurrence relation:

2k — 2zp41 + 242 =0
which has a generic solution of the form

Z=c1+c(k+1)

In general, we have limy, .. 7 = 1, so that reduction is
asymptomatically worse than golden section

Consider case 1 in the generic search: the reduction step 73 can
vary with respect to the index k as
A = b — 7i(br, — ag), 1k = ag + (b — ax)
and
Qi1 = s by = pr = ag + (b — ay,)
Now, evaluate

Ner1 = brr = Tha (b1 — ag1) = ap + (7 — Th7h+1) (br — ax)

Hia1 = @it Trar(bre1 — akr1) = ak + T (be — ax)

The only value that can be reused is i, so that we try A\ji1 = A
and jipi1 = Ar.

If upss = A, then
by = Te(bi — ax) = a + TeTra1 (br — ar)

and 1 — 7, = 74741. By searching a solution of the form
Tk = 2j+1/ 2K, we have the recurrence relation:

2k = 241+ 242

which is a reverse Fibonacci succession. The computation of
24 involves complex number.




Fibonacci Search Method

Fibonacci Search Method

o A simpler way to compute z; is to take the length of the
reduction step constant, say n and compute the Fibonacci
sequence up to n as follows

Ih=n=1 Fip1 = F + Fi1
then, set zj, = F,_j41 5o that 7, = Fy,_/F,_ji1

o In the Fibonacci search we evaluate reduction factor 75, by
choosing the number of reductions before starting the
algorithm

@ A way to evaluate this number is to choose a tolerance d so
that

bp—an <6

‘One-Dimensional Minimization

Fibonacci Search Method

ithm (
Let ¢(x) be an unimodal function in [a,b]

Q Set k=0, 5> 0 and n such that F,.1 > (bo — ag)/0
Evaluate = Fy,/Fys1, A =b—7(b—a), p = a+7(b— a),

bonacci Search Algorithm)

Sa = p(a), o = 6(b), Pr = ¢(), Iy = b(n)
Q If o\ > ¢, go to step 3, else go to step 4
@ Ifb— X\ <4 stop and output yi;
otherwise set a «— X\, A < i, ¢\ < ¢, evaluate
p=a+7(b—a) and ¢, = ¢().
Go to step 5
Q Ifpu—a <6 stop and output \;

otherwise set b «— 1, p1 < A, ¢, — ¢ evaluate
A=b—1(b—a) and 65 = 6()).
Go to step 5

Q seth— k+1andr — F,_/F, rs1 goto step 2

@ From the definition of the reduction factor 7y, it is easy to
evaluate by, — a,:

F Fy F>
b= an = (b1 = an1) = éﬁ—i(»,,,z )
P F, bo — ag
=12 (b —ag) = 2
BF a9 Ry

@ In this way the number of reductions 7 is deduced from:

Foa >

bo — ag
8

@ At each iteration, the interval length containing the minimum
of ¢(x) is
by,

ar = (bo

a0)(Fr-k+1/Fni1)

@ Due to the fact that 2* € [ay, by] for all k, we have
(b — 2%) < (b — ax) < (Fo—rs1/Fps+1)(bo — ao)
(¢* = ax) < (b — ax) < (Fu—ps1/Fos1)(bo — ao)




Fibonacci Search Method

Fibonacci Search convergence rate

convergence rate

@ To estimate convergence rate we need the expression of Fj
k41 k+1
1+45 1-V5
2 2

P 145\
kNﬁ >

@ and for large k

o in this way we can approximate

—k k
Fogp (1415 _(VB-1
Fri 2 2

© Polynomial Interpolation

o This means that {a;} and {b;} are r-linearly convergent
sequences with coefficient 7 ~ 0.618

@ So, golden search and Fibonacci search perform similarly for
large n. Golden search is easier, for this reason, normally
Golden search is preferre to Fibonacci search

Polynomial Interpolatios

o Fibonacci and golden search are r-linearly convergent
methods.

o Approximating the function ¢(x) with a polynomial model
and minimizing the polynomial result in algorithms which are
normally superior to Fibonacci and golden search.




Polynomia Interpolation

Polynomial Interpolation

@ Suppose that an initial guess xq is known, and the interval
[0, 0] contains a minimum
@ We can form the quadratic approximation p(z) to ¢(z) by
interpolating ¢(0), ¢(zo) and ¢'(0).
) — #(0) — x0¢’(0)
2
a3

q

a(z) =

22 + ¢/(0)z + ¢(0)
The new trial minimum is defined as the minimum of the
polynomial approximation (), an takes the value:

¢(0)3

7 72 0(w0) - 0(0) - #(0)wa)]

nial Interpolation

By differentiating ¢() and taking the root nearest the 0
values we obtain:

°

—_—
~Bi+/B} - 3419/(0)
v
A
—¢'(0)

By + /B2 - 34:4/(0)

where for stability reason we use the first expression when
By < 0, the second expression when B; > 0.

If the new trial minimum is not accepted, we repeat the
procedure with ¢(0), ¢(0), ¢(x1) and ¢(a2)

Pobnomal Interpoaton
Polynomial Interpolation

@ If ¢/(x1) is small enough (we are near a stationary point) we
can stop the iteration, otherwise we can construct a cubic
polynomial that interpolates ¢(0), ¢(0), ¢(x0) and ¢(x1)

o(x) = Aya® + Bia® + ¢/(0)z + ¢(0).
where
A\ 1 23 —a?\ (¢(x1) — $(0) — ¢'(0)ar
By) ~ 2Za%(x1—w0) \—73  a} ) \é(xo) — 6(0) — ¢/(0)xo
The new trial minimum is defined as the minimum of the
polynomial approximation ¢(x).

Polynomial Interpolatios

@ In general we can approximate the minimum by the procedure
— By +\/ B} — 34,4/(0)
P
~4(0)

By + /B2 — 34,4/(0)
A
Bi) T @

. ( o) = 6(0) ~ ¢ (0)a )
O(wr1) — 6(0) ~ &/ (O)i

® where
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