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The problem (1/3)

Given f : R"™ — R:

minimize f(x)
xzcR™

the following regularity about f(x) is assumed in the following:

Assumption (Regularity assumption)

We assume f € C1(R™) with Lipschitz continuous gradient, i.e.
there exists v > 0 such that

|Vi(z)" — Vi)' <vlle—yl|, Ve,yeR"

Unconstrained minimization

The problem

Definition (Global minimum)

Given f : R" — R a point x, € R" is a global minimum if

f(z,) < f(z), Vo ecR™

Definition (Local minimum)

Given f : R" — R a point x, € R" is a local minimum if

f(x,) < f(x), Va € B(xy;9).

Obviously a global minimum is a local minimum. Find a global
minimum in general is not an easy task. The algorithms presented
in the sequel will approximate local minima’s.

B
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The problem ©E)

Definition (Strict global minimum)

Given f : R" — R a point x, € R" is a strict global minimum if

f(x,) < f(x), Ve € R™ \ {x.}.

Definition (Strict local minimum)

Given f : R" — R a point x, € R" is a strict local minimum if

f(z,) < f(x), V€ B(zy;d)\ {z}.

Obviously a strict global minimum is a strict local minimum.

Be
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First order Necessary condition

Lemma (First order Necessary condition for local minimum

Given f : R" — R satisfying the regularity assumption. If a point
x, € R" is a local minimum then

Vi(z,)! = 0.

Consider a generic direction d, then for 6 small enough we have

A (f(ze +Ad) — f(x)) <0,  0<A<d
so that

lim A Hf(zr + Ad) — f(x4)) = VF(z,)d <0,

because d is a generic direction we have Vf(z,)? = 0. O &
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© The first order necessary condition do not discriminate
maximum, minimum, or saddle points.

@ To discriminate maximum and minimum we need more
information, e.g. second order derivative of f(x).

© With second order derivative we can build necessary and
sufficient condition for a minima.

@ In general using only first and second order derivative at the
point x, it is not possible to deduce a necessary and sufficient
condition for a minima.

Unconstrained minimization

Second order Necessary condition

Lemma (Second order Necessary condition for local minimum)

Given f € C?(R") if a point x, € R™ is a local minimum then
Vi(z, )T = 0 and V?f(x,) is semi-definite positive, i.e.

d'Vv?*f(z,)d >0, VdcR"

Example

This condition is only, necessary, in fact consider f(z) = 22 — 3,

Vi(x) = (2271, —3$22), v21:(33) - ((2) _g@)

for the point x, = 0 we have Vf(0) = 0 and V?f(0) semi-definite
positive, but 0 is a saddle point not a minimum. &
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Proof.

The condition Vf(x,)? = 0 comes from first order necessary
conditions. Consider now a generic direction d, and the finite
difference:

f(xs + Ad) — 2f(x,) + f(x+ — Ad)

22 =0

by using Taylor expansion for f(x)
f(x, £ \d) = f(x,) £ Vi(z,)Ad + \2d! Vf(x,)d + o(\?)
and from the previous inequality
d'V3f(x,)d + o(N\?)/\* >0

taking the limit A — 0 and form the arbitrariness of d we have
that V2f(x,) must be semi-definite positive. O &

o
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Second order sufficient condition

Lemma (Second order sufficient condition for local minimum)

Given f € C2(R") if a point x, € R™ satisfy:
o Vf(w*)T = 0,.
@ V2f(x,) is definite positive; i.e.

d'V?f(x,)d >0, VdecR"\ {x,}

then x, € R"™ is a strict local minimum.

| A

Remark

Because V*f(x,) is symmetric we can write

Amind? d < dTV3f(x,)d < Amaxd’ d

If V2f(x,) is positive definite we have A\min > 0. &

v
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Proof.

Consider now a generic direction d, and the Taylor expansion for

f(x)

f(z, + d) = f(x,) + Vi(x,)d + d"V?f(x,)d + o(||d||?)
> f(24) + Aman || d]|* + (|| d]]?)

> f(22) + Amin I1? (1 + o(1]2)/ 1))

choosing d small enough we can write

)\mz’n
f(@.+d) 2 (@) + “07 [d]* > f(z.),  d#0, ||d| <.

l.e. T, IS a strict minimum.

Unconstrained minimization

General iterative scheme

Outline

@ General iterative scheme
@ Descent direction failure

Unconstrained minimization

|W

11/ 64

I|'F

12 / 64




General iterative scheme
How to find a minimum

Given f : R" — R: minimizegern  f(x).

©@ We can solve the problem by solving the necessary condition.
i.e by solving the nonlinear systems

vi(z)" = 0.

@ Using such an approach we looses the information about f(x).

© Moreover such an approach can find solution corresponding to
a maximum or saddle points.

©Q A better approach is to use all the information and try to build
minimizing procedure, i.e. procedures that, starting from a
point xq build a sequence {x;} such that f(xy1) < f(xg). In
this way, at least, we avoid to converge to a strict maximum.

General iterative scheme
lterative Methods

@ in practice very rare to be able to provide explicit minimizer.

@ iterative method: given starting guess xg, generate the
sequence,

{x}, k=1,2,...

@ AIM: ensure that (a subsequence) has some favorable limiting
properties:

e satisfies first-order necessary conditions
e satisfies second-order necessary conditions
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General iterative scheme

Line-search Methods

A generic iterative minimization procedure can be sketched as
follows:

@ calculate a search direction pg from xy,

@ ensure that this direction is a descent direction, i.e.
Vi(xy)pr <0, whenever Vf(z)? #0

so that, at least for small steps along pg, the objective
function f(x) will be reduced

@ use line-search to calculate a suitable step-length a; > 0 so
that

f(wk + Oékpk;) < f(:nk)
@ Update the point:
Tk+1 = Tk + Ok Pk §‘

General iterative scheme

Generic minimization algorithm

Written with a pseudo-code the minimization procedure is the
following algorithm:

Generic minimization algorithm

Given an initial guess xq, let k = 0;

while not converged do
Find a descent direction p;. at xy;
Compute a step size «; using a line-search along py.
Set ;11 = xp + aipr and increase k by 1.

end while

The crucial points which differentiate the algorithms are:
© The computation of the direction py;

© The computation of the step size «y.
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General iterative scheme

Practical Line-search methods

@ The first developed minimization algorithms try to solve

o = arg(rxn>ig f(xr + apx)

e performing exact line-search by univariate minimization;
e rather expensive and certainly not cost effective.

@ Modern methods implements inexact line-search:

e ensure steps are neither too long nor too short
e try to pick useful initial step size for fast convergence
e best methods are based on:

@ backtracking—Armijo search;

e Armijo—Goldstein search;

@ Franke—Wolfe search;
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General iterative scheme

backtracking line-search

To obtain a monotone decreasing sequence we can use the
following algorithm:

Backtracking line-search

Given ajnit (e.8., Qinit = 1);

Given 7 € (0, 1) typically 7 = 0.5;

Let a(®) = qjnit;

while not f(z;, + a9py) < f(x;,) do
set alt+1) = 7o(0);
increase ¢ by 1;

end while

Set oy = (8. J

To be effective the previous algorithm should terminate in a finite
number of steps. The next lemma assure that if p; is a descent
direction then the algorithm terminate. &
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General iterative scheme

Existence of a descent step (1/3)

Lemma (Descent Lemma)

Suppose that f(x) satisfy the standard assumptions and that py, is
a descent direction at xy, i.e. Vf(xy)pr < 0. Then we have

flax + api) < f(ze) + aVi(@e)pe + 507 [pell

—2Vf(ick)pk

for all o € [0, af] where of =

2
9 HPkH

\

Assumption (Regularity assumption)

We assume f € CY(IR™) with Lipschitz continuous gradient, i.e.
there exists v > 0 such that

IVi(x) = Vi(y)| <vlle—yll,  Vve,yeR"

\

Unconstrained minimization

General iterative scheme

Existence of a descent step

Proof.
Let be g(a) = f(xr + apy) then we can write:

9(a) — 9(0) = /0 " 9(6)de = ag'(0) + /0 " (4(6) — 9'(0))de
= aVf(zg)pr + /Oa (VE(xr + Epr) — Vi(x)) pr dE
< V()i -+ /O V(e + Epi) — V@)l ol de

< aVH(@)pe + [[pel? /0 (€ de

@2 «
< aVi(@n)pr + - Ilpil* = @ | V(@i)pe + 5 Pl

now the lemma follows trivially. ]
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General iterative scheme

Existence of a descent step (3/3)

@ The descent lemma means that there is a parabola that is
entirely over the function f(x) in the direction py if this is a
descent direction.

@ The second part of the lemma permits to ensure a minimal
reduction if the step length is chosen to be oy, = /2.

f(xr) + aVi(zp)pr + 202 ||pr||®

f(:ck —+ Ozpk)

-
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General iterative scheme Descent direction failure

Descent direction failure

@ The simple request to have a descent direction may be not
enough.

@ In fact, step length may be asymptotically too short
@ Or step length may be asymptotically too long
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General iterative scheme Descent direction failure

Steps may be too long

The objective function is f(x) = 22 and the iterates are generated
by the descent directions py = (—1)**! from zg = 2 with:
Tgi1 = Tk + QkPk, ap =2+ 3. 27+
AR
>  '4 o

05 |- L3 = ° i

0.0 - i
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General iterative scheme Descent direction failure

Steps may be too short

The objective function is f(z) = 22 and the iterates are generated
by the descent directions pi = —1 from xg = 2 with:
—(k+1
Th+1 = Tk + QkPk, ap =27
2.0
15 - i
o] Q’)l
- 2 i)
os| & T3 ]
-0'5-2.0 -1‘.5 -1‘.0 —(;.5 010 O.‘5 1.‘0 1.‘5 2.0 &
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Backtracking Armijo line-search

Outline

@ Backtracking Armijo line-search
@ Global convergence of backtracking Armijo line-search
@ Global convergence of steepest descent

Be
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Backtracking Armijo line-search

Armijo condition

To prevent large steps relative to the decreasing of f(x) we require
that

f(zr + axpr) < f(xr) + axBVE(xk)pr
for some 3 € (0,1). Typical values of 3 ranges form 10~ to 0.1.
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Backtracking Armijo line-search

Given Ainit (e.g., Qinit — 1);

Given 7 € (0,1) typically 7 = 0.5;

Let a(®) = ajni;

while not f(xj, + a9p;) < f(x) + o) BVi(zL)py do
set oz(Hl) = TOé(E);
increase ¢ by 1;

end while

Set a = a8,

@ Backtracking Armijo line-search prevents the step from
getting too large.

@ Now the question is: will the backtracking Armijo line-search
terminate in a finite number of steps ?

Be
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Backtracking Armijo line-search

Finite termination of Armijo line-search

Theorem (Finite termination of Armijo linesearch)

Suppose that f(x) satisfy the standard assumptions and 3 € (0,1)
and that py is a descent direction at xi.. Then the Armijo
condition

f(xr + arppr) < f(xr) + arBVE(xr)pr

_ 28— 1)Vi(zk)pr

is satisfied for all ay, € [0,wy] where — wy, >
7 x|

Assumption (Regularity assumption)

We assume f € C1(IR™) with Lipschitz continuous gradient, i.e.
there exists v > 0 such that

IVi(z) = Vi(y)l| <~[z—-yl, Vvr,ycR” B

v
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Backtracking Armijo line-search

Finite termination of Armijo line-search

To prove finite termination we need the following Taylor expansion
due to the regularity assumption:

f(x + ap) = f(z) + aVf(z)p+ E where |E| < %042 Ip|?

Proof.

If o < wy, we have oy ||lpr|* < 2(3 — 1)Vf(xx)pr and by using
Taylor expansion

f(ay + apy) < f(zx) + aVi(zy)ps + %042 Ik

< f(a:k) R OéﬁVf(wk)pk

< f(zx) + aVi(zr)pr + (8 — 1) Vi(zy)pr

o) B
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Backtracking Armijo line-search

Finite termination of Armijo line-search

Corollary (Finite termination of Armijo linesearch)

Suppose that f(x) satisfy the standard assumptions and (3 € (0,1)
and that py, is a descent direction at x;.. Then the step-size
generated by then backtracking-Armijo line-search terminates with

ag > min {Qnit, Twk } wi = 2(8 — 1)VF(xr)pe/(7 |PE]?)

Line-search will terminate as soon as a(?) < Wg:

@ May be that aj,j¢ satisfies the Armijo condition = oy = ajnit.

@ Otherwise in the last line-search iteration we have

o= > Wk, ap = ald) = 71 > TWg.

Combining these 2 cases gives the required result. [] &
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Backtracking Armijo line-search

Backtracking-Armijo line-search

© The previous analysis permit to say that Backtracking-Armijo
line-search ends in a finite number of steps.

© The line-search produce a step length not too long due to the
condition

f(xr + appr) < f(xr) + arBVIi(xr)pr

© The line-search produce a step length not too short due to the
finite termination theorem.

© Armijo line-search can be improved by adding some further
requirements on the step length acceptance criteria.

Unconstrained minimization

Backtracking Armijo line-search Global convergence of backtracking Armijo line-search

Global convergence

Theorem (Global convergence)

Suppose that f(x) satisfy the standard assumptions, then, for the
iterates generated by the Generic minimization algorithm with
backtracking Armijo line-search either:

@ Vi(x,)! =0 for some k > 0;

Q orlimg o f(xr) = —o00;

Q@ or limy oo V(s )pe| min {1, e} = 0.

Remark

| A

If the theorem, point 1 means that we found a stationary point in
a finite number of steps. Point 2 means that function f(x) is
unbounded below, so that a minimum does not exists. Point 3
alone do not imply convergence, but if Vf(xy) and py do not
become orthogonal and ||py|| / 0 then ||Vf(x)| — O. &

Unconstrained minimization 32 / 64



Backtracking Armijo line-search

Backtracking Armijo line-search

Proof. (1/3).
Assume points 1 and 2 are not satisfied, then we prove point 3.
Consider

k

f(zhr1) < f(zk) + uBVE(zi)pr < f(zo) + Y _ 0 BVF(z;)p;
7=0

by the fact that pg is a descent direction we have that the series:

> a; [Vi(@;)ps| < 674 lim [f(ao) — f(wrs1)] < 00

j=0
and then
lim ay; |Vf(x;)p;| =0
J]—00
w %

Global convergence of backtracking Armijo line-search

Proof. (2/3).
Recall that

ag > min { init, TWk wy, = 2(8 — 1)Vf(xx)pr/ (v |[pr]*)
and consider the two index set:
K1={k| ar = cinit}, Ko = {k| a < init }

Obviously N = K1 U K and from limy .o o | V(g )pr| = 0 we
have

lim o |Vi(xp)pr| = A
kGICIl k| ( k) k| 07 ( )
lim o |VF(ak)pe| = B
k:EICIz k| ( k) k' 0, ( )

v

Global convergence of backtracking Armijo line-search

B
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Backtracking Armijo line-search Global convergence of backtracking Armijo line-search

Proof. (3/3).
For k € IC1 we have o = ajnit and
ai |Vi(xr)pr| = ainit |Vi(2r)pr| and from (A) we have

lim |Vf(xr)pr| =0 (%)

keki—oo

For k € K5 we have Twi, < ap, < wp so

Vi(x 2
oy |VE(zr)pr| > Twr |VE(zr)pr| > 27(1 - 5)| ( k)szI
v || Pk ||
and from (B) we have
im VF@e)Pel ()
keKi—oco || Pkl
Combining (%) and (xx) gives the required result. O

Be
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Backtracking Armijo line-search Global convergence of steepest descent

Steepest descent algorithm

Steepest descent algorithm

Given an initial guess xq, let k = 0;

while not converged do
Compute a step-size oy, using a line-search along —Vf(z;)”.
Set xj41 = o — ap VFi(x)? and increase k by 1.

end while

@ The steepest descent algorithm is simply the generic
minimization algorithm with search direction the opposite of
the gradient in x.

@ The search direction —Vf(xy)! is always a descent direction
unless the point x; is a stationary point.

B
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Backtracking Armijo line-search

Global convergence of steepest descent
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Global convergence of steepest descent
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Backtracking Armijo line-search Global convergence of steepest descent

The Rosenbrock example (2/3)

e This function has a unique minimum at (1,1)? inside a
banana shaped valley.

Unconstrained minimization

Backtracking Armijo line-search Global convergence of steepest descent

The Rosenbrock example (3/3)

o After 100 iteration starting from (—1.2,1) the approximate
minimum is far from the solution.

| | I | |

-1.0 0.5 0.0 0.5 1.0 &
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Backtracking Armijo line-search Global convergence of steepest descent

@ The steepest descent is a slow method, not only on a difficult
test case like the Rosenbrock example.
@ Given the function f(z,y) = §£L‘2 + §y2 starting from
xo = (9,1)” we have the zig-zag pattern toward (0,0)7.
2.0
415
-4 1.0
- 05
400
-4 -05
-4-10
-4-15
ofo 2%0 4%0 6%0 8%0 1o.c-)2'0 §‘

Unconstrained minimization

Wolfe—Zoutendijk global convergence

Outline

© Wolfe-Zoutendijk global convergence
@ The Wolfe conditions
@ The Armijo-Goldstein conditions

B
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Wolfe—Zoutendijk global convergence

The Wolfe and Armijo Goldstein conditions

© The simple condition of descent step is in general not enough
for the convergence of a iterative minimization scheme.

© The condition of sufficient decrease of backtracking Armijo
line-search may be insufficient on general inexact line-search
algorithm.

© Adding another condition to the sufficient decrease condition
such that we avoid too short step length we obtain globally
convergent numerical procedure.

© Depending on which additional condition is added we obtain
the:

@ Wolfe conditions;
@ Armijo Goldstein conditions.

Be
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Wolfe—Zoutendijk global convergence The Wolfe conditions

The Wolfe conditions

Let c; and ¢ two constant such that 0 < ¢; < cp < 1. We say
that the step length oy satisfy the Wolfe conditions if «; satisfy:

© sufficient decrease: f(xy + agpr) < f(xr) + c1 ap VI(xk)Dk;

@ curvature condition: Vf(xp + arpr)pr > c2 Vi(xk)pr.

f(ack —+ Ckpk)

f(xr) + ac1 VI(xk)pr

B
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The strong Wolfe conditions

Let c; and ¢ two constant such that 0 < ¢; < ¢ < 1. We say
that the step length «ay satisfy the strong Wolfe conditions if oy,
satisfy:

O sufficient decrease: f(xy + agpi) < f(xx) + c1 axVi(xk)Dk;

@ curvature condition: |Vf(xx + arpr)pr| < 2 |[Vi(xk)pr|.

f(xr + apx)
f(xr) + ac1 Vi(xk)pr

Be
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Wolfe—Zoutendijk global convergence The Wolfe conditions

Existence of "Wolfe" step length

@ The Wolfe condition seems quite restrictive.

@ The next lemma answer to the question if a step length
satisfying Wolfe conditions does exists.

Lemma (strong Wolfe step length)

Let f : R"™ — R satisfying the regularity assumption. If the
following condition are satisfied:

@ py. is a descent direction for the point xy, i.e. Vf(xy)pr <O0;
Q f(xi + apy) is bounded from below, i.e.
lima— oo f(xg + apy) > —o0.
then for any 0 < ¢1 < ¢p < 1 there exists an interval [a,b] such
that all ay, € [a, b] satisfy the strong Wolfe conditions.
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Wolfe—Zoutendijk global convergence The Wolfe conditions

Proof

Define {(a) = f(xy) + ac1 VI(xr)pr and g(a) = f(xr + apy).
From limy_.o0 £(ar) = —00 and from condition 1 it follows that
there exists a, > 0 such that

) = glay) and Ua) > g(a), VYa e (0,ay)

so that all step length o € (0, o) satisfy strong Wolfe condition 1.
Because ¢(0) = g(0) form Cauchy-Rolle theorem there exists
s € (0, o) such that

9'(0x) = /() =
0> Vf(wk = Ck**pk)pk = 61Vf(mk)pk > CQVf(ZBk)pk

by continuity we find an interval around o, with step lengths
satisfying strong Wolfe conditions. [
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Wolfe—Zoutendijk global convergence The Wolfe conditions

The Zoutendijk condition

Theorem (Zoutendijk)

Let f : R™ — R satisfying the regularity assumption and bounded
from below, i.e.

inf f(x) >

xeR™

Let {xy}, k=0,1,...,00 generated by a generic minimization
algorithm where line-search satisfy \Wolfe conditions, then

Z cosHk)2 i a:k)TH < +00
k=1

where

—Vf(mk)pk
IVE(@r)T k] B

v
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Wolfe—Zoutendijk global convergence The Wolfe conditions

Proof. (1/3).

Using the second condition of Wolfe

1V

Vi(xr + arpr)pr > c2Vi(zk)py
(V(zr + carpr) — V(i) pe > (c2 — 1)VF(@r)pr
by using Lipschitz regularity
|V(zk + arpr) — Vi(xr)) k|| < 7 |kt — 2| [Pkl
2
= a7 ||kl

and using both inequality we obtain the estimate for ay:

62—1

ap > Vf(wk)pk

= 2
VHPkH
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Wolfe—Zoutendijk global convergence The Wolfe conditions

||V

Proof. (2/3).

Using the first condition of Wolfe and estimate of ay
fxzk + arpr) < f(zk) + arar VI(zr)pr

< f(wk) _ Cl(]. — 02)

2
odlyA|

setting A = c1(1 — ¢2)/~ and using the definition of cos 6y,

(Vf(ibk)pk)2

2
f(wkH) = f(a:k - akpk) < f(:ck) — A(COS Qk)Q HVf(wk)TH

and by induction

k
f(zpe1) < f(x1) — A (cos;)? va(wj)T‘f
j=1

|V
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Wolfe—Zoutendijk global convergence The Wolfe conditions

Proof. (3/3).

The function f(x) is bounded from below, i.e.

Cclenlgin f(x) > —o0

so that

k
A (cosb;)? HVf(a:j)THZ < f(x1) — f(Trt1)

J=1

and

A (cos0,)? || V(ay)T | < f(a1) - lim f(@p41) < +o0

J=1
5
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Wolfe—Zoutendijk global convergence The Wolfe conditions

Corollary (Zoutendijk condition)

Let f : R™ — R satisfying the regularity assumption and bounded
from below. Let {xy}, k=0,1,..., 00 generated by a generic
minimization algorithm where line-search satisfy Wolfe conditions,
then

—Vf(azk)pk
IVE(r) || el

If cosO, > 0 > 0 for all k from the Zoutendijk condition we have:

cos 6y, ||Vf(a3k)TH — 0 where cosf =

HVf(wk)TH — 0

i.e. the generic minimization algorithm where line-search satisfy
Wolfe conditions converge to a stationary point.
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Wolfe—Zoutendijk global convergence The Armijo-Goldstein conditions

The Armijo-Goldstein conditions

Let c1 and ¢ two constant such that 0 < ¢; < cp < 1. We say
that the step length oy satisfy the Wolfe conditions if «; satisfy:

(1} f(a:k + Oékpk) < f(in) + c1 Oéka(CBk)pk;
Q f(xk + arpr) = (k) + c2 ap VE(xk)py;

A

f(wk) + acq Vf(wk)pk

f(xr + apg)

f(xy) + acoVi(xy)ps

Be
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Wolfe—Zoutendijk global convergence The Armijo-Goldstein conditions

The Armijo-Goldstein conditions

© Armijo-Goldstein conditions has very similar theoretical
properties like the Wolfe conditions.

@ Global convergence theorems can be established.

© The weakness of Armijo-Goldstein conditions respect to Wolfe
conditions is that the former can exclude local minima’s from
the step length as you can see in the figure below.

A

f(a:k) + &61Vf(wk)pk
f(mk + Ozpk)

[

f(xr) + QCQVfW &
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Algorithms for line-search
Outline

@ Algorithms for line-search
@ Armijo Parabolic-Cubic search
@ Wolfe linesearch
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Algorithms for line-search Armijo Parabolic-Cubic search

Armijo Parabolic-Cubic search

© Backtracking-Armijo line-search can be slow if a large number
of reduction must be performed to satisfy Armijo condition.

© A better performance is obtained if instead of reducing by a
fixed factor we use polynomial interpolation to estimate the
location of the minimum.

© Assuming that that f(xy) and Vf(xy)py are known at the
first step we know also f(xx + Apg) if A is the first trial step.

@ In this case a parabolic interpolation can be used to estimate
the minimum.

© If we store the last trial step length, in the successive iteration
we can use cubic interpolation to estimate the minima's.

© The resulting algorithm is in the following slides.

B
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Algorithms for line-search Armijo Parabolic-Cubic search

Algorithm (Armijo Parabolic-Cubic search (1/3))

armijo_linesearch(f, x, p, T)
fo — f(x), Vfg— Vfi(x)p, N — 1,
while A\ > )\, do
f)\ — f(iL’ 4= /\p);
if £y, <fy+ A\7Vfy then
return )\ ; successful search

else
if A\ =1 then
Aemp Vfo/ [2(fo + Vi — f,\)] ;
else
>\tmp < CUbI'C(fo, Vfo, f,\, )\, fp, )\p),'
end if
Ap — A, fp —fa; A — range(Atmp, A/10,1/2);
end if
end while
return \.;, ,; failed search §‘
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Algorithms for line-search Armijo Parabolic-Cubic search

Algorithm (Armijo Parabolic-Cubic search

range(), a, b)

if A\ < a then
return a;

else if A > b then
return b;

else
return \ ;

end if )
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Algorithms for line-search

Algorithm (Armijo Parabolic-Cubic search (3/3))
CUbI'C(fo, Vfo, f)\, )\, fp, )\p)
Evaluate:
a _ 1 )\22) —)\2 f)\ — fo — )\Vfo
b AZA2(A = Ap) —)\]3; e fp, — fo — Ap Vo
if a = 0 then
return —Vfy/(2b), cubic is a quadratic
else
d— b —3aViy; discriminant
return (—b ++/d)/(3a); legitimate cubic
end if

Algorithms for line-search

Unconstrained minimization

Wolfe linesearch

© Wolfe linesearch is identical to the Armijo Parabolic-Cubic
search, until a point satisfying the first condition is found.

@ At this point the Armijo algorithm stop while Wolfe search try
to refine the search until the second condition is satisfied.

© If the step estimated is too short then is is enlarged until it
contains a minimum.

Q |If the step estimated is too long it is reduced until the second
condition is satisfied.

Unconstrained minimization

Armijo Parabolic-Cubic search

Wolfe linesearch




Algorithm (Wolfe linesearch (1/3))

wolfe_linesearch(f, x, p, c1, c2)
fo — f(x), Vfg— Vf(x)p, X — 1,
while A > A\, do
fy «— f(x + Ap);
if f\ <fo+ Ac1Vfy then
go to ZOOM; found a \ satisfying condition 1

else
if A\ =1 then
Aemp Vfo/ [2(fo + Vi — f,\)] ;
else
>\tmp — CUbI'C(fo, Vfo, f,\, )\, fp, )\p),'
end if
Ap — A, fp —fa; A — range(Atmp, A/10,1/2);
end if
end while
return \.;, ,; failed search %
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Algorithms for line-search Wolfe linesearch

|| |

Algorithm (Wolfe linesearch (2/3))
ZOOM:
Viy « Vi(x + \p)p;
if Vi, > ¢ Vfy then return \; found Wolfe point!
if A =1 then

forward search of an interval bracketing a minimum
while A < ).« do
{ A, fo} —{N 2} save values
A2\ f\ —f(xz+ Ap);
if not f\ < fy+ Ac1 Vi then
{\p,fp} = {\,f1}, go to REFINE; swap values
end if
Vfy « Vi(x + A\p)p;
if Vfy > o Vfy then return \; found Wolfe point!
end while
return \max ; failed search
end if &

| |
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Algorithms for line-search Wolfe linesearch

Algorithm (Wolfe linesearch (3/3))

REFINE:
{)\/O, f/o, Vf/o} < {)\, f)\, ka},' A — )\p — )\Io;
while A > ¢ do
O\ «— A2Vf/o/ [Z(f/o + Vi — fp)] ;
O\ — range(0A,0.2A,0.8A);
A Ao+ OA fy — f(CIZ aF )\p),'
if £y, <fp+ Ac1 Vi then
Viy «— Vi(x + \p)p;
if Vi > o Vfy then return \; found Wolfe point!
{/\Io; f/o, Vf/o} — {/\, f)\, Vf)\},' A — A — 5/\,'
else
{2, o} — {Nfa}, A —0N
end if
end while
return \; failed search §‘

Unconstrained minimization
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