Unconstrained minimization

Lectures for PHD course on Non-linear equations and numerical optimization

Enrico Bertolazzi

DIMS – Università di Trento

March 2005

◆□ ▶ ◆酉 ▶ ◆ 厘 ▶ ◆ 厘 ▶

▲□▶ ▲圖▶ ▲厘▶ ▲厘▶

Unconstrained minimization

Outline

General iterative scheme
 Descent direction failure

• Descent direction failure

2 Backtracking Armijo line-search

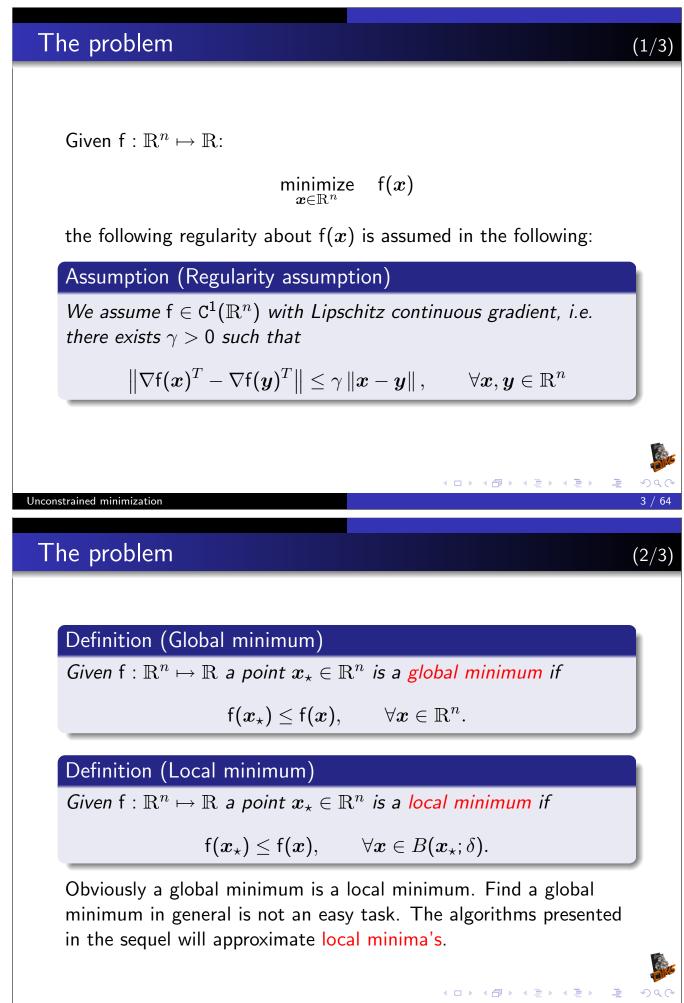
- Global convergence of backtracking Armijo line-search
- Global convergence of steepest descent

3 Wolfe–Zoutendijk global convergence

- The Wolfe conditions
- The Armijo-Goldstein conditions

4 Algorithms for line-search

- Armijo Parabolic-Cubic search
- Wolfe linesearch



The problem

Definition (Strict global minimum)

Given $\mathsf{f}:\mathbb{R}^n\mapsto\mathbb{R}$ a point $x_\star\in\mathbb{R}^n$ is a strict global minimum if

 $\mathsf{f}(oldsymbol{x}_{\star}) < \mathsf{f}(oldsymbol{x}), \qquad orall oldsymbol{x} \in \mathbb{R}^n \setminus \{oldsymbol{x}_{\star}\}.$

Definition (Strict local minimum)

Given $\mathsf{f}:\mathbb{R}^n\mapsto\mathbb{R}$ a point $x_\star\in\mathbb{R}^n$ is a strict local minimum if

 $\mathsf{f}(oldsymbol{x}_{\star}) < \mathsf{f}(oldsymbol{x}), \qquad orall oldsymbol{x} \in B(oldsymbol{x}_{\star};\delta) \setminus \{oldsymbol{x}_{\star}\}.$

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・

Obviously a strict global minimum is a strict local minimum.

Unconstrained minimization

First order Necessary condition

Lemma (First order Necessary condition for local minimum)

Given $f : \mathbb{R}^n \mapsto \mathbb{R}$ satisfying the regularity assumption. If a point $x_{\star} \in \mathbb{R}^n$ is a local minimum then

$$abla \mathsf{f}(\boldsymbol{x}_{\star})^T = \mathbf{0}.$$

Proof.

Consider a generic direction d, then for δ small enough we have

$$\lambda^{-1} ig(\mathbf{x}_\star + \lambda \mathbf{d} ig) - \mathsf{f}(\mathbf{x}_\star) ig) \leq \mathsf{0}, \qquad \mathsf{0} < \lambda < \delta$$

so that

$$\lim_{\lambda \to 0} \lambda^{-1} \big(\mathsf{f}(\boldsymbol{x}_{\star} + \lambda \boldsymbol{d}) - \mathsf{f}(\boldsymbol{x}_{\star}) \big) = \nabla \mathsf{f}(\boldsymbol{x}_{\star}) \boldsymbol{d} \leq \mathsf{0},$$

because $m{d}$ is a generic direction we have $abla {\sf f}(m{x}_{\star})^T = m{0}$.

Unconstrained minimization

(3/3)

5 / 64



Proof.

The condition $\nabla f(x_*)^T = \mathbf{0}$ comes from first order necessary conditions. Consider now a generic direction d, and the finite difference:

$$rac{\mathsf{f}(oldsymbol{x}_{\star}+\lambdaoldsymbol{d})-2\mathsf{f}(oldsymbol{x}_{\star})+\mathsf{f}(oldsymbol{x}_{\star}-\lambdaoldsymbol{d})}{\lambda^2}\geq \mathsf{0}$$

by using Taylor expansion for f(x)

$$\mathsf{f}(\boldsymbol{x}_{\star} \pm \lambda \boldsymbol{d}) = \mathsf{f}(\boldsymbol{x}_{\star}) \pm \nabla \mathsf{f}(\boldsymbol{x}_{\star}) \lambda \boldsymbol{d} + \lambda^2 \boldsymbol{d}^T \nabla^2 \mathsf{f}(\boldsymbol{x}_{\star}) \boldsymbol{d} + o(\lambda^2)$$

and from the previous inequality

$$oldsymbol{d}^T
abla^2 \mathsf{f}(oldsymbol{x}_\star) oldsymbol{d} + oldsymbol{o}(\lambda^2)/\lambda^2 \geq 0$$

< □ ▶ < □

taking the limit $\lambda \to 0$ and form the arbitrariness of d we have that $\nabla^2 f(x_\star)$ must be semi-definite positive.

Unconstrained minimization

Second order sufficient condition

Lemma (Second order sufficient condition for local minimum)

Given $\mathsf{f} \in \mathsf{C}^2(\mathbb{R}^n)$ if a point $x_\star \in \mathbb{R}^n$ satisfy:

$$\mathbf{0} \
abla \mathsf{f}(oldsymbol{x}_{\star})^T = \mathbf{0};$$

2 $\nabla^2 f(x_{\star})$ is definite positive; i.e.

$$d^T
abla^2 \mathsf{f}(oldsymbol{x}_{\star}) oldsymbol{d} > \mathsf{0}, \qquad orall oldsymbol{d} \in \mathbb{R}^n \setminus \{oldsymbol{x}_{\star}\},$$

then $x_{\star} \in \mathbb{R}^n$ is a strict local minimum.

Remark

Because $abla^2 \mathsf{f}(x_\star)$ is symmetric we can write

$$\lambda_{\min} \boldsymbol{d}^T \boldsymbol{d} \leq \boldsymbol{d}^T
abla^2 \mathsf{f}(\boldsymbol{x}_\star) \boldsymbol{d} \leq \lambda_{\max} \boldsymbol{d}^T \boldsymbol{d}$$

If $\nabla^2 f(x_{\star})$ is positive definite we have $\lambda_{\min} > 0$.

Proof.

Consider now a generic direction d, and the Taylor expansion for f(x)

$$egin{aligned} \mathsf{f}(m{x}_{\star}+m{d}) &= \mathsf{f}(m{x}_{\star}) +
abla \mathsf{f}(m{x}_{\star})m{d} + m{d}^T
abla^2 \mathsf{f}(m{x}_{\star})m{d} + o(\|m{d}\|^2) \ &\geq \mathsf{f}(m{x}_{\star}) + \lambda_{min} \, \|m{d}\|^2 + o(\|m{d}\|^2) \ &\geq \mathsf{f}(m{x}_{\star}) + \lambda_{min} \, \|m{d}\|^2 \left(1 + o(\|m{d}\|^2) / \,\|m{d}\|^2
ight) \end{aligned}$$

choosing d small enough we can write

$$\mathsf{f}(oldsymbol{x}_{\star}+oldsymbol{d})\geq\mathsf{f}(oldsymbol{x}_{\star})+rac{\lambda_{min}}{2}\left\|oldsymbol{d}
ight\|^{2}>\mathsf{f}(oldsymbol{x}_{\star}),\qquadoldsymbol{d}
eq oldsymbol{0},\,\,\left\|oldsymbol{d}
ight\|\leq\delta.$$

・ロト ・回ト ・ 回ト ・ 回ト

i.e. x_{\star} is a strict minimum.

Unconstrained minimization

General iterative scheme

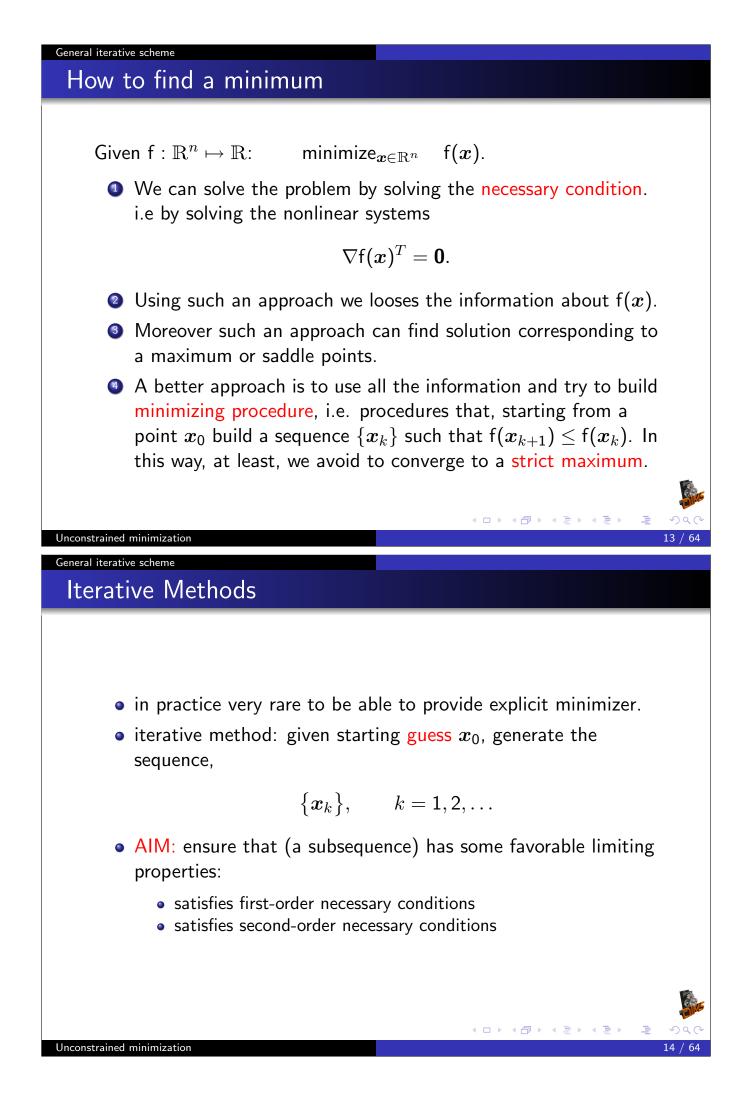
Outline

General iterative scheme
 Descent direction failure

2 Backtracking Armijo line-search

- Global convergence of backtracking Armijo line-search
- Global convergence of steepest descent
- 3 Wolfe–Zoutendijk global convergence
 - The Wolfe conditions
 - The Armijo-Goldstein conditions
- 4 Algorithms for line-search
 - Armijo Parabolic-Cubic search
 - Wolfe linesearch

64



General iterative scheme

Line-search Methods

A generic iterative minimization procedure can be sketched as follows:

- calculate a search direction p_k from x_k
- ensure that this direction is a descent direction, i.e.

$$abla \mathsf{f}(oldsymbol{x}_k)oldsymbol{p}_k < \mathsf{0}, \qquad ext{whenever }
abla \mathsf{f}(oldsymbol{x}_k)^T
eq oldsymbol{0}$$

so that, at least for small steps along p_k , the objective function f(x) will be reduced

• use line-search to calculate a suitable step-length $\alpha_k > 0$ so that

$$f(\boldsymbol{x}_k + \alpha_k \boldsymbol{p}_k) < f(\boldsymbol{x}_k).$$

• Update the point:

$$\boldsymbol{x}_{k+1} = \boldsymbol{x}_k + \alpha_k \boldsymbol{p}_k$$

▲□▶ ▲□▶ ▲ □▶ ▲ □▶

<ロ> (四) (四) (三) (三)

Unconstrained minimization

General iterative scheme

Generic minimization algorithm

Written with a pseudo-code the minimization procedure is the following algorithm:

Generic minimization algorithm

Given an initial guess x_0 , let k = 0;

while not converged do

Find a descent direction p_k at x_k ;

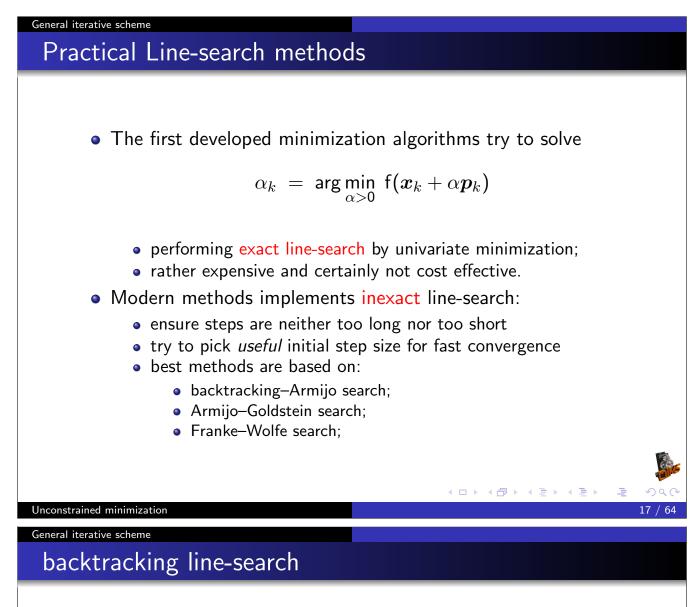
Compute a step size α_k using a line-search along p_k .

Set $x_{k+1} = x_k + \alpha_k p_k$ and increase k by 1.

end while

The crucial points which differentiate the algorithms are:

- **1** The computation of the direction p_k ;
- 2 The computation of the step size α_k .



To obtain a monotone decreasing sequence we can use the following algorithm:

Backtracking line-search

```
Given \alpha_{init} (e.g., \alpha_{init} = 1);

Given \tau \in (0, 1) typically \tau = 0.5;

Let \alpha^{(0)} = \alpha_{init};

while not f(x_k + \alpha^{(\ell)}p_k) < f(x_k) do

set \alpha^{(\ell+1)} = \tau \alpha^{(\ell)};

increase \ell by 1;

end while

Set \alpha_k = \alpha^{(\ell)}.
```

To be effective the previous algorithm should terminate in a finite number of steps. The next lemma assure that if p_k is a descent direction then the algorithm terminate.

<ロ> <同> <同> < 回> < 同> < □> < □>

General iterative scheme

Existence of a descent step

Lemma (Descent Lemma)

Suppose that f(x) satisfy the standard assumptions and that p_k is a descent direction at x_k , i.e. $\nabla f(x_k)p_k < 0$. Then we have

$$\mathsf{f}(oldsymbol{x}_k+lphaoldsymbol{p}_k)\leq\mathsf{f}(oldsymbol{x}_k)+lpha
abla\mathsf{f}(oldsymbol{x}_k)oldsymbol{p}_k+rac{\gamma}{2}lpha^2\,\|oldsymbol{p}_k\|^2$$

for all $\alpha \in [0, \alpha_k^{\star}]$ where $\alpha_k^{\star} = \frac{-2 \nabla f(\boldsymbol{x}_k) \boldsymbol{p}_k}{\gamma \left\| \boldsymbol{p}_k \right\|^2} > 0$

Assumption (Regularity assumption)

We assume $f \in C^1(\mathbb{R}^n)$ with Lipschitz continuous gradient, i.e. there exists $\gamma > 0$ such that

$$\|
abla \mathsf{f}(oldsymbol{x}) -
abla \mathsf{f}(oldsymbol{y})\| \leq \gamma \, \|oldsymbol{x} - oldsymbol{y}\| \,, \qquad orall oldsymbol{x}$$

$$\|, \quad \forall \boldsymbol{x}, \boldsymbol{y} \in \mathbb{R}^n$$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Unconstrained minimization

General iterative scheme

Existence of a descent step

Proof.

Let be $g(\alpha) = f(\boldsymbol{x}_k + \alpha \boldsymbol{p}_k)$ then we can write:

$$egin{aligned} g(lpha) - g(0) &= \int_0^lpha g'(\xi) d\xi = lpha g'(0) + \int_0^lpha \left(g'(\xi) - g'(0)
ight) d\xi \ &= lpha
abla f(oldsymbol{x}_k) oldsymbol{p}_k + \int_0^lpha \left(
abla f(oldsymbol{x}_k + \xi oldsymbol{p}_k) -
abla f(oldsymbol{x}_k)
ight) oldsymbol{p}_k d\xi \ &\leq lpha
abla f(oldsymbol{x}_k) oldsymbol{p}_k + \int_0^lpha \|
abla f(oldsymbol{x}_k + \xi oldsymbol{p}_k) -
abla f(oldsymbol{x}_k) \| \|oldsymbol{p}_k\| d\xi \ &\leq lpha
abla f(oldsymbol{x}_k) oldsymbol{p}_k + \|oldsymbol{p}_k\|^2 \int_0^lpha \gamma \xi \, d\xi \end{aligned}$$

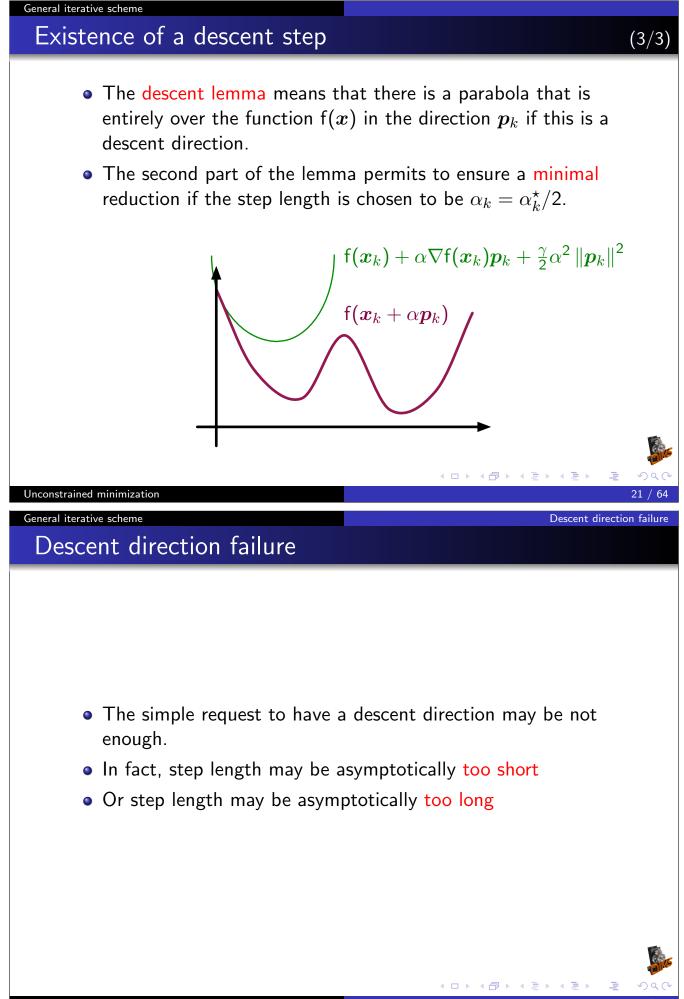
$$\leq lpha
abla \mathsf{f}(oldsymbol{x}_k)oldsymbol{p}_k + rac{\gamma lpha^2}{2} \|oldsymbol{p}_k\|^2 = lpha \left[
abla \mathsf{f}(oldsymbol{x}_k)oldsymbol{p}_k + rac{\gamma lpha}{2} \|oldsymbol{p}_k\|^2
ight].$$

now the lemma follows trivially.

Unconstrained minimization

19 / 64

(2/3)

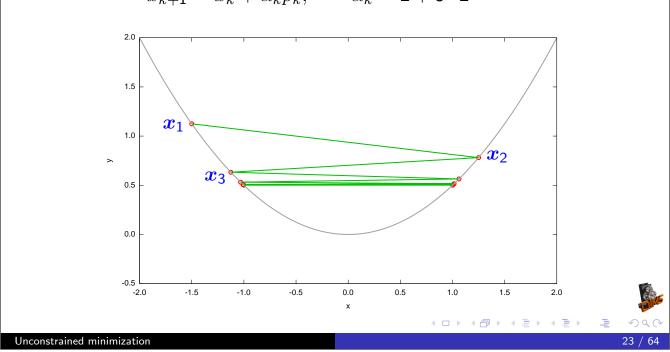


Descent direction failure

General iterative scheme

Steps may be too long

The objective function is $f(x) = x^2$ and the iterates are generated by the descent directions $p_k = (-1)^{k+1}$ from $x_0 = 2$ with:



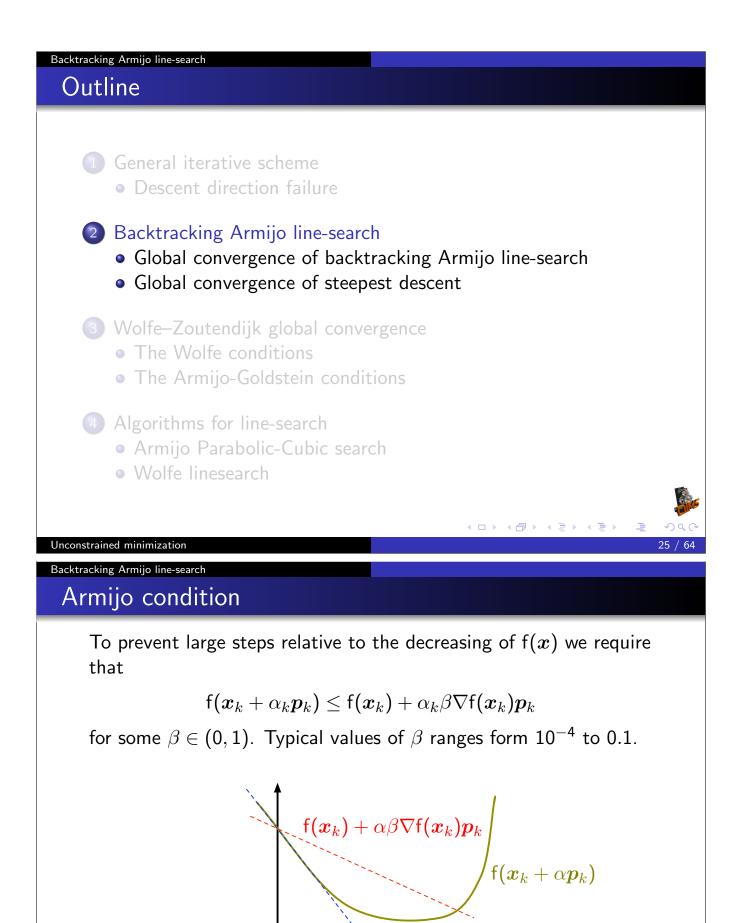
$x_{k+1} = x_k + \alpha_k p_k, \qquad \alpha_k = 2 + 3 \cdot 2^{-(k+1)}$

General iterative scheme

Steps may be too short

The objective function is $f(x) = x^2$ and the iterates are generated by the descent directions $p_k = -1$ from $x_0 = 2$ with:

$$x_{k+1} = x_k + \alpha_k p_k, \qquad \alpha_k = 2^{-(k+1)}$$



 $\mathsf{f}(oldsymbol{x}_k) + lpha
abla \mathsf{f}(oldsymbol{x}_k) oldsymbol{p}_k$

(口) 《圖》 《圖》 《圖》

Backtracking Armijo line-search

Given α_{init} (e.g., $\alpha_{init} = 1$); Given $\tau \in (0, 1)$ typically $\tau = 0.5$; Let $\alpha^{(0)} = \alpha_{init}$; while not $f(x_k + \alpha^{(\ell)}p_k) \le f(x_k) + \alpha^{(\ell)}\beta\nabla f(x_k)p_k$ do set $\alpha^{(\ell+1)} = \tau \alpha^{(\ell)}$; increase ℓ by 1; end while Set $\alpha_k = \alpha^{(\ell)}$.

- Backtracking Armijo line-search prevents the step from getting too large.
- Now the question is: will the backtracking Armijo line-search terminate in a finite number of steps ?

<ロト < 回 > < 回 > < 回 > < 回 >

Unconstrained minimization

Backtracking Armijo line-search

Finite termination of Armijo line-search

Theorem (Finite termination of Armijo linesearch)

Suppose that f(x) satisfy the standard assumptions and $\beta \in (0,1)$ and that p_k is a descent direction at x_k . Then the Armijo condition

$$\mathsf{f}(oldsymbol{x}_k+lpha_koldsymbol{p}_k)\leq\mathsf{f}(oldsymbol{x}_k)+lpha_keta
abla \nabla\mathsf{f}(oldsymbol{x}_k)oldsymbol{p}_k$$

is satisfied for all $\alpha_k \in [0, \omega_k]$ where $\omega_k = \frac{2(\beta - 1) \nabla f(\boldsymbol{x}_k) \boldsymbol{p}_k}{\gamma \|\boldsymbol{p}_k\|^2}$

Assumption (Regularity assumption)

We assume $f \in C^1(\mathbb{R}^n)$ with Lipschitz continuous gradient, i.e. there exists $\gamma > 0$ such that

 $\|
abla \mathsf{f}(oldsymbol{x}) -
abla \mathsf{f}(oldsymbol{y})\| \leq \gamma \, \|oldsymbol{x} - oldsymbol{y}\| \,, \qquad orall oldsymbol{x}, oldsymbol{y} \in \mathbb{R}^n$

Finite termination of Armijo line-search

To prove finite termination we need the following Taylor expansion due to the regularity assumption:

$$f(\boldsymbol{x} + \alpha \boldsymbol{p}) = f(\boldsymbol{x}) + \alpha \nabla f(\boldsymbol{x}) \boldsymbol{p} + E$$
 where $|E| \leq \frac{\gamma}{2} \alpha^2 \|\boldsymbol{p}\|^2$

Proof.

Backtracking Armijo line-search

If $\alpha \le \omega_k$ we have $\alpha \gamma \| \boldsymbol{p}_k \|^2 \le 2(\beta - 1) \nabla f(\boldsymbol{x}_k) \boldsymbol{p}_k$ and by using Taylor expansion

$$egin{aligned} \mathsf{f}(oldsymbol{x}_k + lpha oldsymbol{p}_k) &\leq \mathsf{f}(oldsymbol{x}_k) + lpha
abla \mathsf{f}(oldsymbol{x}_k) oldsymbol{p}_k + rac{\gamma}{2} lpha^2 \|oldsymbol{p}_k\|^2 \ &\leq \mathsf{f}(oldsymbol{x}_k) + lpha
abla \mathsf{f}(oldsymbol{x}_k) oldsymbol{p}_k + lpha (eta - 1)
abla \mathsf{f}(oldsymbol{x}_k) oldsymbol{p}_k \ &\leq \mathsf{f}(oldsymbol{x}_k) + lpha eta
abla
abla \mathsf{f}(oldsymbol{x}_k) oldsymbol{p}_k \end{aligned}$$

Unconstrained minimization

Backtracking Armijo line-search

Finite termination of Armijo line-search

Corollary (Finite termination of Armijo linesearch)

Suppose that f(x) satisfy the standard assumptions and $\beta \in (0, 1)$ and that p_k is a descent direction at x_k . Then the step-size generated by then backtracking-Armijo line-search terminates with

 $lpha_k \geq \min \left\{ lpha_{\textit{init}}, au \omega_k
ight\}, \qquad \omega_k = 2(eta - 1)
abla \mathsf{f}(m{x}_k) m{p}_k / (\gamma \|m{p}_k\|^2)$

Proof.

Line-search will terminate as soon as $\alpha^{(\ell)} \leq \omega_k$:

- **1** May be that α_{init} satisfies the Armijo condition $\Rightarrow \alpha_k = \alpha_{init}$.
- Otherwise in the last line-search iteration we have

$$\alpha^{(\ell-1)} > \omega_k, \qquad \alpha_k = \alpha^{(\ell)} = \tau \alpha^{(\ell-1)} > \tau \omega_k.$$

Combining these 2 cases gives the required result.

Backtracking Armijo line-search

Backtracking-Armijo line-search

- The previous analysis permit to say that Backtracking-Armijo line-search ends in a finite number of steps.
- The line-search produce a step length not too long due to the condition

$$f(\boldsymbol{x}_k + \alpha_k \boldsymbol{p}_k) \leq f(\boldsymbol{x}_k) + \alpha_k \beta \nabla f(\boldsymbol{x}_k) \boldsymbol{p}_k$$

▲ □ ▶ ▲ □ ▶ ▲

Global convergence of backtracking Armijo line-search

- The line-search produce a step length not too short due to the finite termination theorem.
- Armijo line-search can be improved by adding some further requirements on the step length acceptance criteria.

Unconstrained minimization

Backtracking Armijo line-search

Global convergence

Theorem (Global convergence)

Suppose that f(x) satisfy the standard assumptions, then, for the iterates generated by the Generic minimization algorithm with backtracking Armijo line-search either:

•
$$\nabla f(\boldsymbol{x}_k)^T = \boldsymbol{0}$$
 for some $k \geq 0$;

2 or
$$\lim_{k\to\infty} \mathsf{f}(x_k) = -\infty;$$

3 or
$$\lim_{k o\infty} |
abla \mathsf{f}(\boldsymbol{x}_k)\boldsymbol{p}_k| \min\left\{1, \|\boldsymbol{p}_k\|^{-1}
ight\} = 0.$$

Remark

If the theorem, point 1 means that we found a stationary point in a finite number of steps. Point 2 means that function f(x) is unbounded below, so that a minimum does not exists. Point 3 alone do not imply convergence, but if $\nabla f(x_k)$ and p_k do not become orthogonal and $||p_k|| \neq 0$ then $||\nabla f(x_k)|| \rightarrow 0$.

▲□▶ ▲□▶ ▲□▶ ▲□▶ →

▲□▶ ▲圖▶ ▲厘▶ ▲厘▶

Global convergence of backtracking Armijo line-search

-2

(2/3)

33 / 64

(1/3)

Proof.

Assume points 1 and 2 are not satisfied, then we prove point 3. Consider

$$\mathsf{f}(\boldsymbol{x}_{k+1}) \leq \mathsf{f}(\boldsymbol{x}_k) + lpha_k eta
abla \mathsf{f}(\boldsymbol{x}_k) \boldsymbol{p}_k \leq \mathsf{f}(\boldsymbol{x}_0) + \sum_{j=0}^k lpha_j eta
abla \mathsf{f}(\boldsymbol{x}_j) \boldsymbol{p}_j$$

by the fact that p_k is a descent direction we have that the series:

$$\sum_{j=0}^{\infty} \alpha_j \left| \nabla \mathsf{f}(\boldsymbol{x}_j) \boldsymbol{p}_j \right| \leq \beta^{-1} \lim_{k \to \infty} \left[\mathsf{f}(\boldsymbol{x}_0) - \mathsf{f}(\boldsymbol{x}_{k+1}) \right] < \infty$$

and then

$$\lim_{j\to\infty}\alpha_j \left|\nabla \mathsf{f}(\boldsymbol{x}_j)\boldsymbol{p}_j\right| = \mathsf{0}$$

Unconstrained minimization

Backtracking Armijo line-search

Proof.

Recall that

$$\alpha_k \geq \min \left\{ \alpha_{\text{init}}, \tau \omega_k \right\}, \qquad \omega_k = 2(\beta - 1) \nabla f(\boldsymbol{x}_k) \boldsymbol{p}_k / (\gamma \| \boldsymbol{p}_k \|^2)$$

and consider the two index set:

$$\mathcal{K}_1 = \{k \mid \alpha_k = \alpha_{\mathsf{init}}\}, \qquad \mathcal{K}_2 = \{k \mid \alpha_k < \alpha_{\mathsf{init}}\},\$$

Obviously $\mathbb{N} = \mathcal{K}_1 \cup \mathcal{K}_2$ and from $\lim_{k\to\infty} \alpha_k |\nabla f(x_k)p_k| = 0$ we have

$$\lim_{k \in \mathcal{K}_1 \to \infty} \alpha_k |\nabla f(\boldsymbol{x}_k) \boldsymbol{p}_k| = 0, \tag{A}$$

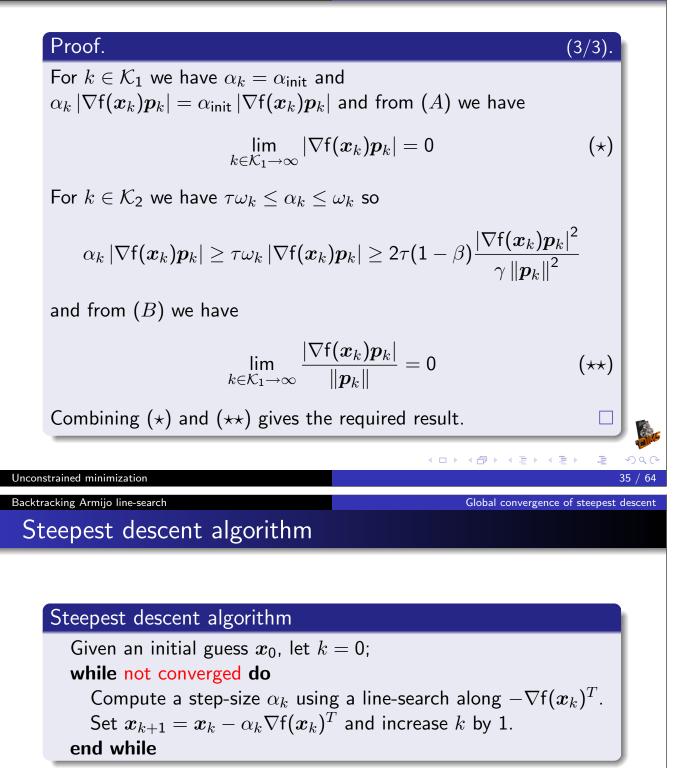
$$\lim_{k\in\mathcal{K}_2 o\infty}lpha_k |
abla {\mathsf{f}}(oldsymbol{x}_k)oldsymbol{p}_k|={\mathsf{0}},$$

Unconstrained minimization

(B)

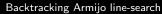
æ

Global convergence of backtracking Armijo line-search



- The steepest descent algorithm is simply the generic minimization algorithm with search direction the opposite of the gradient in x_k .
- The search direction $-\nabla f(x_k)^T$ is always a descent direction unless the point x_k is a stationary point.

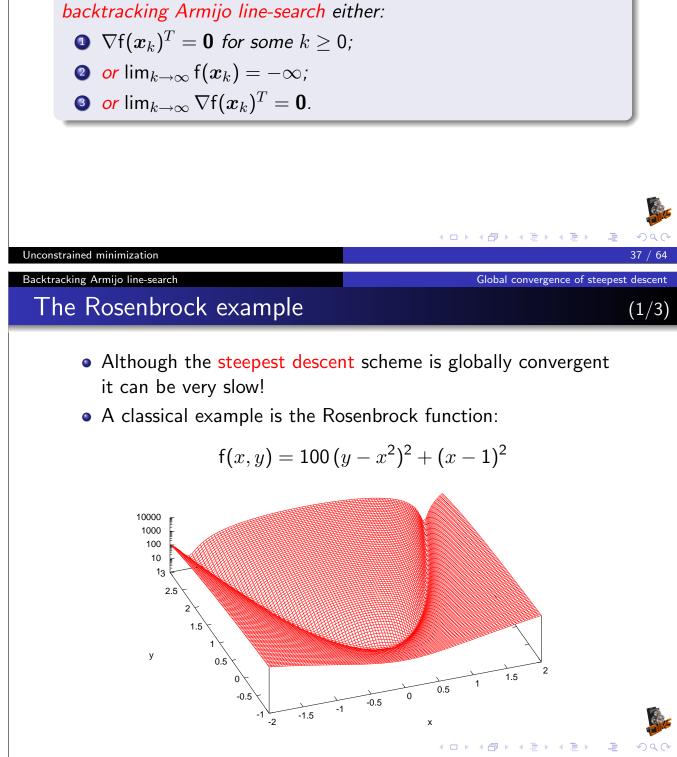
<ロ> <日> <日> <日> <日> <日> <日> <日

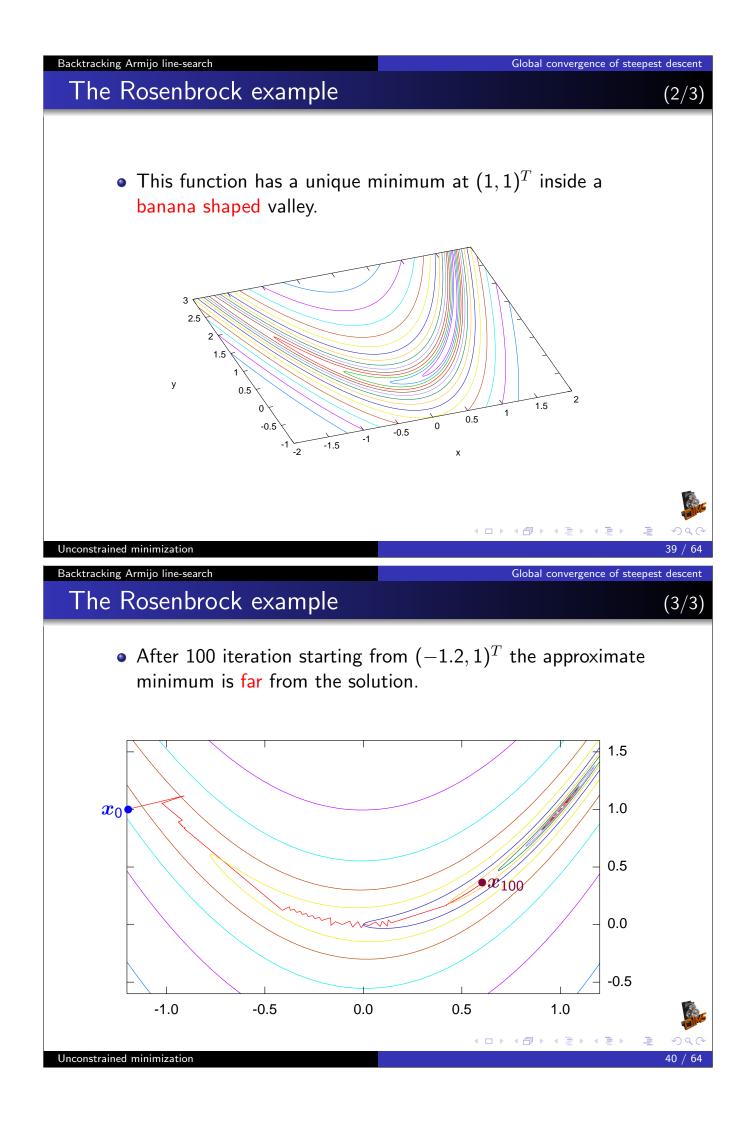


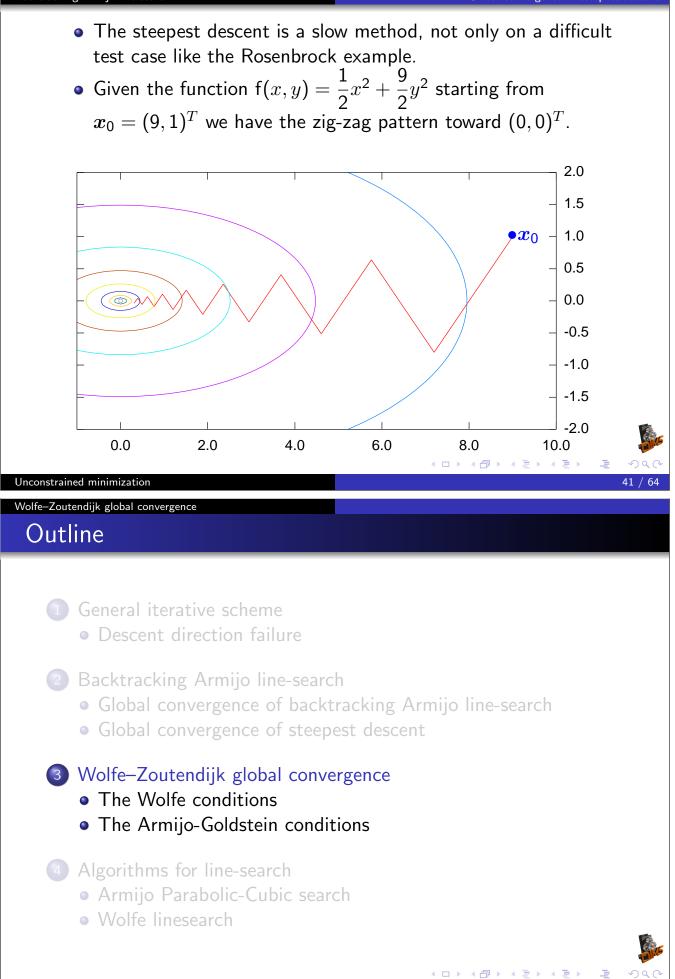
Global convergence of steepest descent

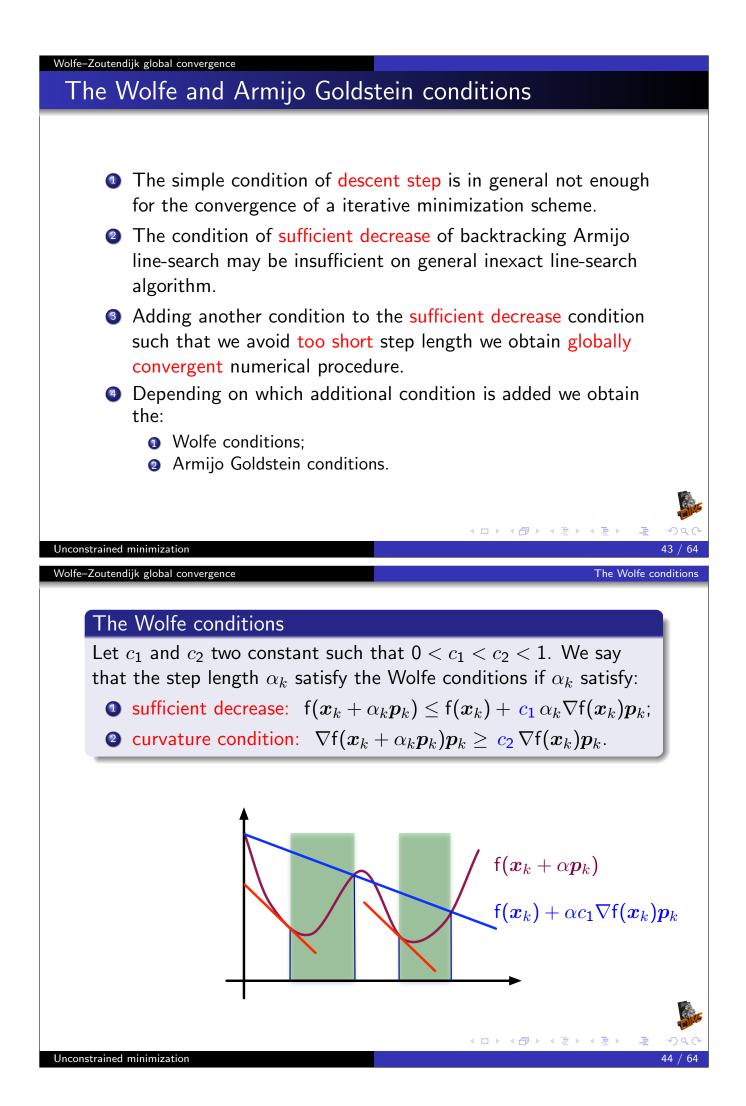
Corollary (Global convergence of steepest descent)

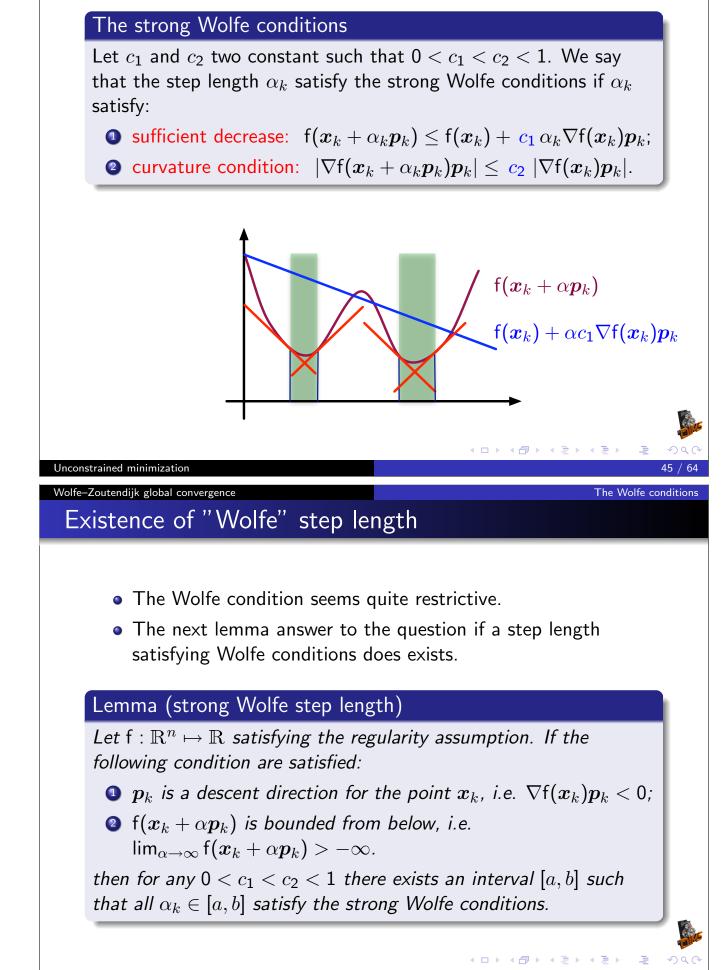
Suppose that f(x) satisfy the standard assumptions, then, for the iterates generated by the steepest descent algorithm with backtracking Armijo line-search either:











Wolfe–Zoutendijk global convergence

Proof.

Define $\ell(\alpha) = f(\boldsymbol{x}_k) + \alpha c_1 \nabla f(\boldsymbol{x}_k) \boldsymbol{p}_k$ and $g(\alpha) = f(\boldsymbol{x}_k + \alpha \boldsymbol{p}_k)$. From $\lim_{\alpha \to \infty} \ell(\alpha) = -\infty$ and from condition 1 it follows that there exists $\alpha_* > 0$ such that

$$\ell(\alpha_{\star}) = g(\alpha_{\star})$$
 and $\ell(\alpha) > g(\alpha), \quad \forall \alpha \in (0, \alpha_{\star})$

so that all step length $\alpha \in (0, \alpha_{\star})$ satisfy strong Wolfe condition 1. Because $\ell(0) = g(0)$ form Cauchy-Rolle theorem there exists $\alpha_{\star\star} \in (0, \alpha_{\star})$ such that

$$g'(\alpha_{\star\star}) = \ell'(\alpha_{\star\star}) \qquad \Rightarrow$$

$$0 >
abla \mathsf{f}(\boldsymbol{x}_k + lpha_{\star\star} \boldsymbol{p}_k) \boldsymbol{p}_k = c_1
abla \mathsf{f}(\boldsymbol{x}_k) \boldsymbol{p}_k > c_2
abla \mathsf{f}(\boldsymbol{x}_k) \boldsymbol{p}_k$$

by continuity we find an interval around $\alpha_{\star\star}$ with step lengths satisfying strong Wolfe conditions.

Unconstrained minimization

The Wolfe conditions

< □ > < □ > < □ > < □ >

Wolfe–Zoutendijk global convergence

The Zoutendijk condition

Theorem (Zoutendijk)

Let $f : \mathbb{R}^n \mapsto \mathbb{R}$ satisfying the regularity assumption and bounded from below, i.e.

$$\inf_{oldsymbol{x}\in\mathbb{R}^n} \mathsf{f}(oldsymbol{x}) > -\infty$$

Let $\{x_k\}$, $k = 0, 1, ..., \infty$ generated by a generic minimization algorithm where line-search satisfy Wolfe conditions, then

$$\sum_{k=1}^{\infty} (\cos heta_k)^2 \left\|
abla \mathsf{f}(oldsymbol{x}_k)^T
ight\|^2 < +\infty$$

where

$$\cos heta_k = rac{-
abla \mathsf{f}(oldsymbol{x}_k)oldsymbol{p}_k}{\|
abla \mathsf{f}(oldsymbol{x}_k)^T\|\,\|oldsymbol{p}_k\|}$$

(1/3)

<ロ > < 四 > < 回 > < 回 > < 回 > < 回 > <

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Proof.

Using the second condition of Wolfe

$$abla \mathsf{f}(oldsymbol{x}_k+lpha_koldsymbol{p}_k)oldsymbol{p}_k \geq c_2
abla \mathsf{f}(oldsymbol{x}_k)oldsymbol{p}_k$$

$$ig(
abla \mathsf{f}(oldsymbol{x}_k + lpha_k oldsymbol{p}_k) -
abla \mathsf{f}(oldsymbol{x}_k) ig) oldsymbol{p}_k \geq (c_2 - 1)
abla \mathsf{f}(oldsymbol{x}_k) oldsymbol{p}_k$$

by using Lipschitz regularity

$$ig\|
abla \mathsf{f}(oldsymbol{x}_k+lpha_koldsymbol{p}_k)-
abla \mathsf{f}(oldsymbol{x}_k)ig)oldsymbol{p}_kig\| \leq \gamma \, \|oldsymbol{x}_{k+1}-oldsymbol{x}_k\|\,\|oldsymbol{p}_k\| \ = lpha_k\gamma \,\|oldsymbol{p}_k\|^2$$

and using both inequality we obtain the estimate for α_k :

$$lpha_k \geq rac{c_2-1}{\gamma \left\|oldsymbol{p}_k
ight\|^2}
abla \mathsf{f}(oldsymbol{x}_k)oldsymbol{p}_k$$

Unconstrained minimization

Wolfe–Zoutendijk global convergence

Proof.

Using the first condition of Wolfe and estimate of α_k

$$egin{aligned} \mathsf{f}(oldsymbol{x}_k + lpha_k oldsymbol{p}_k) &\leq \mathsf{f}(oldsymbol{x}_k) + lpha_k c_1
abla \mathsf{f}(oldsymbol{x}_k) oldsymbol{p}_k & \leq \mathsf{f}(oldsymbol{x}_k) - rac{c_1(1-c_2)}{\gamma \left\|oldsymbol{p}_k
ight\|^2}ig(
abla \mathsf{f}(oldsymbol{x}_k) oldsymbol{p}_kig)^2 \end{aligned}$$

setting $A=c_1(1-c_2)/\gamma$ and using the definition of $\cos heta_k$

$$\mathsf{f}(oldsymbol{x}_{k+1}) = \mathsf{f}(oldsymbol{x}_k + lpha_k oldsymbol{p}_k) \leq \mathsf{f}(oldsymbol{x}_k) - A(\cos heta_k)^2 \left\|
abla \mathsf{f}(oldsymbol{x}_k)^T
ight\|^2$$

and by induction

$$\mathsf{f}(oldsymbol{x}_{k+1}) \leq \mathsf{f}(oldsymbol{x}_1) - A \sum_{j=1}^k (\cos heta_j)^2 \left\|
abla \mathsf{f}(oldsymbol{x}_j)^T
ight\|^2$$

Unconstrained minimization

49 / 64

The Wolfe conditions

(2/3)

51

The Wolfe conditions

(3/3)

<ロト < 回 > < 回 > < 回 > < 回 >

▲□▶ ▲圖▶ ▲厘▶ ▲厘▶

Proof.

The function f(x) is bounded from below, i.e.

$$\inf_{oldsymbol{x}\in\mathbb{R}^n} \mathsf{f}(oldsymbol{x}) > -\infty$$

so that

$$A\sum_{j=1}^{\kappa}(\cos heta_j)^2 \left\|
abla \mathsf{f}(oldsymbol{x}_j)^T
ight\|^2 \leq \mathsf{f}(oldsymbol{x}_1) - \mathsf{f}(oldsymbol{x}_{k+1})$$

and

$$A\sum_{j=1}^{\infty} (\cos \theta_j)^2 \left\| \nabla \mathsf{f}(\boldsymbol{x}_j)^T \right\|^2 \leq \mathsf{f}(\boldsymbol{x}_1) - \lim_{k \to \infty} \mathsf{f}(\boldsymbol{x}_{k+1}) < +\infty$$

Unconstrained minimization

Wolfe–Zoutendijk global convergence

Corollary (Zoutendijk condition)

Let $f : \mathbb{R}^n \mapsto \mathbb{R}$ satisfying the regularity assumption and bounded from below. Let $\{x_k\}$, $k = 0, 1, ..., \infty$ generated by a generic minimization algorithm where line-search satisfy Wolfe conditions, then

$$\cos heta_k \left\|
abla \mathsf{f}(oldsymbol{x}_k)^T
ight\| o \mathsf{0} \qquad extsf{where} \qquad \cos heta_k = rac{-
abla \mathsf{f}(oldsymbol{x}_k)oldsymbol{p}_k}{\|
abla \mathsf{f}(oldsymbol{x}_k)^T\| \, \|oldsymbol{p}_k\|}$$

Remark

If $\cos \theta_k \ge \delta > 0$ for all k from the Zoutendijk condition we have:

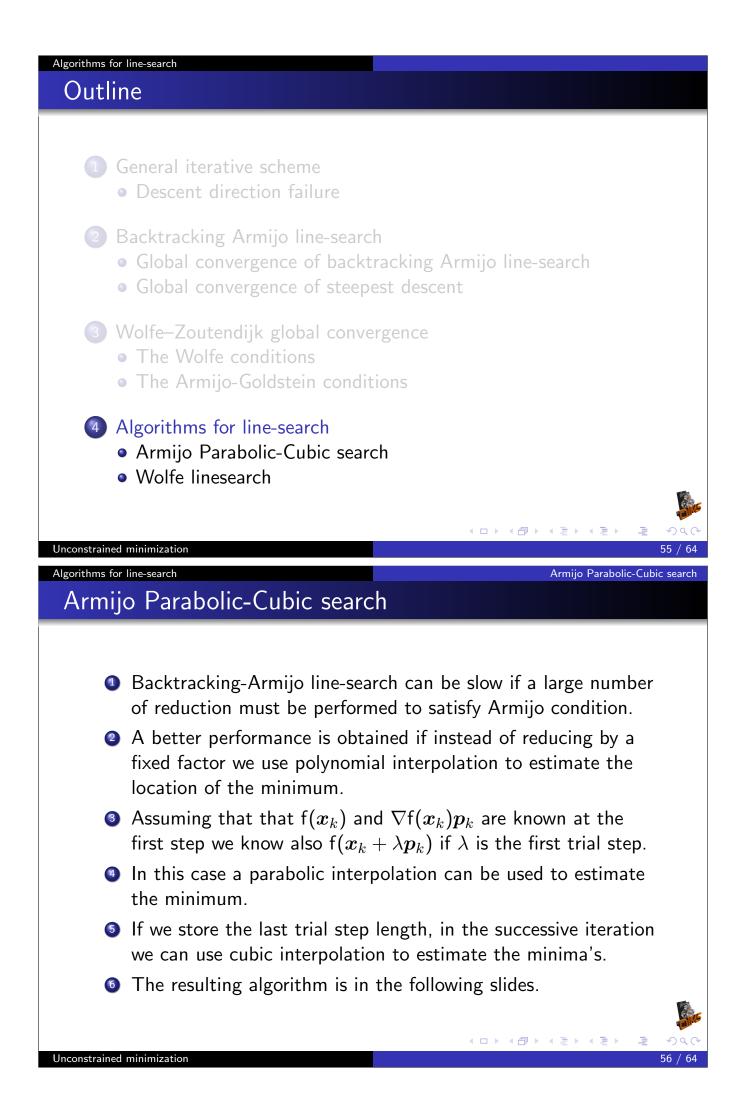
$$\left\| \nabla \mathsf{f}(\boldsymbol{x}_k)^T \right\| \to \mathsf{0}$$

i.e. the generic minimization algorithm where line-search satisfy Wolfe conditions converge to a stationary point.

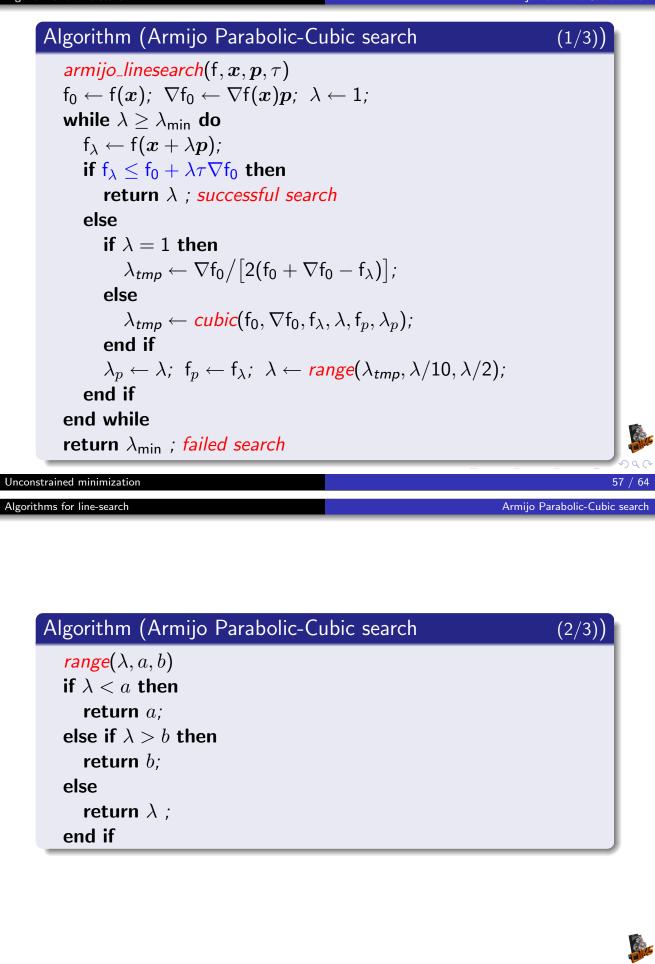


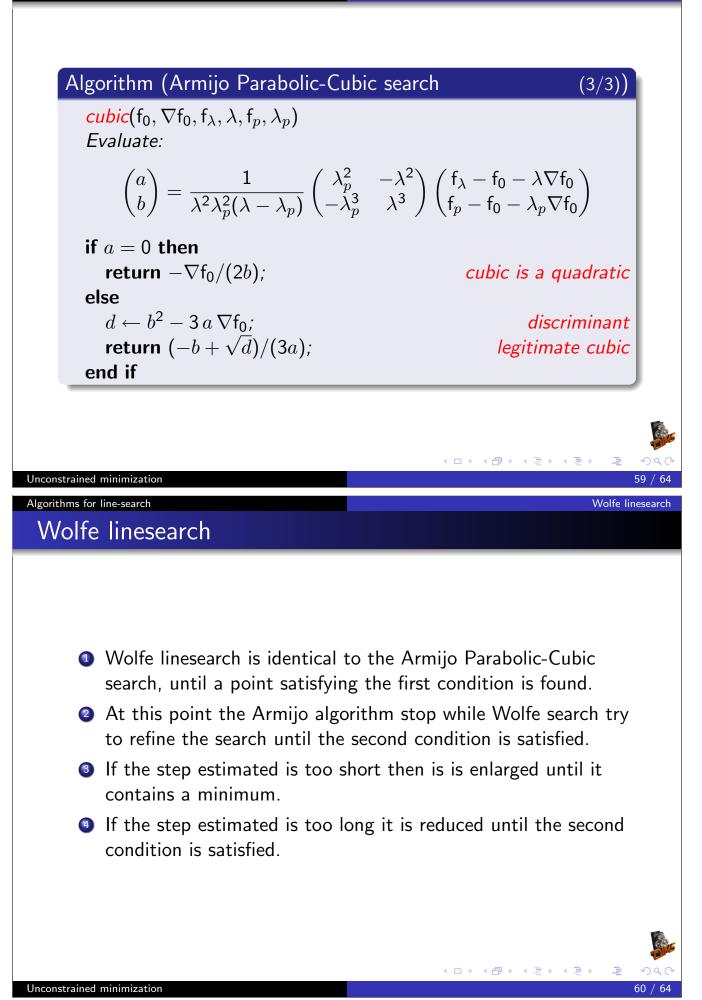
Unconstrained minimization

54 / <u>64</u>

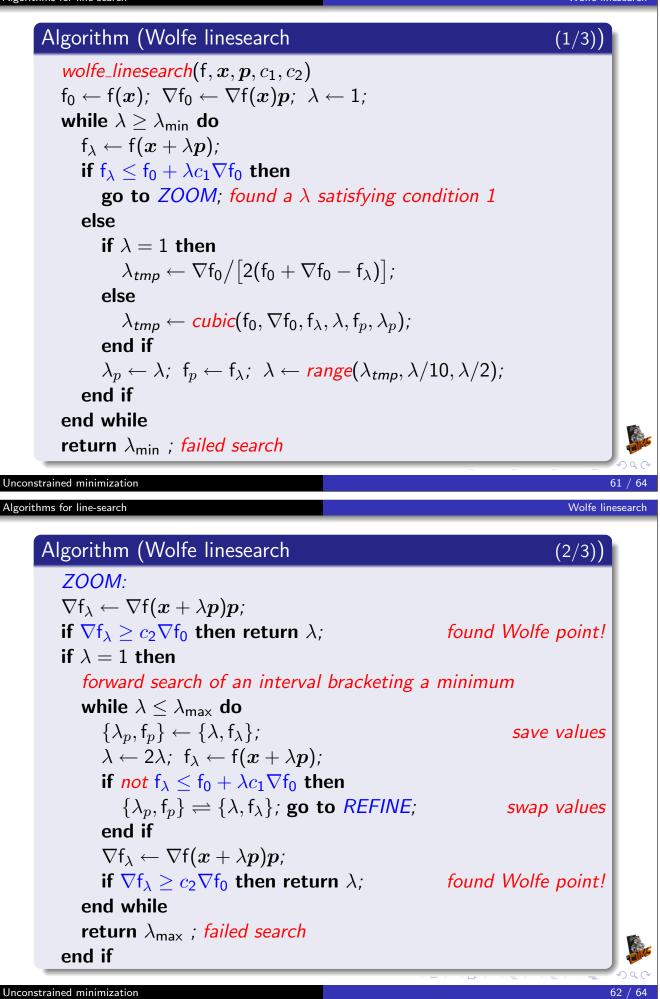


Algorithms for line-search





Algorithms for line-search



(3/3)

Algorithm (Wolfe linesearch

REFINE: $\{\lambda_{lo}, \mathsf{f}_{lo}, \nabla \mathsf{f}_{lo}\} \leftarrow \{\lambda, \mathsf{f}_{\lambda}, \nabla \mathsf{f}_{\lambda}\}; \ \Delta \leftarrow \lambda_p - \lambda_{lo};$ while $\Delta > \epsilon$ do $\delta \lambda \leftarrow \Delta^2 \nabla f_{lo} / [2(f_{lo} + \nabla f_{lo} \Delta - f_p)];$ $\delta \lambda \leftarrow range(\delta \lambda, 0.2\Delta, 0.8\Delta);$ $\lambda \leftarrow \lambda_{lo} + \delta \lambda$; $f_{\lambda} \leftarrow f(x + \lambda p)$; if $f_{\lambda} \leq f_0 + \lambda c_1 \nabla f_0$ then $\nabla f_{\lambda} \leftarrow \nabla f(\boldsymbol{x} + \lambda \boldsymbol{p})\boldsymbol{p};$ if $\nabla f_{\lambda} > c_2 \nabla f_0$ then return λ ; found Wolfe point! $\{\lambda_{lo}, f_{lo}, \nabla f_{lo}\} \leftarrow \{\lambda, f_{\lambda}, \nabla f_{\lambda}\}; \ \Delta \leftarrow \Delta - \delta \lambda;$ else $\{\lambda_n, f_n\} \leftarrow \{\lambda, f_\lambda\}; \ \Delta \leftarrow \delta \lambda;$ end if end while return λ ; failed search

Unconstrained minimization

References

References

 J. Stoer and R. Bulirsch Introduction to numerical analysis Springer-Verlag, Texts in Applied Mathematics, 12, 2002.
 J. E. Dennis, Jr. and Robert B. Schnabel Numerical Methods for Unconstrained Optimization and

Nonlinear Equations

SIAM, Classics in Applied Mathematics, 16, 1996.

▲□▶ ▲□▶ ▲ 国▶ ▲ 国▶

63 / 64