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The problem (1/3)

Given f : Rn 7→ R:

minimize
x∈Rn

f(x)

the following regularity about f(x) is assumed in the following:

Assumption (Regularity assumption)

We assume f ∈ C1(Rn) with Lipschitz continuous gradient, i.e.
there exists γ > 0 such that∥∥∇f(x)T −∇f(y)T

∥∥ ≤ γ ‖x− y‖ , ∀x,y ∈ Rn
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The problem (2/3)

Definition (Global minimum)

Given f : Rn 7→ R a point x? ∈ Rn is a global minimum if

f(x?) ≤ f(x), ∀x ∈ Rn.

Definition (Local minimum)

Given f : Rn 7→ R a point x? ∈ Rn is a local minimum if

f(x?) ≤ f(x), ∀x ∈ B(x?; δ).

Obviously a global minimum is a local minimum. Find a global
minimum in general is not an easy task. The algorithms presented
in the sequel will approximate local minima’s.
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The problem (3/3)

Definition (Strict global minimum)

Given f : Rn 7→ R a point x? ∈ Rn is a strict global minimum if

f(x?) < f(x), ∀x ∈ Rn \ {x?}.

Definition (Strict local minimum)

Given f : Rn 7→ R a point x? ∈ Rn is a strict local minimum if

f(x?) < f(x), ∀x ∈ B(x?; δ) \ {x?}.

Obviously a strict global minimum is a strict local minimum.
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First order Necessary condition

Lemma (First order Necessary condition for local minimum)

Given f : Rn 7→ R satisfying the regularity assumption. If a point
x? ∈ Rn is a local minimum then

∇f(x?)
T = 0.

Proof.

Consider a generic direction d, then for δ small enough we have

λ−1
(
f(x? + λd)− f(x?)

)
≤ 0, 0 < λ < δ

so that

lim
λ→0

λ−1
(
f(x? + λd)− f(x?)

)
= ∇f(x?)d ≤ 0,

because d is a generic direction we have ∇f(x?)
T = 0.
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1 The first order necessary condition do not discriminate
maximum, minimum, or saddle points.

2 To discriminate maximum and minimum we need more
information, e.g. second order derivative of f(x).

3 With second order derivative we can build necessary and
sufficient condition for a minima.

4 In general using only first and second order derivative at the
point x? it is not possible to deduce a necessary and sufficient
condition for a minima.
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Second order Necessary condition

Lemma (Second order Necessary condition for local minimum)

Given f ∈ C2(Rn) if a point x? ∈ Rn is a local minimum then
∇f(x?)

T = 0 and ∇2f(x?) is semi-definite positive, i.e.

dT∇2f(x?)d ≥ 0, ∀d ∈ Rn

Example

This condition is only, necessary, in fact consider f(x) = x 2
1 − x 3

2 ,

∇f(x) =
(
2x1,−3x 2

2

)
, ∇2f(x) =

(
2 0
0 −6x2

)
for the point x? = 0 we have ∇f(0) = 0 and ∇2f(0) semi-definite
positive, but 0 is a saddle point not a minimum.
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Proof.

The condition ∇f(x?)
T = 0 comes from first order necessary

conditions. Consider now a generic direction d, and the finite
difference:

f(x? + λd)− 2f(x?) + f(x? − λd)

λ2
≥ 0

by using Taylor expansion for f(x)

f(x? ± λd) = f(x?)±∇f(x?)λd + λ2dT∇2f(x?)d + o(λ2)

and from the previous inequality

dT∇2f(x?)d + o(λ2)/λ2 ≥ 0

taking the limit λ→ 0 and form the arbitrariness of d we have
that ∇2f(x?) must be semi-definite positive.
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Second order sufficient condition

Lemma (Second order sufficient condition for local minimum)

Given f ∈ C2(Rn) if a point x? ∈ Rn satisfy:

1 ∇f(x?)
T = 0;

2 ∇2f(x?) is definite positive; i.e.

dT∇2f(x?)d > 0, ∀d ∈ Rn \ {x?}

then x? ∈ Rn is a strict local minimum.

Remark

Because ∇2f(x?) is symmetric we can write

λmind
T d ≤ dT∇2f(x?)d ≤ λmaxd

T d

If ∇2f(x?) is positive definite we have λmin > 0.
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Proof.

Consider now a generic direction d, and the Taylor expansion for
f(x)

f(x? + d) = f(x?) +∇f(x?)d + dT∇2f(x?)d + o(‖d‖2)

≥ f(x?) + λmin ‖d‖2 + o(‖d‖2)

≥ f(x?) + λmin ‖d‖2
(
1 + o(‖d‖2)/ ‖d‖2

)
choosing d small enough we can write

f(x? + d) ≥ f(x?) +
λmin

2
‖d‖2 > f(x?), d 6= 0, ‖d‖ ≤ δ.

i.e. x? is a strict minimum.
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General iterative scheme

How to find a minimum

Given f : Rn 7→ R: minimizex∈Rn f(x).

1 We can solve the problem by solving the necessary condition.
i.e by solving the nonlinear systems

∇f(x)T = 0.

2 Using such an approach we looses the information about f(x).

3 Moreover such an approach can find solution corresponding to
a maximum or saddle points.

4 A better approach is to use all the information and try to build
minimizing procedure, i.e. procedures that, starting from a
point x0 build a sequence {xk} such that f(xk+1) ≤ f(xk). In
this way, at least, we avoid to converge to a strict maximum.
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General iterative scheme

Iterative Methods

in practice very rare to be able to provide explicit minimizer.

iterative method: given starting guess x0, generate the
sequence, {

xk

}
, k = 1, 2, . . .

AIM: ensure that (a subsequence) has some favorable limiting
properties:

satisfies first-order necessary conditions
satisfies second-order necessary conditions
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General iterative scheme

Line-search Methods

A generic iterative minimization procedure can be sketched as
follows:

calculate a search direction pk from xk

ensure that this direction is a descent direction, i.e.

∇f(xk)pk < 0, whenever ∇f(xk)
T 6= 0

so that, at least for small steps along pk, the objective
function f(x) will be reduced

use line-search to calculate a suitable step-length αk > 0 so
that

f(xk + αkpk) < f(xk).

Update the point:

xk+1 = xk + αkpk
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General iterative scheme

Generic minimization algorithm

Written with a pseudo-code the minimization procedure is the
following algorithm:

Generic minimization algorithm

Given an initial guess x0, let k = 0;
while not converged do

Find a descent direction pk at xk;
Compute a step size αk using a line-search along pk.
Set xk+1 = xk + αkpk and increase k by 1.

end while

The crucial points which differentiate the algorithms are:

1 The computation of the direction pk;

2 The computation of the step size αk.
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General iterative scheme

Practical Line-search methods

The first developed minimization algorithms try to solve

αk = arg min
α>0

f(xk + αpk)

performing exact line-search by univariate minimization;
rather expensive and certainly not cost effective.

Modern methods implements inexact line-search:

ensure steps are neither too long nor too short
try to pick useful initial step size for fast convergence
best methods are based on:

backtracking–Armijo search;
Armijo–Goldstein search;
Franke–Wolfe search;
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General iterative scheme

backtracking line-search

To obtain a monotone decreasing sequence we can use the
following algorithm:

Backtracking line-search

Given αinit (e.g., αinit = 1);
Given τ ∈ (0, 1) typically τ = 0.5;
Let α(0) = αinit;
while not f(xk + α(`)pk) < f(xk) do

set α(`+1) = τα(`);
increase ` by 1;

end while
Set αk = α(`).

To be effective the previous algorithm should terminate in a finite
number of steps. The next lemma assure that if pk is a descent
direction then the algorithm terminate.
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General iterative scheme

Existence of a descent step (1/3)

Lemma (Descent Lemma)

Suppose that f(x) satisfy the standard assumptions and that pk is
a descent direction at xk, i.e. ∇f(xk)pk < 0. Then we have

f(xk + αpk) ≤ f(xk) + α∇f(xk)pk +
γ

2
α2 ‖pk‖2

for all α ∈ [0, α?
k] where α?

k =
−2∇f(xk)pk

γ ‖pk‖2
> 0

Assumption (Regularity assumption)

We assume f ∈ C1(Rn) with Lipschitz continuous gradient, i.e.
there exists γ > 0 such that

‖∇f(x)−∇f(y)‖ ≤ γ ‖x− y‖ , ∀x,y ∈ Rn

Unconstrained minimization 19 / 64

General iterative scheme

Existence of a descent step (2/3)

Proof.

Let be g(α) = f(xk + αpk) then we can write:

g(α)− g(0) =

∫ α

0
g′(ξ)dξ = αg′(0) +

∫ α

0

(
g′(ξ)− g′(0)

)
dξ

= α∇f(xk)pk +

∫ α

0

(
∇f(xk + ξpk)−∇f(xk)

)
pk dξ

≤ α∇f(xk)pk +

∫ α

0
‖∇f(xk + ξpk)−∇f(xk)‖ ‖pk‖ dξ

≤ α∇f(xk)pk + ‖pk‖2
∫ α

0
γξ dξ

≤ α∇f(xk)pk +
γα2

2
‖pk‖2 = α

[
∇f(xk)pk +

γα

2
‖pk‖2

]
.

now the lemma follows trivially.
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General iterative scheme

Existence of a descent step (3/3)

The descent lemma means that there is a parabola that is
entirely over the function f(x) in the direction pk if this is a
descent direction.

The second part of the lemma permits to ensure a minimal
reduction if the step length is chosen to be αk = α?

k/2.

f(xk) + α∇f(xk)pk + γ
2α2 ‖pk‖2

f(xk + αpk)

Unconstrained minimization 21 / 64

General iterative scheme Descent direction failure

Descent direction failure

The simple request to have a descent direction may be not
enough.

In fact, step length may be asymptotically too short

Or step length may be asymptotically too long
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General iterative scheme Descent direction failure

Steps may be too long

The objective function is f(x) = x2 and the iterates are generated
by the descent directions pk = (−1)k+1 from x0 = 2 with:

xk+1 = xk + αkpk, αk = 2 + 3 · 2−(k+1)
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General iterative scheme Descent direction failure

Steps may be too short

The objective function is f(x) = x2 and the iterates are generated
by the descent directions pk = −1 from x0 = 2 with:

xk+1 = xk + αkpk, αk = 2−(k+1)
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Backtracking Armijo line-search

Armijo condition

To prevent large steps relative to the decreasing of f(x) we require
that

f(xk + αkpk) ≤ f(xk) + αkβ∇f(xk)pk

for some β ∈ (0, 1). Typical values of β ranges form 10−4 to 0.1.

f(xk) + αβ∇f(xk)pk

f(xk) + α∇f(xk)pk

f(xk + αpk)
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Backtracking Armijo line-search

Backtracking Armijo line-search

Given αinit (e.g., αinit = 1);
Given τ ∈ (0, 1) typically τ = 0.5;
Let α(0) = αinit;
while not f(xk + α(`)pk) ≤ f(xk) + α(`)β∇f(xk)pk do

set α(`+1) = τα(`);
increase ` by 1;

end while
Set αk = α(`).

Backtracking Armijo line-search prevents the step from
getting too large.

Now the question is: will the backtracking Armijo line-search
terminate in a finite number of steps ?
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Backtracking Armijo line-search

Finite termination of Armijo line-search

Theorem (Finite termination of Armijo linesearch)

Suppose that f(x) satisfy the standard assumptions and β ∈ (0, 1)
and that pk is a descent direction at xk. Then the Armijo
condition

f(xk + αkpk) ≤ f(xk) + αkβ∇f(xk)pk

is satisfied for all αk ∈ [0, ωk] where ωk =
2(β − 1)∇f(xk)pk

γ ‖pk‖2

Assumption (Regularity assumption)

We assume f ∈ C1(Rn) with Lipschitz continuous gradient, i.e.
there exists γ > 0 such that

‖∇f(x)−∇f(y)‖ ≤ γ ‖x− y‖ , ∀x,y ∈ Rn
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Backtracking Armijo line-search

Finite termination of Armijo line-search

To prove finite termination we need the following Taylor expansion
due to the regularity assumption:

f(x + αp) = f(x) + α∇f(x)p + E where |E| ≤ γ

2
α2 ‖p‖2

Proof.

If α ≤ ωk we have αγ ‖pk‖2 ≤ 2(β − 1)∇f(xk)pk and by using
Taylor expansion

f(xk + αpk) ≤ f(xk) + α∇f(xk)pk +
γ

2
α2 ‖pk‖2

≤ f(xk) + α∇f(xk)pk + α(β − 1)∇f(xk)pk

≤ f(xk) + αβ∇f(xk)pk
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Backtracking Armijo line-search

Finite termination of Armijo line-search

Corollary (Finite termination of Armijo linesearch)

Suppose that f(x) satisfy the standard assumptions and β ∈ (0, 1)
and that pk is a descent direction at xk. Then the step-size
generated by then backtracking-Armijo line-search terminates with

αk ≥ min {αinit, τωk} , ωk = 2(β − 1)∇f(xk)pk/(γ ‖pk‖2)

Proof.

Line-search will terminate as soon as α(`) ≤ ωk:

1 May be that αinit satisfies the Armijo condition ⇒ αk = αinit.

2 Otherwise in the last line-search iteration we have

α(`−1) > ωk, αk = α(`) = τα(`−1) > τωk.

Combining these 2 cases gives the required result.
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Backtracking Armijo line-search

Backtracking-Armijo line-search

1 The previous analysis permit to say that Backtracking-Armijo
line-search ends in a finite number of steps.

2 The line-search produce a step length not too long due to the
condition

f(xk + αkpk) ≤ f(xk) + αkβ∇f(xk)pk

3 The line-search produce a step length not too short due to the
finite termination theorem.

4 Armijo line-search can be improved by adding some further
requirements on the step length acceptance criteria.
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Backtracking Armijo line-search Global convergence of backtracking Armijo line-search

Global convergence

Theorem (Global convergence)

Suppose that f(x) satisfy the standard assumptions, then, for the
iterates generated by the Generic minimization algorithm with
backtracking Armijo line-search either:

1 ∇f(xk)
T = 0 for some k ≥ 0;

2 or limk→∞ f(xk) = −∞;

3 or limk→∞ |∇f(xk)pk|min
{

1, ‖pk‖−1
}

= 0.

Remark

If the theorem, point 1 means that we found a stationary point in
a finite number of steps. Point 2 means that function f(x) is
unbounded below, so that a minimum does not exists. Point 3
alone do not imply convergence, but if ∇f(xk) and pk do not
become orthogonal and ‖pk‖ 6→ 0 then ‖∇f(xk)‖ → 0.
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Backtracking Armijo line-search Global convergence of backtracking Armijo line-search

Proof. (1/3).

Assume points 1 and 2 are not satisfied, then we prove point 3.
Consider

f(xk+1) ≤ f(xk) + αkβ∇f(xk)pk ≤ f(x0) +
k∑

j=0

αjβ∇f(xj)pj

by the fact that pk is a descent direction we have that the series:

∞∑
j=0

αj |∇f(xj)pj | ≤ β−1 lim
k→∞

[
f(x0)− f(xk+1)

]
<∞

and then

lim
j→∞

αj |∇f(xj)pj | = 0
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Backtracking Armijo line-search Global convergence of backtracking Armijo line-search

Proof. (2/3).

Recall that

αk ≥ min {αinit, τωk} , ωk = 2(β − 1)∇f(xk)pk/(γ ‖pk‖2)

and consider the two index set:

K1 =
{
k | αk = αinit

}
, K2 =

{
k | αk < αinit

}
,

Obviously N = K1 ∪ K2 and from limk→∞ αk |∇f(xk)pk| = 0 we
have

lim
k∈K1→∞

αk |∇f(xk)pk| = 0, (A)

lim
k∈K2→∞

αk |∇f(xk)pk| = 0, (B)
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Backtracking Armijo line-search Global convergence of backtracking Armijo line-search

Proof. (3/3).

For k ∈ K1 we have αk = αinit and
αk |∇f(xk)pk| = αinit |∇f(xk)pk| and from (A) we have

lim
k∈K1→∞

|∇f(xk)pk| = 0 (?)

For k ∈ K2 we have τωk ≤ αk ≤ ωk so

αk |∇f(xk)pk| ≥ τωk |∇f(xk)pk| ≥ 2τ(1− β)
|∇f(xk)pk|2

γ ‖pk‖2

and from (B) we have

lim
k∈K1→∞

|∇f(xk)pk|
‖pk‖

= 0 (??)

Combining (?) and (??) gives the required result.
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Backtracking Armijo line-search Global convergence of steepest descent

Steepest descent algorithm

Steepest descent algorithm

Given an initial guess x0, let k = 0;
while not converged do

Compute a step-size αk using a line-search along −∇f(xk)
T .

Set xk+1 = xk − αk∇f(xk)
T and increase k by 1.

end while

The steepest descent algorithm is simply the generic
minimization algorithm with search direction the opposite of
the gradient in xk.

The search direction −∇f(xk)
T is always a descent direction

unless the point xk is a stationary point.
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Backtracking Armijo line-search Global convergence of steepest descent

Global convergence of steepest descent

Corollary (Global convergence of steepest descent)

Suppose that f(x) satisfy the standard assumptions, then, for the
iterates generated by the steepest descent algorithm with
backtracking Armijo line-search either:

1 ∇f(xk)
T = 0 for some k ≥ 0;

2 or limk→∞ f(xk) = −∞;

3 or limk→∞∇f(xk)
T = 0.
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Backtracking Armijo line-search Global convergence of steepest descent

The Rosenbrock example (1/3)

Although the steepest descent scheme is globally convergent
it can be very slow!

A classical example is the Rosenbrock function:

f(x, y) = 100 (y − x2)2 + (x− 1)2
fun(x,y)
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Backtracking Armijo line-search Global convergence of steepest descent

The Rosenbrock example (2/3)

This function has a unique minimum at (1, 1)T inside a
banana shaped valley.
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Backtracking Armijo line-search Global convergence of steepest descent

The Rosenbrock example (3/3)

After 100 iteration starting from (−1.2, 1)T the approximate
minimum is far from the solution.
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Backtracking Armijo line-search Global convergence of steepest descent

The steepest descent is a slow method, not only on a difficult
test case like the Rosenbrock example.

Given the function f(x, y) =
1

2
x2 +

9

2
y2 starting from

x0 = (9, 1)T we have the zig-zag pattern toward (0, 0)T .
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Wolfe–Zoutendijk global convergence

The Wolfe and Armijo Goldstein conditions

1 The simple condition of descent step is in general not enough
for the convergence of a iterative minimization scheme.

2 The condition of sufficient decrease of backtracking Armijo
line-search may be insufficient on general inexact line-search
algorithm.

3 Adding another condition to the sufficient decrease condition
such that we avoid too short step length we obtain globally
convergent numerical procedure.

4 Depending on which additional condition is added we obtain
the:

1 Wolfe conditions;
2 Armijo Goldstein conditions.
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Wolfe–Zoutendijk global convergence The Wolfe conditions

The Wolfe conditions

Let c1 and c2 two constant such that 0 < c1 < c2 < 1. We say
that the step length αk satisfy the Wolfe conditions if αk satisfy:

1 sufficient decrease: f(xk + αkpk) ≤ f(xk) + c1 αk∇f(xk)pk;

2 curvature condition: ∇f(xk + αkpk)pk ≥ c2∇f(xk)pk.

f(xk) + αc1∇f(xk)pk

f(xk + αpk)
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Wolfe–Zoutendijk global convergence The Wolfe conditions

The strong Wolfe conditions

Let c1 and c2 two constant such that 0 < c1 < c2 < 1. We say
that the step length αk satisfy the strong Wolfe conditions if αk

satisfy:

1 sufficient decrease: f(xk + αkpk) ≤ f(xk) + c1 αk∇f(xk)pk;

2 curvature condition: |∇f(xk + αkpk)pk| ≤ c2 |∇f(xk)pk|.

f(xk) + αc1∇f(xk)pk

f(xk + αpk)
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Wolfe–Zoutendijk global convergence The Wolfe conditions

Existence of ”Wolfe” step length

The Wolfe condition seems quite restrictive.

The next lemma answer to the question if a step length
satisfying Wolfe conditions does exists.

Lemma (strong Wolfe step length)

Let f : Rn 7→ R satisfying the regularity assumption. If the
following condition are satisfied:

1 pk is a descent direction for the point xk, i.e. ∇f(xk)pk < 0;

2 f(xk + αpk) is bounded from below, i.e.
limα→∞ f(xk + αpk) > −∞.

then for any 0 < c1 < c2 < 1 there exists an interval [a, b] such
that all αk ∈ [a, b] satisfy the strong Wolfe conditions.
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Wolfe–Zoutendijk global convergence The Wolfe conditions

Proof.

Define `(α) = f(xk) + αc1∇f(xk)pk and g(α) = f(xk + αpk).
From limα→∞ `(α) = −∞ and from condition 1 it follows that
there exists α? > 0 such that

`(α?) = g(α?) and `(α) > g(α), ∀α ∈ (0, α?)

so that all step length α ∈ (0, α?) satisfy strong Wolfe condition 1.
Because `(0) = g(0) form Cauchy-Rolle theorem there exists
α?? ∈ (0, α?) such that

g′(α??) = `′(α??) ⇒

0 > ∇f(xk + α??pk)pk = c1∇f(xk)pk > c2∇f(xk)pk

by continuity we find an interval around α?? with step lengths
satisfying strong Wolfe conditions.
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The Zoutendijk condition

Theorem (Zoutendijk)

Let f : Rn 7→ R satisfying the regularity assumption and bounded
from below, i.e.

inf
x∈Rn

f(x) > −∞

Let {xk}, k = 0, 1, . . . ,∞ generated by a generic minimization
algorithm where line-search satisfy Wolfe conditions, then

∞∑
k=1

(cos θk)
2
∥∥∇f(xk)

T
∥∥2

< +∞

where

cos θk =
−∇f(xk)pk

‖∇f(xk)T ‖ ‖pk‖
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Proof. (1/3).

Using the second condition of Wolfe

∇f(xk + αkpk)pk ≥ c2∇f(xk)pk(
∇f(xk + αkpk)−∇f(xk)

)
pk ≥ (c2 − 1)∇f(xk)pk

by using Lipschitz regularity∥∥∇f(xk + αkpk)−∇f(xk)
)
pk

∥∥ ≤ γ ‖xk+1 − xk‖ ‖pk‖

= αkγ ‖pk‖2

and using both inequality we obtain the estimate for αk:

αk ≥
c2 − 1

γ ‖pk‖2
∇f(xk)pk
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Proof. (2/3).

Using the first condition of Wolfe and estimate of αk

f(xk + αkpk) ≤ f(xk) + αkc1∇f(xk)pk

≤ f(xk)−
c1(1− c2)

γ ‖pk‖2
(
∇f(xk)pk

)2

setting A = c1(1− c2)/γ and using the definition of cos θk

f(xk+1) = f(xk + αkpk) ≤ f(xk)−A(cos θk)
2
∥∥∇f(xk)

T
∥∥2

and by induction

f(xk+1) ≤ f(x1)−A
k∑

j=1

(cos θj)
2
∥∥∇f(xj)

T
∥∥2

Unconstrained minimization 50 / 64



Wolfe–Zoutendijk global convergence The Wolfe conditions

Proof. (3/3).

The function f(x) is bounded from below, i.e.

inf
x∈Rn

f(x) > −∞

so that

A
k∑

j=1

(cos θj)
2
∥∥∇f(xj)

T
∥∥2 ≤ f(x1)− f(xk+1)

and

A
∞∑

j=1

(cos θj)
2
∥∥∇f(xj)

T
∥∥2 ≤ f(x1)− lim

k→∞
f(xk+1) < +∞
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Corollary (Zoutendijk condition)

Let f : Rn 7→ R satisfying the regularity assumption and bounded
from below. Let {xk}, k = 0, 1, . . . ,∞ generated by a generic
minimization algorithm where line-search satisfy Wolfe conditions,
then

cos θk

∥∥∇f(xk)
T
∥∥→ 0 where cos θk =

−∇f(xk)pk

‖∇f(xk)T ‖ ‖pk‖

Remark

If cos θk ≥ δ > 0 for all k from the Zoutendijk condition we have:∥∥∇f(xk)
T
∥∥→ 0

i.e. the generic minimization algorithm where line-search satisfy
Wolfe conditions converge to a stationary point.
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The Armijo-Goldstein conditions

Let c1 and c2 two constant such that 0 < c1 < c2 < 1. We say
that the step length αk satisfy the Wolfe conditions if αk satisfy:

1 f(xk + αkpk) ≤ f(xk) + c1 αk∇f(xk)pk;

2 f(xk + αkpk) ≥ f(xk) + c2 αk∇f(xk)pk;

f(xk) + αc1∇f(xk)pk

f(xk) + αc2∇f(xk)pk

f(xk + αpk)
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The Armijo-Goldstein conditions

1 Armijo-Goldstein conditions has very similar theoretical
properties like the Wolfe conditions.

2 Global convergence theorems can be established.

3 The weakness of Armijo-Goldstein conditions respect to Wolfe
conditions is that the former can exclude local minima’s from
the step length as you can see in the figure below.

f(xk) + αc1∇f(xk)pk

f(xk) + αc2∇f(xk)pk

f(xk + αpk)
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Algorithms for line-search

Outline

1 General iterative scheme
Descent direction failure

2 Backtracking Armijo line-search
Global convergence of backtracking Armijo line-search
Global convergence of steepest descent

3 Wolfe–Zoutendijk global convergence
The Wolfe conditions
The Armijo-Goldstein conditions

4 Algorithms for line-search
Armijo Parabolic-Cubic search
Wolfe linesearch
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Armijo Parabolic-Cubic search

1 Backtracking-Armijo line-search can be slow if a large number
of reduction must be performed to satisfy Armijo condition.

2 A better performance is obtained if instead of reducing by a
fixed factor we use polynomial interpolation to estimate the
location of the minimum.

3 Assuming that that f(xk) and ∇f(xk)pk are known at the
first step we know also f(xk + λpk) if λ is the first trial step.

4 In this case a parabolic interpolation can be used to estimate
the minimum.

5 If we store the last trial step length, in the successive iteration
we can use cubic interpolation to estimate the minima’s.

6 The resulting algorithm is in the following slides.
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Algorithm (Armijo Parabolic-Cubic search (1/3))

armijo linesearch(f,x,p, τ)
f0 ← f(x); ∇f0 ← ∇f(x)p; λ← 1;
while λ ≥ λmin do

fλ ← f(x + λp);
if fλ ≤ f0 + λτ∇f0 then

return λ ; successful search
else

if λ = 1 then
λtmp ← ∇f0

/[
2(f0 +∇f0 − fλ)

]
;

else
λtmp ← cubic(f0,∇f0, fλ, λ, fp, λp);

end if
λp ← λ; fp ← fλ; λ← range(λtmp, λ/10, λ/2);

end if
end while
return λmin ; failed search
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Algorithm (Armijo Parabolic-Cubic search (2/3))

range(λ, a, b)
if λ < a then

return a;
else if λ > b then

return b;
else

return λ ;
end if
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Algorithm (Armijo Parabolic-Cubic search (3/3))

cubic(f0,∇f0, fλ, λ, fp, λp)
Evaluate:(

a
b

)
=

1

λ2λ2
p(λ− λp)

(
λ2

p −λ2

−λ3
p λ3

) (
fλ − f0 − λ∇f0
fp − f0 − λp∇f0

)
if a = 0 then

return −∇f0/(2b); cubic is a quadratic
else

d← b2 − 3 a∇f0; discriminant
return (−b +

√
d)/(3a); legitimate cubic

end if
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Wolfe linesearch

1 Wolfe linesearch is identical to the Armijo Parabolic-Cubic
search, until a point satisfying the first condition is found.

2 At this point the Armijo algorithm stop while Wolfe search try
to refine the search until the second condition is satisfied.

3 If the step estimated is too short then is is enlarged until it
contains a minimum.

4 If the step estimated is too long it is reduced until the second
condition is satisfied.
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Algorithm (Wolfe linesearch (1/3))

wolfe linesearch(f,x,p, c1, c2)
f0 ← f(x); ∇f0 ← ∇f(x)p; λ← 1;
while λ ≥ λmin do

fλ ← f(x + λp);
if fλ ≤ f0 + λc1∇f0 then

go to ZOOM; found a λ satisfying condition 1
else

if λ = 1 then
λtmp ← ∇f0

/[
2(f0 +∇f0 − fλ)

]
;

else
λtmp ← cubic(f0,∇f0, fλ, λ, fp, λp);

end if
λp ← λ; fp ← fλ; λ← range(λtmp, λ/10, λ/2);

end if
end while
return λmin ; failed search
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Algorithm (Wolfe linesearch (2/3))

ZOOM:
∇fλ ← ∇f(x + λp)p;
if ∇fλ ≥ c2∇f0 then return λ; found Wolfe point!
if λ = 1 then

forward search of an interval bracketing a minimum
while λ ≤ λmax do
{λp, fp} ← {λ, fλ}; save values
λ← 2λ; fλ ← f(x + λp);
if not fλ ≤ f0 + λc1∇f0 then
{λp, fp}
 {λ, fλ}; go to REFINE; swap values

end if
∇fλ ← ∇f(x + λp)p;
if ∇fλ ≥ c2∇f0 then return λ; found Wolfe point!

end while
return λmax ; failed search

end if
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Algorithm (Wolfe linesearch (3/3))

REFINE:
{λlo, flo,∇flo} ← {λ, fλ,∇fλ}; ∆← λp − λlo;
while ∆ > ε do

δλ← ∆2∇flo
/[

2(flo +∇flo∆− fp)
]
;

δλ← range(δλ, 0.2∆, 0.8∆);
λ← λlo + δλ; fλ ← f(x + λp);
if fλ ≤ f0 + λc1∇f0 then
∇fλ ← ∇f(x + λp)p;
if ∇fλ ≥ c2∇f0 then return λ; found Wolfe point!
{λlo, flo,∇flo} ← {λ, fλ,∇fλ}; ∆← ∆− δλ;

else
{λp, fp} ← {λ, fλ}; ∆← δλ;

end if
end while
return λ; failed search

Unconstrained minimization 63 / 64

References

References

J. Stoer and R. Bulirsch
Introduction to numerical analysis
Springer-Verlag, Texts in Applied Mathematics, 12, 2002.

J. E. Dennis, Jr. and Robert B. Schnabel
Numerical Methods for Unconstrained Optimization and
Nonlinear Equations
SIAM, Classics in Applied Mathematics, 16, 1996.

Unconstrained minimization 64 / 64


