[—
Outline

@ General iterative scheme
Unconstrained minimization @ Descent direction failure

Lectures for PHD course on @ Backtracking Armijo line-search

@ Global convergence of backtracking Armijo line-search
@ Global convergence of steepest descent

Non-linear equations and numerical optimization

Enrico Bertolazzi © Wolfe-Zoutendijk global convergence

@ The Wolfe conditions
© The Armijo-Goldstein conditions

DIMS - Universita di Trento
March 2005 @ Algorithms for line-search
o Armijo Parabolic-Cubic search
o Wolfe linesearch

The problem (1/3) The problem

Given f: R" — R:

Definition (Global minimum)

Given f : R" — IR a point @, € R" is a global minimum if
minimize f(a)
inimi

f(z.) < f(z), VaoeR"

the following regularity about f(z) is assumed in the following;

Definition (Local minimum)

Assumption (Regularity assumption)

. 3 3 N " " Given f : R" — R a point «, € R" is a local minimum if
We assume f € CL(R™) with Lipschitz continuous gradient, i.e.

there exists y > 0 such that f(z,) < f(), Va € B(x,;0).

|V(x)” — V@) || < vllz—yl. VYz.yeR" Obviously a global minimum is a local minimum. Find a global
minimum in general is not an easy task. The algorithms presented
in the sequel will approximate local minima's.

Definition (Strict global minimum)

Given f : R™ — R a point x, € R" is a strict global minimum if

f(x,) < f(x), Va € R™\ {z,}.

Definition (Strict local minimum)

Given f : R" — R a point x, € R™ is a strict local minimum if

f(z.) < f(), Va € B(.o)\ {z.}.

Obviously a strict global minimum is a strict local minimum.

5

5/ 64

@ The first order necessary condition do not discriminate
maximum, minimum, or saddle points.

@ To discriminate maximum and minimum we need more
information, e.g. second order derivative of f(x)

@ With second order derivative we can build necessary and
sufficient condition for a minima.

@ In general using only first and second order derivative at the

point @, it is not possible to deduce a necessary and sufficient
condition for a minima.

rstrained minimization

First

der Necessary c

Lemma (First order Necessary condition for local minimum)
Given f : R"™ — R satisfying the regularity assumption. If a point
. € R" is a local minimum then

V()" = 0.

Proof.

Consider a generic direction d, then for 6 small enough we have

A (f(ze + Ad) — f(z,)) <0, 0<A<d
so that
Jirno/\’l (f(zs + Ad) — f(,)) = Vf(,)d <0,
because d is a generic direction we have V(z,)T = 0. o| B

6/ 64

Second order Necessary conditi

ma (Second order N

sary condition for local minimum)
Given f € C3(R™) if a point ., € R" is a local minimum then
VH(z.)T = 0 and V2f(x,) is semi-definite positive, i.e.

d'V?*f(z.)d >0, VdeR"

This condition is only, necessary, in fact consider f(z) = J:lz - .r23,

Vi(x) = (221, ~322), v%(:)—(é 7217)

for the point @, = 0 we have Vf(0) = 0 and V2f(0) semi-definite
positive, but 0 is a saddle point not a minimum.

[
C order sufficient conditi

The condition Vf(z,)” = 0 comes from first order necessary Lemma (Second order su nt condition local m
Z?f?:,l;::: Consider now a generic direction d, and the finite Given f € C3(R™) if a point x, € R" satisfy:
' o Vi(z,)" =0;

f Ad) — 2f(z,) + f(z. — \d

% >0 Q@ V2(x,) is definite positive; i.e
by using Taylor expansion for f(a) d"V?(z,)d > 0, vd € R" \ {z.}

f(z, + Ad) = f(z,) + V(@) + A2dTV2F(z,)d + o(\?) then x, € R" is a strict local minimum.
andfomthe preios neualt
ATV,)d + o(2)/N2 > 0 Because V>3f(a.) is symmetric we can write
T T2 T
taking the limit A — 0 and form the arbitrariness of d we have Amind’d < d7V(@,)d < Amaxd” d
2 N

that V2f(a.) must be semi-definite positive. (] &) it pEsiive cfite v e A > @ 5‘

Consider now a generic direction d, and the Taylor expansion for @ General iterative scheme

f(z) o Descent direction failure
(s + d) = f(.) + V(2,)d + dTVF(2,)d + of|d]%)
2 (@) + Amin [[d]* + o 1))
> (@) + Amin | (14 o(l1lI?)/ 1)

choosing d small enough we can write

f, +d) > f(2,) + AT Id? > f(z.), d#0, [[d] <o.

i.e. x, is a strict minimum. [m]

How to find a minimum

Given f: R" —R: minimizegern ()

@ We can solve the problem by solving the necessary condition
i.e by solving the nonlinear systems

Vf(z)" = 0.

@ Using such an approach we looses the information about f(z).

@ Moreover such an approach can find solution corresponding to
a maximum or saddle points.

@ A better approach is to use all the information and try to build
minimizing procedure, i.e. procedures that, starting from a
point @ build a sequence {a;} such that f(aj1) < f(z). In
this way, at least, we avoid to converge to a strict maximum.

A generic iterative minimization procedure can be sketched as
follows:

o calculate a search direction py from @y,

@ ensure that this direction is a descent direction, i.e.
Vf(zi)pr <0, whenever Vf(zi)! # 0

5o that, at least for small steps along py., the objective
function f(2) will be reduced

o use line-search to calculate a suitable step-length a, > 0 so
that

f(@r + arpr) < f(@y).
o Update the point:

Tp+1 = T + kP

rstrained minimization

5

Iterative Methods

@ in practice very rare to be able to provide explicit minimizer.
o iterative method: given starting guess @, generate the
sequence,

k=12,...

{x}.
o AIM: ensure that (a subsequence) has some favorable limiting
properties:

@ satisfies first-order necessary conditions
o satisfies second-order necessary conditions

Generic minimizati

algorithm

Written with a pseudo-code the minimization procedure is the
following algorithm:

Generic minimization algorithm

Given an initial guess o, let k
while not converged do
Find a descent direction py. at @y;
Compute a step size . using a line-search along py,
Set @j41 = @ + agpy, and increase k by 1
end while

The crucial points which differentiate the algorithms are:
© The computation of the direction py;
@ The computation of the step size ay.

Practical Line-search methods

To obtain a monotone decreasing sequence we can use the

o The first developed minimization algorithms try to solve following algorithm:

Backtracking line-search
Given init (e.8., init = 1);
Given 7 € (0,1) typically T = 0.5;

ai = argmin f(z + apy)

o performing exact line-search by univariate minimization; Let (@ = qjnit;

o rather expensive and certainly not cost effective. while not f(z + alOpy) < f(z) do
@ Modern methods implements inexact line-search set alt+l) = 70,

o ensure steps are neither too long nor too short increase £ by 1;

o try to pick useful initial step size for fast convergence el

o best methods are based on
o backtracking-Armijo search;
o Armijo-Goldstein search;
@ Franke-Wolfe search;

Set oy = alf)

To be effective the previous algorithm should terminate in a finite
number of steps. The next lemma assure that if py is a descent
1 2 direction then the algorithm terminate. 1 5

General terative scheme W General ierative scheme

Existence of a descent step (1/3) Existence of a descent step

Lemma (Descent Lemma)

= f(xx + apy) then we can write:

Suppose that f(x) satisfy the standard assumptions and that py. is
a descent direction at @y, i.e. Vf(zy)py < 0. Then we have

g(@) — 9(0)

’ [dee=ag+ [@@ - donae
(i + api) < f(ax) + aVii)pe + 307 ol z
= aVf(z)px + /n (Vf(ak + Epr) — Vi(ax))pr dE

*

—2Vf(xs
for all a € [0, o] where af = —22(TE)P

- >— >0 a
~ el < aVi(zi)pr + / I + pe) — V(i) | Ipell de
0

Assumption (Regularity assumptios

, < aVi(ep.+ ol [eds

a
We assume f € CL(R"™) with Lipschitz continuous gradient, i.e. o
there exists v > 0 such that

2
o 2 o 2
< aVf(@i)pr + - Ipel® = o | V(@i + o el -
[Vf(@) - Vi) < vle—yl, VoyeR" | 5 2 [z bl

now the lemma follows trivially. O

rconstrained minimization

Existence of a descent step

@ The descent lemma means that there is a parabola that is
entirely over the function f(z) in the direction py, if this is a
descent direction.

@ The second part of the lemma permits to ensure a minimal
reduction if the step length is chosen to be aj. = aj /2

f(ar) + aVF(zp)pi + 302 il

f(zr + apy)

5

Steps may be too lo

2 and the iterates are generated
—1)*+1 from @o = 2 with:

The objective function is f|
by the descent directions pj.

Thpr = o + agp, =2+ 3.27 (K1)

I

t direction fai

o The simple request to have a descent direction may be not
enough.

o In fact, step length may be asymptotically too short
@ Or step length may be asymptotically too long

Steps may be too short

The objective function is f(x) = 22 and the iterates are generated
by the descent directions py, = —1 from x¢ = 2 with:

Tyl = Tk + QxPr, aj =270+

Backtracking Armijo line-search

Outline

© Backtracking Armijo line-search
@ Global convergence of backtracking Armijo line-search
@ Global convergence of steepest descent

5

25/ 64

Backtracking Armijo line-search

Backtracking Armijo line-search
Given ainit (.8, ainic = 1);
Given 7 € (0,1) typically 7 = 0.5;

Let () = aiie;

while not f(a:k + a(/)pk] < f(zx) + D gVi(2y)pr do
set alt+1) —
increase (by 1,

end while

Set o =)

o Backtracking Armijo line-search prevents the step from
getting too large.

o Now the question is: will the backtracking Armijo line-search
terminate in a finite number of steps ?

rstrained minimization

To prevent large steps relative to the decreasing of f() we require
that

f(ax + crpr) < f(@r) + arBVH(zi)pr
for some 3 & (0, 1). Typical values of 3 ranges form 10~ to 0.1.

x1) + afVE(x,)py

f(2k) + aVF(ay)p

Finite termination of Armijo lin

Theorem (Finite termination of Armijo linesearch)

Suppose that f(z) satisfy the standard assumptions and 3 € (0,1)
and that py, is a descent direction at xj,. Then the Armijo
condition
@ + arpr) < fxx) + arBVF(2r)pr
28 = Vi)
7 [l

is satisfied for all ay, € [0,wi] where — wy, =

Assumption (Regularity assumption)

We assume f € CL(IR™) with Lipschitz continuous gradient, i.e.
there exists y > 0 such that

[Vf(z) - V@) <[z -yl, VoyeR"

Backtracking Armijo line-search

Finite termination of Armijo line-search

To prove finite termination we need the following Taylor expansion
due to the regularity assumption:

f(z + ap) = f(z) + aVf(@)p+ E where |E| < %,.2 Ipl?

If & < wy, we have a ||px||* < 2(8 — 1)Vf(xx)px and by using
Taylor expansion

ek + apg) < f(zi) + aVi(z)pr + 5/'12 Ikl

< f(xk) + aVi(zi)pr + a8 — 1) Vi(zi)pr
< f(zr) + aBVE(zr)pr

Q@ The previous analysis permit to say that Backtracking-Armijo
line-search ends in a finite number of steps.

@ The line-search produce a step length not too long due to the
condition
f(@k + arpr) < f(zr) + arBVF(xr)pr
@ The line-search produce a step length not too short due to the
finite termination theorem.

@ Armijo line-search can be improved by adding some further
requirements on the step length acceptance criteria.

rstrained minimization

Corollary (Finite termination of Armijo linesearch)

Suppose that f(x) satisfy the standard assumptions and 3 € (0,1)
and that py, is a descent direction at ai.. Then the step-size
generated by then backtracking-Armijo line-search terminates with

ag = min {ajnie, 7o}, wi = 2(8 — 1)VH(ax)pi/ (7 [px]%)

Proof.
Line-search will terminate as soon as a(¥) < wg!
@ May be that a,;; satisfies the Armijo condition = aj. = init.
@ Otherwise in the last line-search iteration we have
D > o =a® =70 > 7y

Combining these 2 cases gives the required result. =18

Global converg

Theorem (Global convergence)

Suppose that f(x) satisfy the standard assumptions, then, for the
iterates generated by the Generic minimization algorithm with
backtracking Armijo line-search either:

Q Vf(zy)" = 0 for some k > 0;
Q@ or limy_oo f(ax) = —00;

@ or limy oo [VF(ai)pe| min {1.

el =0

If the theorem, point 1 means that we found a stationary point in
a finite number of steps. Point 2 means that function f(x) is
unbounded below, so that a minimum does not exists. Point 3
alone do not imply convergence, but if Vf(x) and py, do not
become orthogonal and |[p|| > 0 then || V()| —

Backracking Armijo linesearch

Global convergence of backtracking Armijo ine-search |

Proof.

Assume points 1 and 2 are not satisfied, then we prove point 3.
Consider

k
f(@k41) < f(@i) + auBV(@r)pr < f(@o) + Y a;BVf(x;)p;
j=0

by the fact that py, is a descent direction we have that the series:
-
>0 |Vi(@ps] < 571 lim [f(ao) — f(wri1)] < o0
=0 >

and then

lim a; |Vf(;)p;| =
j—o0

For k € K1 we have aj, = aiic and
ap [V(xr)pk| = ainit [VF(2k)px| and from (A) we have

fim_[9f(@r)pi] =0 @)

For k € K2 we have Twy < oy, < wy so

V(ai)prl
o [V ()pel > ek [Vi@r)pil > 2r(1 —)RR
7 [l
and from (B) we have
i End -
keKi—oo [Ipill
Combining (x) and (x*) gives the required result. u] 5

Proof.
Recall that

ok > min {oinie Tk}, wr =20 = DV@e)pe/(y [pel?)
and consider the two index set:
K1 = {k | ar = qinit}, Ko = {k | ar < ainit},

Obviously N = Ky UKy and from limy. oo . [VF(ax)pr| = 0 we
have

plim o [VE@i)pe] = 0. ®)

rehm ok | Vi()pi| = 0, (B)

Steepest descent algorithm

Steepest descent algorithm

Given an initial guess @, let k = 0;

while not converged do
Compute a step-size ay. using a line-search along —Vf(zk)T.
Set @j41 =) — a V()T and increase k by 1.

end while

@ The steepest descent algorithm is simply the generic
minimization algorithm with search direction the opposite of
the gradient in x;,

@ The search direction —Vf(x;)" is always a descent direction
unless the point ay, is a stationary point.

rstrained minimization

Backtracking Armijo line-search

Global convergence of steepest descent [l Backtracking Armijo line-search

The Rosenbrock example

Global convergence of steepest descent

of steepest descent

(1/3)

@ Although the steepest descent scheme is globally convergent
it can be very slow!

o A classical example is the Rosenbrock function
Corollary (Global convergence of steepest descent)

Suppose that f(x) satisfy the standard assumptions, then, for the
iterates generated by the steepest descent algorithm with
backtracking Armijo line-search either:

@ Vf(zx)" = 0 for some k > 0;
Q or limp_.o f(ar) = —00;
Q or limy_ V(ay)! = 0.

f(x,y) = 100 (y — 22)? + (= — 1)?

The Rosenbrock example

o After 100 iteration starting from (—1.2,1) the approximate

o This function has a unique minimum at (1,1)” inside a minimum is far from the solution.

banana shaped valley.

o The steepest descent is a slow method, not only on a difficult
test case like the Rosenbrock example.

1 9
o Given the function f(z,y) = E‘Lz + EyQ starting from

20 = (9,1)7 we have the zig-zag pattern toward (0,0).

The Wolfe and Armijo Goldstein col

@ The simple condition of descent step is in general not enough
for the convergence of a iterative minimization scheme.

@ The condition of sufficient decrease of backtracking Armijo
line-search may be insufficient on general inexact line-search
algorithm

@ Adding another condition to the sufficient decrease condition
such that we avoid too short step length we obtain globally
convergent numerical procedure.

@ Depending on which additional condition is added we obtain
the:

© Wolfe conditions;
@ Armijo Goldstein conditions.

I

@ Wolfe~Zoutendijk global convergence
o The Wolfe conditions
o The Armijo-Goldstein conditions

The Wolfe conditions
Let ¢; and ¢ two constant such that 0 < ¢; < ¢ < 1. We say
that the step length ay, satisfy the Wolfe conditions if ay, satisfy:
@ sufficient decrease: f(wmr + axpr) < f(@k) + c1 o V()P
@ curvature condition: Vf(zj + agpr)pr > 2 V(ak)pr

(e + apy)

(k) + acr V(i) pr

The strong Wolfe conditions

Let ¢1 and ¢, two constant such that 0 < ¢; < ¢p < 1. We say
that the step length oy, satisfy the strong Wolfe conditions if ay,
satisfy:

@ sufficient decrease: (e + arpy) < f(@x) + c1 akV(ar)pii

@ curvature condition: [Vf(zy + arpr)pr| < c2 [VF(xk)pr|

f(zk + apg)

f(ak) + acr V(i)i

45/ 61

The Wolfe conditions

Proof.

Define £(a) = (k) + acs V(@i)px and g(a) = f(ay + apy).

From lima—.oc £(a) = —oo and from condition 1 it follows that

there exists o, > 0 such that
faw) =g(ew) and L(a) > g(a),

so that all step length o € (0, o) satisfy strong Wolfe condition 1.

Because £(0) = g(0) form Cauchy-Rolle theorem there exists

a,, € (0,a) such that

Vo € (0,a,)

9 () = (@) =
0 > Vf(@k + aupi)pr = c1Vi(z)pr > c2Vi(zi)pr

by continuity we find an interval around a, with step lengths
satisfying strong Wolfe conditions. [m]

rstrained minimization

Existence of "Wolfe" step length

@ The Wolfe condition seems quite restrictive.

o The next lemma answer to the question if a step length
satisfying Wolfe conditions does exists

Lemma (strong Wolfe step length)

Let f : R™ — R satisfying the regularity assumption. If the
following condition are satisfied:
@ pj, is a descent direction for the point xy, i.e. Vf(zy)py < 0;
@ f(xy + apy) is bounded from below, i.e.
limg oo f(@k + apy) > —o0.
then for any 0 < ¢; < ¢ < 1 there exists an interval [a,b] such
that all oy, € [a,b] satisfy the strong Wolfe conditions.

Unconstrained minimization 46/ 64

The Zoutenduk condition

“The Wolfe conditions

Theorem (Zoutend|

)

Let f: R — R satisfying the regularity assumption and bounded
from below, i.e.

f f
|€nﬁ“ (z) > —0

Let {x4}, k=0,1,...,00 by a generic minimization
algorithm where line-search satisfy Wolfe conditions, then

o
3 (cos 1) || V(i) ¥ < 400
k=1

where

—Vi(zr)pr
NCRIE] 1

cos by =

The Walfe conditions

Using the second condition of Wolfe
Vi(ay + axpr)pe = 2Vi(ak)pr
(Vf(r + arpr) — Vi(zi))pr > (c2 — 1) Vi(zk)pr
by using Lipschitz regularity
IVf(@x + axpr) — Vi(ar))pr|| < 7 l|lzrss — il 1okl
iy [lpell?
and using both inequality we obtain the estimate for ay:

-1
2 PV

ai >
7 [l

Proof.

The function f(z) is bounded from below, i.e.

inf fi —
o () > —o0
so that
£ 2
A (cos0,)? || V() ||* < f(@1) — fl@rs)
=1
and

A3 (eos0,)2 [9F(as)| <) — Jfim f(@iqa) < +o0
i=1

rstrained minimization

Proof.

Using the first condition of Wolfe and estimate of a;
f(ak + arpr) < f(ax) + ager V(e pr

a(l—c) (

< o) == el

Vf(lk)Pk)z

setting A = c1(1 — ¢2)/ and using the definition of cos

2

f(@h11) = f(@s + arpr) < f(@1) — Acos) || V()|

and by induction

.
f(@as1) < f(@1) — 4D (cos;)? | VF()T*

=1

Corollary (Zoutendijk condition)

Let f: R™ — R satisfying the regularity assumption and bounded
from below. Let {a}, k = 0,1,...,00 generated by a generic
minimization algorithm where line-search satisfy Wolfe conditions,
then

—Vf(@)pr
[VE@s)T [Tlps

If cos 6. > 6 > 0 for all k from the Zoutendijk condition we have:

costy | VF(zr)"|| =0 where cost) =

[[¥F(z)"| =0

i.e. the generic minimization algorithm where line-search satisfy
Wolfe conditions converge to a stationary point.

50/ 64

utendik global convergence

The Armijo-Goldstein conditions:

Wolfe-Zoutendij g

The Armijo-Goldstein conditions

The Armijo-Goldstein conditions

The Armijo-Goldstein conditions
Let c1 and ¢, two constant such that 0 < ¢; < ¢z < 1. We say
that the step length oy, satisfy the Wolfe conditions if ay, satisfy:
O f(ay + akpr) < f(ax) + c1 axVi(i)pii
Q f(@y + axpr) = f(wx) + c2 0k VH(@r)pi;

1) + acy V(@y)py

f(xr + apy)

f(xr) + acaVi(xy)pr

@ Algorithms for line-search
@ Armijo Parabolic-Cubic search
@ Wolfe linesearch

e

© Armijo-Goldstein conditions has very similar theoretical
properties like the Wolfe conditions.

@ Global convergence theorems can be established

@ The weakness of Armijo-Goldstein conditions respect to Wolfe
conditions is that the former can exclude local minima's from
the step length as you can see in the figure below.

f(@y) + acy V(
f(@y, + apy)

@ Backtracking-Armijo line-search can be slow if a large number
of reduction must be performed to satisfy Armijo condition

@ A better performance is obtained if instead of reducing by a
fixed factor we use polynomial interpolation to estimate the
location of the minimum

© Assuming that that f(z;) and Vf(ai)py are known at the
first step we know also f(z + Apy) if A is the first trial step.

@ In this case a parabolic interpolation can be used to estimate
the minimum

@ If we store the last trial step length, in the successive iteration
we can use cubic interpolation to estimate the minima’s.

@ The resulting algorithm is in the following slides

54/ 64

Armijo Parabolic-Cubic search. |

armijo_linesearch(f, x, p, T)
fo — f(z); Vo — Vf(z)p; A —1;
while A\ > A\, do Algorithm (Armijo Parabolic-Cubic search
fr — f(z + Ap); range(, a, b)
if fy < fo + A7Vfo then if A < a then
return \ ; successful search return a;
else else if A > b then
if A =1 then return b;
Atmp — Vo /[2(fo + Vo —)] else
else return \ ;
Atmp — cubic(fo, Vo, fx, A, fp, Ap); end if
end if
Mo = Ar fp — i A — range(Aompy A/10,4/2);
end if
end while
return A\, ; failed search B

Unconstrained minimization 57/ 64
Algorithms for line-search Armijo Parabs

ic search

Algorithm (Armijo Parabolic-Cubic search
cubic(fo, Vo, f, Ay Fs Ap)

Evaliate; @ Wolfe linesearch is identical to the Armijo Parabolic-Cubic
o 1 X =02 [y —fo— AVf search, until a point satisfying the first condition is found.
(b) TR (—Aﬁ ») (f,, iy A,,Vfo) @ At this point the Armijo algorithm stop while Wolfe search try
to refine the search until the second condition is satisfied.
ifa =0 then @ If the step estimated is too short then is is enlarged until it
return —Vfo/(2b); cubic is a quadratic P 8
else

contains a minimum
d— b —3aVfy;
return (—b+V/d)/(3a);
end if

discriminant

Q If the step estimated is too long it is reduced until the second
legitimate cubic

condition is satisfied

rstrained minimization

Algorithm (Wolfe linesearch
wolfe_linesearch(f, @, p, c1, ¢2)
fo — f(z); Vo — Vf(z)p; A —1;
while \ > Ay, do
fy — f(z + Ap);
if f\ < fo + Ac1Vfo then
g0 to ZOOM; found a \ satisfying condition 1

else
if A =1 then
Atmp — Vo /[2(fo + Vo —)]
else
Atmp — cubic(fo, Vo, fx, A, fp, Ap);
end if

Mo = Ar fp = i A — range(Aomp, A/10,3/2);
end if
end while
return A\, ; failed search

Wofe finesearch |

Algorithm (Wolfe linesearch

REFINE:
{Nos fios Vi) = {A,f, VErY A = Xy — Apof
while A > € do
0N A2VFi/ [2(Fio + Vol —£,)];
OA « range(d),0.2A,0.84);
A Ao+ 0N fr — f(z + Ap);
if fy < fo + Ae1Vfp then
Vfy — Vi(z + Ap)p;
if Vf\ > c2Vfy then return)\;
{Nos fios Vio} — {Afa, Vir}, A — A —6A;
else
{Ap:fo} = {A i} A <A
end if
end while
return \; failed search

found Wolfe point!

Algorithms for line-search

Algorithm (Wolfe linesearch

ZOOoM.
Vfy — Vf(x + Ap)p;
if Vf)\ > c,Vfo then return)\;
if A =1 then
forward search of an interval bracketing a minimum
while A < A\, do
(fy) = LB
A —2); fy —f(z+ Ap);
if not f < fo + Ac1Vfo then
{Ap:fp} = {A.fA}; go to REFINE;
end if
Viy « Vi(z + Ap)p;
if V) > c,Vfo then return \;
end while
return .y ; failed search
end if

found Wolfe point!

save values

swap values

found Wolfe point!

[@ J. Stoer and R. Bulirsch
Introduction to numerical analysis
Springer-Verlag, Texts in Applied Mathematics, 12, 2002

[B J. E. Dennis, Jr. and Robert B. Schnabel
Numerical Methods for Unconstrained Optimization and
Nonlinear Equations
SIAM, Classics in Applied Mathematics, 16, 1996

