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Quasi Newton Method

Algorithm (General quasi-Newton algorithm)

k «— 0;
xo assigned,
go — Vf(wo);
Hy — V2f(a30)_1;
while ||gx|| > € do
— compute search direction
di — Hygy,
Approximate arg minyof(xy — Ady) by linsearch;
— perform step
Tpi1 — Tp — A\pdy;
gi+1 — Vi(xri1),
— update Hy 4
Hy, 1+ some_algorithm(Hk, Tk, Tkil, Gk, gk+1) ;
k — k+1;
end while §‘
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The symmetric rank one update
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The symmetric rank one update

@ Let By and approximation of the Hessian of f(x). Let xy,
Tk+1, gk and gr+1 and if we use the Broyden update formula
to force secant condition to By we obtain

(yx — Bisg)s;

T Y
Sk Sk

By «+ By, +

where sp = 11 —xx and Yr = gx+1 — gi- By using
Sherman—Morrison formula and setting H), = Bk_1 we obtain
the update:

(Hryk — Sk)St
stsp + st Hig11

H;,, — H — k

@ The previous update do not maintain symmetry. In fact if Hy
is symmetric then Hj 1 not necessarily is symmetric.
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The symmetric rank one update

@ To avoid loss of symmetry we can consider an update of the
form:

Hy.1— Hj + uu’
@ Imposing the secant condition (on the inverse)
Hi. 1 1yr = sk = Hyyy, + uu' yp, = s,
from previous equality

yi Hyyr, + yi uu yp = yil sy, =

1/2
yru = (Y sk — yi Hyyy) /

we obtain

sy — Hryr Sk — Hyyg
= 12
(yl'si — yl Hyyy) / &

u =

ulyy,
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The symmetric rank one update

@ substituting the expression of u

s — Hypyy
1
(yl'sk — yl Hyyy)

u —=

/2

in the update formula, we obtain

Hy 1 — Hy +

T wy, = sk — Hyyy
Wi Yk

@ The previous update formula is the symmetric rank one
formula (SR1).

@ To be definite the previous formula needs w,{yk # 0.

not necessarily is positive definite.

@ Have Hj; symmetric and positive definite is important for
global convergence

Moreover if w,{yk < 0 and Hj, is positive definite then Hy . ;

Be
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The symmetric rank one update

This lemma is used in the forward theorems

Let be

1
q(x) = EiBTACB —blx +c

with A € R™ ™ symmetric and positive definite. Then
Ye = Gk+1 — 9k
= Az 1 —b— Axp + b
= Asy;

where g, = Vq(zy)!.
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The symmetric rank one update

Theorem (property of SR1 update)
Let be
1

q(x) = EwTAa: —blz+c

with A € R™ ™ symmetric and positive definite. Let be xo and
Hy assigned. Let x. and Hy produced by

Q xp1 = + Sk,

@ Hj 1 updated by the SR1 formula

T
Hy — Hy + — wy = s — Hyyy
W Yk
If sg, 81, ..., Sn_1 are linearly independent then H,, = A~'.

The symmetric rank one update

Proof. (1/2).

We prove by induction the hereditary property H;y; = s; .
BASE: For 7 = 1 is exactly the secant condition of the update.
INDUCTION: Suppose the relation is valid for £ > 0 the we prove
that it is valid for £ + 1. In fact, from the update formula

T

wLY
Hy1y; = Hpy; + w; 2wy, wy, = s, — Hpyy

LY

by the induction hypothesis for j < k and using lemma on slide 8
we have

wiy; = sLy; — yr Hey; = sLY; — i S;

= y), Ay, — y; Ay; =0

sothat Hy1y; = Hyy; =s; forj=0,1,...,k—1. Forj =k
we have Hy. 1y = si trivially by construction of the SR1 formula.

v
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The symmetric rank one update

Proof. (2/2).
To prove that H,, = A~! notice that

Hn’yj:Sj, ASj:’yj, ij,l,...,n—l
and combining the equality
HnASjZSj, ij,l,...,n—l

due to the linear independence of s; we have H,,A = I i.e.
H,=A1 O

Be
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The symmetric rank one update

Properties of SR1 update

© The SR1 update possesses the natural quadratic termination
property (like CG).
@ SRI1 satisfy the hereditary property Hyy; = s; for j < k.

© SR1 does maintain the positive definitiveness of Hj, if and
only if wly, > 0. However this condition is difficult to
guarantee.

Q@ Sometimes w,{yk becomes very small or 0. This results in
serious numerical difficulty (roundoff) or even the algorithm is
broken. We can avoid this breakdown by the following strategy

Breakdown workaround for SR1 update

@ if |wlyi| > e|wi] llyxll (i.e. the angle between wy, and yj, is far
from 90 degree), then we update with the SR1 formula.

@ Otherwise we set Hy 1 = Hy. &
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The symmetric rank one update

Properties of SR1 update (2/2)

Theorem (Convergence of nonlinear SR1 update)

Let f(x) satisfying standard assumption. Let be {x;} a sequence
of iterates such that limy_, . xp = . Suppose we use the
breakdown workaround for SR1 update and the steps {s} are
uniformly linearly independent. Then we have

Jim [ H, = V()| = 0.

[§ A.R.Conn, N.I.M.Gould and P.L.Toint
Convergence of quasi-Newton matrices generated by the
symmetric rank one update.
Mathematic of Computation 50 399-430, 1988.
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The Powell-symmetric-Broyden update
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The Powell-symmetric-Broyden update

@ The SR1 update, although symmetric do not have minimum
property like the Broyden update for the non symmetric case.

@ The Broyden update

(yr — Agsk)st

T
Sk Sk

A1 = Ag +

solve the minimization problem
||Ak_|_1 _AkHF < ”A_AkHF for all ASk = Yk

@ If we solve a similar problem in the class of symmetric matrix
we obtain the Powell-symmetric-Broyden (PSB) update

Be
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The Powell-symmetric-Broyden update

Lemma (Powell-symmetric-Broyden update)

Let A € R™ ™ symmetric and s,y € R" with s # 0. Consider the
set

B={BeR""|Bs=y, B=B"}
if sTy # 07 then there exists a unique matrix B € B such that
|A—-Bl|p<||A-C|g forallC € B
moreover B has the following form

T T T
B:A+w8 —;—sw _(wTs)
s's

w=1y— As

then B is a rank two perturbation of the matrix A.

®This is true if Wolfe line search is performed &
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The Powell-symmetric-Broyden update

Proof. (1/11).
First of all notice that B is not empty, in fact
1 T 1 T
— eB — =
Ty YY LTy Yy ]s Yy

So that the problem is not empty. Next we reformulate the
problem as a constrained minimum problem:

1 n
arg min 5 Z (A;j — Bi;)® subject to Bs =y and B = B

Be]Ran @7]:1

The solution is a stationary point of the Lagrangian:

1
9(B,A, M) =3 || A~ B|% + X'(By — s) + Y _ pij(Bij — Bji)
1<J

A\

Be
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The Powell-symmetric-Broyden update

Proof. (2/11).
taking the gradient we have
0
aB@'j g(B,)\,B) = Aij — Bij + )\Z’Sj + ]Wij =0
where
pij it <j;
Mz’j — — g if 7 > 7
0 If 2+ = 7.

The previous equality can be written in matrix form as

B=A+Xs'+ M.
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The Powell-symmetric-Broyden update

Proof. (3/11).

Imposing symmetry for B
A4 AT+ M =AT + sAT + MT = A+sXT — M

solving for M we have

sAT — XsT
M =
2
substituting in B we have
T T
SAT + As
B=A+
2

The Powell-symmetric-Broyden update

Proof. (4/11).

Imposing s’ Bs = sy

sT As + sTsAT's —; sTAsT's _ Ty N

A's = (sTw)/(sTs)

where w = y — As. Imposing Bs =y

sATs + AsT's

2w (sTw)s
sTs (sTs)?

A —

next we compute the explicit form of B.
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The Powell-symmetric-Broyden update

Proof. (5/11).
Substituting
2w sTw)s : sAT + Xs”
A= — —(T)2 in B=A-+
st's (sls) 2
we obtain
T T T
ws® + sw T \ SS
B=A-+ — (w's w=1y— As
sTs ( )(sTs)2 J
next we prove that B is the unique minimum.

The Powell-symmetric-Broyden update

Proof. (6/11).
The matrix B is a minimum, in fact
T T T
ws® + sw T ss
B - Al|p= —
I Irs H Tg (w S)(STS)2 -

To bound this norm we need the following properties of Frobenius
norm:

2 2 2
o [M — Nl =|Mlz+|N|F—2M-N;
where M - N = Zij M;;Nj; setting

T SST

(s"'s)?

wsT + sw

M = N = (w''s)

sTs

now we compute ||M ||, |

N|and M- N.

B
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Proof. (7/11).

M- -N = (sTs)3 Z(w,sj + w;5i)8iS;

wTs

- (sTs)3 Z [(wisi)sf T (szj)siz)]

T

= ﬁ _Z(wiSi)ZSf + Z(szj)zsz?]

wl's | 9P 7P g T
= @ (w”s)(s"s) + (w” s)(s" s)
~ 2(w''s)?
(sT's)? B

The Powell-symmetric-Broyden update

Proof. (8/11).
To bound ||NH% and ||MH% we need the following properties of

Frobenius norm:
° HuvTH; = (u’u)(v!v);
o [|uv’ + vuTH; = 2(ulu)(vTv) + 2(u’v)?;

Then we have

wTs Ww- S (.UTS 2
INI7 = % [ss"[7 = ((ST ))4( Ts)? = %

(.LJST sz w WIS S S w 2
Ipajp = 2o A S)E D) L3 )

B
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The Powell-symmetric-Broyden update

Proof. (9/11).

Putting all together and using Cauchy-Schwartz inequality
(a"b < [|a| [[B]):

(wls)?  2(wlw)(sTs)+2(sTw)? 4(wTs)?

| M — NH% = (sTs)2 (sTs)? - (sTs)>
_ 2(wTw)(sTs) — (w!'s)?
(s”s)?
wlw o]

= used Cauchy-Schwartz
ST Tl ' |

Using w = y — As and noticing that y = C's for all C € B. so

that
|w|| = lly — As|| = [|Cs — As|| = |(C — A)s|| ] g‘;
Proof. (10/11).

To bound ||(C — A)s|| we need the following property of
Frobenius norm:

o [|[Mz| < [[M| ||}

in fact
Mzl = 3 (3 M) < 30 (X m2) (X )
i J i J k
= | M| Is]®
using this inequality
lwll _ (€ = A)s|| _ [[C~ Allgs|

— sl sl = Isl]

\

i.e. we have |A — Bl <||C — Al forall C e B. &
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The Powell-symmetric-Broyden update

moreover

2 HF

‘A_E(B/—FB//)

1 / 1 /!
<3la-B 345

If the inequality is strict we have a contradiction. From the
Cauchy—Schwartz inequality we have an equality only when
A — B’ = \A — B”) so that

B — \B" = (1-NA
and

B's—AB's=(1-))As = (1-MNy=(1-))As

Proof. (11/11).
Let B’ and B” two different minimum. Then (B’ + B”) € B

but this is true only when A =1, i.e. B’ = B”. ] %
4

The Powell-symmetric-Broyden update

Algorithm (PSB quasi-Newton algorithm)

k<« 0;
x assigned; g « Vf(x); B « V3f(x);
while ||g|| > ¢ do
— compute search direction
d — B 1g; [solve linear system Bd = g]
Approximate argmin,~of(x — ad) by linsearch;
— perform step
r—x—ad;
— update By
w«— Vf(x)+ (o« —1)g;, g« Vf(x),
ﬁ P (ade)—l; v — 6204dTw,'
B — B — j(dw! + wd") +~vdd",
k—k+1;
end while
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The Davidon Fletcher and Powell rank 2 update
Outline

@ The Davidon Fletcher and Powell rank 2 update
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The Davidon Fletcher and Powell rank 2 update

@ The SR1 and PSB update maintains the symmetry but do not
maintains the positive definitiveness of the matrix Hy 1. To
recover this further property we can try the update of the
form:

Hy.1 — Hj, + cuu’ + oo’
@ Imposing the secant condition (on the inverse)
Hi1yr = si =
Hyyr + o(u’ yr)u+ o' yp)v = s =
a(u"yr)u+ B(v yr)v = s — Hyys

clearly this equation has not a unique solution. A natural
choice for u and v is the following:

u = sy v = Hyyy &
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The Davidon Fletcher and Powell rank 2 update

@ Solving for o and (3 the equation

a(styr)sk + Byl Hyye) Hyye = sk — Hyyy,
we obtain

1 1

o = B = —-———
S1 Yk vy Hyyx

@ substituting in the updating formula we obtain the Davidon
Fletcher and Powell (DFP) rank 2 update formula

T T
SLS H H

sty vyl Hyyy,

@ Obviously this is only a possible choice and with other
solution we obtain different update formulas. Next we must
prove that under suitable condition the DFP update formula
maintains positive definitiveness.
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The Davidon Fletcher and Powell rank 2 update
Positive definitiveness of DFP update

Theorem (Positive definitiveness of DFP update)

Given H;. symmetric and positive definite, then the DFP update

7P 7P
S1S H H

st yk y! Hyyy,

produce Hy. 1 positive definite if and only if sfyk > 0.

Remark (Wolfe = DFP update is SPD)

Expanding styy > 0 we have Vf(zpy1)sp > Vi(zy)sy .
Remember that in a minimum search algorithm we have s = o pg
with o, > 0. But the second Wolfe condition for line-search is

Vi(xr + arpr)pr > c2 Vi(xg)pr with 0 < ¢ < 1. But this imply:

Vf(ibk+1)8k > o Vf(mk)sk > Vf(a:k)sk = S%’yk > 0. &

v
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The Davidon Fletcher and Powell rank 2 update

Let be sgyk > 0: consider a z # 0 then

H TH SpsL
zTHkHz = zT(Hk— kYk Y k>z+zT F2k

T (z" Hyye)(y Hrz) | (27sp)?
=z Hpz — T +—F
Y. Hryx 81 Yk

H;. is SPD so that there exists the Cholesky decomposition

LLT = H,,. Defining a = LTz and b = LT y;, we can write

(a”a)(b’'b) — (a’'b)? N (z1's)?
bTb sty

2THy 12 =

from the Cauchy-Schwartz inequality we have
(a’'a)(d'b) > (a’'b)? so that zT Hy 12 > 0.

Proof. (1/2).

v
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The Davidon Fletcher and Powell rank 2 update

To prove strict inequality remember from the Cauchy-Schwartz
inequality that (a’a)(b?b) = (a’'b)? if and only if a = \b, i.e.

LTz =)Ly, = zZ = \Yk
but in this case

("s1)? _ \o(y" k)

T T >0 = zTHkHz > 0.
St Yk SLYk

Let be 2" Hj 12z > 0 for all z # 0: Choosing z = y; we have

T o \2
Y Sk

0 < yi Hyp1yp = (Y si)” = S Sk Yk
S Yk

Proof. (2/2).

]

v
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The Davidon Fletcher and Powell rank 2 update

Algorithm (DFP quasi-Newton algorithm)

k «— 0,
x assigned; g « Vf(x); H «— Vf(x)~;
while ||g|| > € do
— compute search direction
d— Hg;
Approximate arg min,of(x — ad) by linsearch;
— perform step
r—x—od;
— update Hy, 4
y — Vf(z) —g;, z+< Hy, g+ Vf(z);
T

dd zz
H<—H—adTy—yTz
k—k+1;

end while

v &
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Theorem (property of DFP update)

Let be q(z)=i(z—z. )T A(x — ) +c with A € R™"
symmetric and positive definite. Let be xy and Hy assigned. Let
{x} and {H}} produced by the sequence {s;}

Q i1 — Tk + Sk,

T T
SES Hkyky Hk
@ Hy1— Hp+ 75 ——7 -+,
S1. Yk y;. Hryyx

where s = aypir with ay is obtained by exact line-search. Then
for 3 < k we have

Q gls;=0; [orthogonality property]
Q@ Hy; =sj; [hereditary property]
Q sl As; =0; [conjugate direction property]
© The method terminate (i.e. Vf(x,,)=0) at x,,, = x, with
m <mn. Ifn=m then H, = A~ 1. &
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The Davidon Fletcher and Powell rank 2 update

Proof. (1/4).

Points (1), (2) and (3) are proved by induction. The base of
induction is obvious, let be the theorem true for £ > 0. Due to
exact line search we have:

T
9i.+18k = 0

moreover by induction for 5 < k we have g,z;rlsj =0, in fact:
i i =L 5
9i+15; = 9555 + Zi:j (gi+1—gi)" sj
k—1 -
=0+ Zi:j (A(ziy1 — ) — A(xi — x4))" 85
k—1
= Zizj (A(zir1 — ) "s;

k—1
= Zi:j s; As; = 0. [induction + conjugacy prop.]

v
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The Davidon Fletcher and Powell rank 2 update

Proof. (2/4).
By using si+1 = —ag+1Hi 119541 we have s;j;_lAsj =0, in fact:
si+148; = —apgi 1 Her1(Azjp — Axy)

= —apr1Gpp1 Her1(A(zj1 — 2) — Az — z.))
= —ak+1g§+lﬂk+1(gj+1 - gj)

= —ok 4195 11 Hir1Y;

_ —Oék+1QZ+13j [induction + hereditary prop.]
=0

notice that we have used As; = y;.
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Proof. (3/4).
Due to DFP construction we have
Hj 1y, = sk

by inductive hypothesis and DFP formula for j < k we have,
s,~C Y;j = S;, A:;.j7 = 0, moreover

T T
sksry; Hiyry, Hyy;
Hk+1yj = Hkyj‘|‘ Sg’;k] _ yg;kyk J

si0  Hpyry. s
st Yk yl Hyyx

:8]+

_ Hyyr(grri —gr)' s

= 8 [yi = gj+1 — 95l
j 7= 9j j
vy Hyyx
= 8 [induction + ortho. prop.] ) §‘

The Davidon Fletcher and Powell rank 2 update

Proof. (4/4).
Finally if m = n we have s; with j =0,1,...,n — 1 are conjugate
and linearly independent. From hereditary property and lemma on

slide 8

H ASk = nyk = Sk
i.e. we have

HnASk:Sk, kZO,l,...,TL—l

due to linear independence of {s;} follows that H,, = AL []

v
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The Broyden Fletcher Goldfarb and Shanno (BFGS) update
Outline

© The Broyden Fletcher Goldfarb and Shanno (BFGS) update
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The Broyden Fletcher Goldfarb and Shanno (BFGS) update

@ Another update which maintain symmetry and positive
definitiveness is the Broyden Fletcher Goldfarb and Shanno
(BFGS,1970) rank 2 update.

@ This update was independently discovered by the four authors.

@ A convenient way to introduce BFGS is by the concept of
duality.

@ Duality means that if | found an update for the Hessian, say
By 1 < U(Bk, Sk, Yr)

which satisfy Bj.18;r = Yy (the secant condition on the
Hessian). Then by exchanging By = Hj, and s = y; we
obtain the update for the inverse of the Hessian, i.e.

Hj 1 — U(Hy, yi, Sk)

which satisfy Hy, 1y, = si (the secant condition on the
inverse of the Hessian). &
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The Broyden Fletcher Goldfarb and Shanno (BFGS) update

@ Starting from the Davidon Fletcher and Powell (DFP) rank 2
update formula
sksi  Hpyryl Hy

Hy 1 «— Hj + —
sty yl Hyyx

by the duality we obtain the Broyden Fletcher Goldfarb and
Shanno (BFGS) update formula

T T
Yy BkSkS Bk
Bjp1 < B+ =8 — — K
Yi. Sk 83, Bi.sg

@ The BFGS formula written in this way is not useful in the case
of large problem. We need an equivalent formula for the
inverse of the approximate Hessian. This can be done with a
generalization of the Sherman-Morrison formula.

Be
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The Broyden Fletcher Goldfarb and Shanno (BFGS) update

Sherman-Morrison-Woodbury formula

Sherman-Morrison-Woodbury formula permit to explicit write the
inverse of a matrix changed with a rank k£ perturbation

Proposition (Sherman—Morrison-Woodbury formula)

(A+uvT)yt=Al_AalU(I+Vviu)vTa!

where

U:[ul,’uQ,...,uk] V:[vl,vg,...,vk]

The Sherman—Morrison—Woodbury formula can be checked by a
direct calculation.

B
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The Broyden Fletcher Goldfarb and Shanno (BFGS) update

Sherman-Morrison-Woodbury formula

The previous formula can be written as:
i il
(A +3° uivgf) — Al AlyCclvTA?
i=1

where

Cij =6 +viu;  i,j=1,2...k

Be
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The BFGS update for H

By using the Sherman-Morrison-Woodbury formula the BFGS
update for H becomes:
Hyyyst I'H
Hyy — Hy — kyksk; SpY;
Sk Yk
k
. . (A)
Sk S}, Y, Hiyr:
S Yk S Yk
Or equivalently
T T T
SkY YiS SkS
Hipy — (T- 228 VB (1- 228) 1 220 ()
SLYk S Yk S Yk
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The Broyden Fletcher Goldfarb and Shanno (BFGS) update
Proof. (1/3).

Consider the Sherman-Morrison-Woodbury formula with £ = 2 and

Yk Uy = vy — By sk
(s;{yk)lp (.s’—lgBk;sk)l/2

in this way (setting Hy, = Bk_l) we have

Uy = v =

gp
Y;. Hiyx
Cii=14+viu =1+ kT
Sk Yk
S BkaBkSk
022:1+'0Tu2:—k =1—-1=
2 TB
S DSk
7P P 1/2
o oTu Y, Brsk (81, Brsk) /
12 = U2 = (T \1/2(T 12 — T, \1/2
(5% yx)Y/?(sf Brsk)Y/ (i yx)Y
T
(o1 = vy ug = — (12 @
Proof. (2/3).

In this way the matric C' has the form

(B « 11 /(0 -«
c-(Ls) o=l )

yi Hyy o\ — (sf Bysy)/?
Sk Uk (s yk)'/?

where setting U = H,U and V= H,;V where

G=1+

ﬁi:Hkui and ’IA)/Z':H]C’U?; i=1,2
we have
H,,, — H,—- HUC 'VTH,=H,-UC'vT

1 " 6 . -
= H; + a(—ulvg + ’U,Q’U{) — ?ugvg &

~
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The Broyden Fletcher Goldfarb and Shanno (BFGS) update

Substituting the values of «, (3, u's and v's we have we have

Hyyisi + spyl H,  spsi vyl Hyyx
Hj., «— Hy — . K e PR
Sk Yk SLYk SL Yk

At this point the update formula (B) is a straightforward
calculation.

Quasi-Newton methods for minimization

Theorem (Positive definitiveness of BFGS update)
Given H;. symmetric and positive definite, then the DFP update

T T T

SkY YiS SkS

Hyp — (1 225 H (1 - 28 ) 4 =
SLYk S Yk S Yk

produce Hy. 1 positive definite if and only if sfyk > 0.

4
The Broyden Fletcher Goldfarb and Shanno (BFGS) update

Positive definitiveness of BFGS update

49 / 63

A\

Remark (Wolfe = BFGS update is SPD)

Expanding styy > 0 we have Vf(zpy1)sp > Vi(zy)sy .
Remember that in a minimum search algorithm we have s = o pg
with o, > 0. But the second Wolfe condition for line-search is
Vi(xr + arpr)pr > c2 Vi(xg)pr with 0 < ¢ < 1. But this imply:

Vi(xpi1)se > co Vi(xg)sky > Vi(xr)sy = S%’yk > 0.

Quasi-Newton methods for minimization
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The Broyden Fletcher Goldfarb and Shanno (BFGS) update
Proof.

Let be sgyk > 0: consider a z # 0 then

T o \2 T
z" Sy S,z
zTHkHz — w! Hyw + (T—) where w = z — yy, :,’f
S S
k Yk L Yk

In order to have z” H}, 1z = 0 we must have w = 0 and
zTs;, =0. But 27s;, = 0 imply w = z and this imply z = 0.

Let be zTHkHz > 0 for all z # 0: Choosing z = y; we have

Tor )2
Sk Yk
0 < yi Hy1yi = (5 ye)” g S Si Yk
S Yk
and thus sgyk > 0. ]
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Algorithm (BFGS quasi-Newton algorithm)

k «— 0;
x assigned;, g « Vf(x); H «— Vf(x)7;
while ||g|| > € do
— compute search direction
d— Hg,
Approximate arg min, o f(x — ad) by linsearch;
— perform step
r<—x—ad;
— update Hy, 4
y «— Vf(x) — % z <—T Hy; g <—TVf(w)T
zd' +dz y'z\dd
H —H - dTy (a_—)ﬂ'
k«—k+1;

d'y
end while

R
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The Broyden Fletcher Goldfarb and Shanno (BFGS) update

Theorem (property of BFGS update)

Let be q(z) = 3(z —z.)TA(x —x.) + ¢  with A € RV™
symmetric and positive definite. Let be x¢y and Hq assigned. Let
{xr} and {H}} produced by the sequence {sj}

Q Tii1 — xk + Sk

T T T
S S SiS
Q Hy,q (I— ];yk>Hk(I—y§ik)+ ;k
Sk Yk SL Yk S Yk
where s = aypir with ay. is obtained by exact line-search. Then

for 3 < k we have

Q gls;=0; [orthogonality property]
Q@ H,y; = sj; [hereditary property]
Q siAs;=0; [conjugate direction property]
© The method terminate (i.e. Vf(x,,) =0) at x,,, = x, with
m <n. Ifn=m then H, = A~ %
Proof. (1/4).

Points (1), (2) and (3) are proved by induction. The base of
induction is obvious, let be the theorem true for &k > 0. Due to
exact line search we have:

T _
9i+15k =0

moreover by induction for 5 < k we have g;{_Hsj =0, in fact:
g 7 =l T
9i+18; = 9, Sj + Zi:j (gi+1 — )" s;
k—1 T
=0+ Zi:j (A(Tiy1 — z) — A(z; — ) Sj

=3 (Alwi —2)"s;

k—1
= Z,_, s; As; = 0. [induction + conjugacy prop.] &
=]

o
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The Broyden Fletcher Goldfarb and Shanno (BFGS) update

Proof. (2/4).
By using si+1 = —ag+1Hi+195+1 We have s;fHAsj =0, in fact:
skr1As; = —api1gpp1 Her1(Azj — Azy)

= —@k+1gl:<:F+1Hk+1(A(wj+1 —x) — Az —z4))
= —ops19h 1 Hrr1(9511 — 95)

= —ap19i1 Hir1Y;

= —ak+1g£+1sj [induction + hereditary prop.]

=0

notice that we have used As; = y;.
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Proof. (3/4).

Due to BFGS construction we have

Hy 1y, = sg

by inductive hypothesis and BFGS formula for j < k& we have,
Sgyj = s%Asj =0,

T T T
SKY sTy; sKsty;
Hier1yj = (I B sTy];)Hk (yj - sé:yi yk) * ST—kykj
k k k

SpyL s;.0
= (1= 25 )V Hy; + 5 [Hiy, = s))
k

T T
S Yk SLY
T

oo YiSy
SLYk

y
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The Broyden Fletcher Goldfarb and Shanno (BFGS) update

Proof. (4/4).
Finally if m = n we have s; with j =0,1,...,n — 1 are conjugate
and linearly independent. From hereditary property and lemma on
slide 8

H, As; = H,y;, = si
i.e. we have

H, As; = s;, k=0,1,...,n—1

due to linear independence of {s;} follows that H,, = A~1. ]

v
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The Broyden class

Outline

@ The Broyden class
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The Broyden class

@ The DFP update

_ Hyyps, + siy, Hy N SkS}, (1 N ygﬂkyk)

BFGS
H 7" < Hy T T T
SL Yk S Yk SL Yk

and BFGS update

T T
SkS Hy,y;, Hy
H]{;D-f]ip <_Hk+ = k = k
Si. Yk Y. Hryg

maintains the symmetry and positive definitiveness.

@ The following update
ng+1 —(1-19) lgfip + HHEEGS

maintain for any 6 the symmetry, and for 6 € [0, 1] also the
positive definitiveness.
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Positive definitiveness of Broyden Class update

Theorem (Positive definitiveness of Broyden Class update)

Given H;, symmetric and positive definite, then the Broyden Class
update

ng+1 A (1 - G)Hl?JﬂP + erBflGS

produce Hgﬂ positive definite for any 6 € [0, 1] if and only if

s%yk > 0.
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The Broyden class

Theorem (property of Broyden Class update)

Let be q(z)= 3(z —z)TA(z —x.) +¢  with A € RV™
symmetric and positive definite. Let be xoy and Hy assigned. Let
{x} and {H}} produced by the sequence {sj}

Q Tpi1 — xp + Sk,

@ H! ,— (1-60)HPEF + 0HPECS,

where s, = aypr with ay is obtained by exact line-search. Then
for 7 < k we have

Q gls;=0; [orthogonality property]
Q@ Hyy; =sj; [hereditary property]
Q siAs;=0; [conjugate direction property]|

© The method terminate (i.e. Vf(x,,) =0) at x,,, = x, with
m <mn. Ifn=m then H, = A~
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@ The Broyden Class update canbe written as

0 DFP T
Hy., = Hiy + 0wpwy,
BFGS T
= H; 777 + (0 — Nwrwy,

where

7 1/2[ Sk Hy;

@ For particular values of 6 we obtain
Q@ 0 =0, the DFP update
@ 0 =1, the BFGS update
© 0 =s!yi/(sk — Hryr)" yr the SR1 update
Q 0= (1+(y{ Hryr/styx)) ' the Hoshino update
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