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‘Quasi-Newton methods for minimization

k—0;
@0 assigned;
go — Vi(wo);
Hy — V2f(zo) Y
while ||gi|| > ¢ do
— compute search direction
dy, — Hygp:
Approximate arg min, o f(z), — Ady,) by linsearch;
— perform step
Tpi1 — Tk — Aedi;
i1 < Vi(zpa);
— update Hj;
Hyyq— some_algorithm(Hy, Ty, Thi1, Gks Grs1)
k —k+1;
end while

Algorithm (General quasi-Newton algorith

5
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i Newton Method

Outline

@ Quasi Newton Method

@ The symmetric rank one update




Let By, and approximation of the Hessian of f(x). Let ay,
@41, gk and gp41 and if we use the Broyden update formula
to force secant condition to By.1 we obtain

Bj1 — Bi + e

where s = @1 — @, and Y = gry1 — g By using
Sherman-Morrison formula and setting Hy. = B " we obtain
the update:

(Hys — si)st

Hpy — Hi — v
stsp+ 8] Higri1

The previous update do not maintain symmetry. In fact if Hj,
is symmetric then H.1 not necessarily is symmetric.
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“The symmetric rank one update

o substituting the expression of u

— Hyyy

 (yFse -yl Hige)

in the update formula, we obtain
ww]

Hpy — Hy+ —=
Wi Yk

wy, = s — Hyyr

o The previous update formula is the symmetric rank one
formula (SR1).

o To be definite the previous formula needs w] yx # 0.
Moreover if w[yk < 0 and Hj, is positive definite then Hjy1
not necessarily is positive definite.

o Have Hj, symmetric and positive definite is important for
global convergence

5
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o To avoid loss of symmetry we can consider an update of the
form:

Hpy — Hy + uu”
o Imposing the secant condition (on the inverse)

Hyyp = 51 = Hyy, +uu’y, = s

from previous equality

yi Hyyi +yiwa'y =yls =

1/2

yiu = (yi'sr -yl Hyyr)
we obtain

sk — Hyyp
uTyy

sk — Hiyr

172

(v!'sk — vl Hyyr)

1
q(z) = E.':TA:: —blztc

with A € R™*" symmetric and positive definite. Then
Yk = Gk+1 — Gk
= Axjy —b— Az +b
= Asj

where gy = Va(zx)T.




T

he symmetric rank one update.

Theorem (property of SR1 update)
Let be

1
=-alAz—b'z+c

q(z

with A € R™" symmetric and positive definite. Let be aq and
Hy assigned. Let @, and Hj, produced by

Q Ty =@k + 8K/

@ Hy.,, updated by the SR1 formula
wyw]
w]ly;

Hy.yy « Hy +

wy, = s, — Hyyy

If sg, 81, ..., 8p—1 are linearly independent then H, = A~*.
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metric rank one update

To prove that H,, = A~ notice that
Huyj=sj,  Asj=y;, J
and combining the equality

H,Asj = s j

due to the linear independence of s; we have H,A =1 i.e
H,=A"

We prove by induction the hereditary property Hjy; = s;

BASE: For i = 1 is exactly the secant condition of the update.
INDUCTION: Suppose the relation is valid for k& > 0 the we prove
that it is valid for £ + 1. In fact, from the update formula

Yi

T,
w)
Hyy; = Hyyj + w‘;fwwk wy, = s — Hyyy
k Ik

by the induction hypothesis for j < k and using lemma on slide 8
we have
wi'y; = sty; — yi Hyyj = siy; — ui's;
yi Ay; — y{ Ay; =0

sothat Hy 1y, = Hyyj = s; for j=0,1,....k—1 Forj=k
we have H41yj = 8. trivially by construction of the SR1 formula.
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Properties of SR1 update

@ The SR1 update possesses the natural quadratic termination
property (like CG)

@ SR satisfy the hereditary property Hyy; = s; for j < k.

@ SRI1 does maintain the positive definitiveness of Hj. if and
only if w!'y; > 0. However this condition is difficult to
guarantee.

@ Sometimes w] 'y becomes very small or 0. This results in
serious numerical difficulty (roundoff) or even the algorithm is
broken. We can avoid this breakdown by the following strategy

Breakdown workaround for SR1 update

@ if |wlyk| = e||w] || |lykl| (i.e. the angle between wy and yj is far
from 90 degree), then we update with the SR1 formula

@ Otherwise we set Hy.y = Hj,




Properties of SR1 update

Theorem (Convergence of nonlinear SR1 update)
Let f(x) satisfying standard assumption. Let be {)} a sequence
of iterates such that limj_..o @), = .. Suppose we use the
breakdown workaround for SRI update and the steps {sy.} are
uniformly linearly independent. Then we have © The Powell-symmetric-Broyden update
lim || Hy — V2f(e,) 7! = 0.
k—oo
@ AR.Conn, N.LM.Gould and P.L.Toint
Convergence of quasi-Newton matrices generated by the
symmetric rank one update.
Mathematic omputation 50 399-430, 1988.
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Lemma (Powell-symmetri royden update)
o The SR1 update, although symmetric do not have minimum Let A € R™" symmetric and s,y € R" with s # 0. Consider the
property like the Broyden update for the non symmetric case. set
@ The Broyden update B={BeR"™ |Bs=y, B=B"}
T
A = Ap+ (Y — f Sk) S} if sTy # 07 then there exists a unique matrix B € B such that
" |A-B|,<||A-C|, foralCeB
solve the minimization problem
moreover B has the following form
[[Aki1 = Aillp < A = Agllp  forall As =y
ws” + sw’ oo, ss!
o If we solve a similar problem in the class of symmetric matrix B=Av=_r==-Fomms w=y=46
we obtain the Powell-symmetric-Broyden (PSB) update
then B is a rank two perturbation of the matrix A.
“ “This is true if Wolfe line search is performed }




The Pouell-symmetric-

Proof.

First of all notice that B is not empty, in fact
1. 7 17
== €B == 8=
Ty [ Ty y
So that the problem is not empty. Next we reformulate the
problem as a constrained minimum problem:

1
argmin 5 > (Aij = By)? subject to Bs =y and B = B”

BeRnxn 55

The solution is a stationary point of the Lagrangian:

1 T
9(BAM) = | A~ Bllj + X' (By — ) + 3 s (B — Byi)

i<j
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metric-Broyden update

Imposing symmetry for B
A+AsT + M =AT + AT + MT = A+ X" - M

solving for M we have

sAT — "
M= A8
2
substituting in B we have
2 7
B-Ax+ SA ;r/\s

Proof.
taking the gradient we have

9
Ty 9B A B) = i = By Ny My =0

where
Hij ifi < j;
M= —pij ifi>j;
0 Ifi=3j.

The previous equality can be written in matrix form as

B=A+xs" + M.

sTsATs +s"As"s
=y =

M = (sTw)/(s"'s)

sTAs +

where w =y — As. Imposing Bs =y

sATs +As”s
o EEO PG

A
s P

2w (sTw)s
" sTs  (sTs)?

next we compute the explicit form of B.




The Pouell-symmetric-

Substituting

2 7 7 7
2w (sTw)s n B*A}S}\ +As
Ts  (s7s) 2
we obtain
7 i iy
ws' + sw T\ 88
B=A+= 2 - W) s —y-A4s

next we prove that B is the unique minimum
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Proof
M-N = %zw Fojs)sis
= 5)32 (wrs)s} + (w37)57)]
(Srsjg{Zw,)z: + e X4]

o

= (‘9”%“95)3 {(wTs)(sTs) 4 (uTs)(sTs)]

2(wT's)?
~ (T

Proof.

The matrix B is a minimum, in fact

T

ws’ + sw! T
(s7s)?|[p

sTs

18- Al = |

To bound this norm we need the following properties of Frobenius
norm:

o [|M — N|F = [M]7 + N[}~ 2M - N
where M - N = 37, M;; Ny setting

ar 0

ws’ + sw
M=——7—— N = —
sTs (@) s)?

2. and | M||% we need the following properties of
Frobenius norm:
o [un |2 = (@WTwwTo):

o uv® + vuT 2 = 2uTu)(0Tv) + 2(uT0)?;

Then we have

w's w's wTs)?
V1 = ST oot = ey = ok
a2 = wsTE:ssuT _ 2(wTu)(?::l; 2(s"w)?




Proof.

Putting all together and using Cauchy-Schwartz inequality
(a”b < [al [1B])):

(@Ts)? | 2(wTw)(s"s) +2(sTw)?  4(ws)?
[CD N O N D
2(w7w)(s7s) — (w's)?

(TSP

2
M- N7 =

T 2
el

= sTs s

[used Cauchy-Schwartz]

Using w = y — As and noticing that y = C's for all C € B. so
that

lwll = lly - As|| = [Cs — As|| = (C — A)s]|

Proof. (11/11).

Let B’ and B” two different minimum. Then }(B'+ B") € B
moreover

a- %(B’ +B")

10, o L4 _pn
_<3la- Bl fla- 5,

If the inequality is strict we have a contradiction. From the
Cauchy-Schwartz inequality we have an equality only when
A— B = \(A- B") so that

B —AB"=(1-))A
and
B's—)\B's=(1-)\)As = (1-Ay=(1-))As

but this is true only when A =1, i.e. B'= B". ()

Proof.

To bound ||(C — A)s|| we need the following property of
Frobenius norm:

o |Maz| < M| |l;
in fact
2
M) = 30 (3 Mys) <X (X M3) (%)
i g i &
= M 5]
using this inequality
C-A C - Al
M- Nl < Il _ IiC sl [l l1sll
llsl [E] [E]

ie. we have [|A— B, < [|C— Al forall CeB.

Algorithm (PSB quasi-Newton algorithm)
k<0,
T assigned; g — Vf(z); B — V(z);
while ||g|| > ¢ do
— compute search direction
d«— Blg;  [solve linear system Bd = g]
Approximate argmin, o f(x — ad) by linsearch;
— perform step
T —x—ad;
— update Bj.41
w o Vi) + (0~ 1)g; g Vi(@);
B+ (adfd)t; v« pPadlw;
B« B - f(dw” + wd") +4dd";
k—k+1;
end while




@ The Davidon Fletcher and Powell rank 2 update

5

‘Quasi-Newton methods for minimization 29/ 63
“The Davidon Fletcher and Powell rank 2 update

@ Solving for a and 3 the equation
a(sfyr)sk + Byl Hyyr) Hyyy = s, — Hyyy,
we obtain

1 1

a=
-
shyr

y! Hyyi.

o substituting in the updating formula we obtain the Davidon
Fletcher and Powell (DFP) rank 2 update formula

'y iy
SkS), Hyyry, Hi

Hyy — Hp+ kYUY Tk
styr yl Hyy.

@ Obviously this is only a possible choice and with other
solution we obtain different update formulas. Next we must
prove that under suitable condition the DFP update formula
maintains positive definitiveness.

o The SR1 and PSB update maintains the symmetry but do not
maintains the positive definitiveness of the matrix Hy1. To
recover this further property we can try the update of the
form:

Hp 1 — Hy + auu” + oo’
o Imposing the secant condition (on the inverse)
Hi 1y, = si =
Hyyy + o(u"yp)u + B yp)o = si =
a(uyp)u+ B yr)v = s, — Hyyy

clearly this equation has not a unique solution. A natural
choice for u and v is the following:

v = Hyyy “

u = sy

“The Davidon Fletcher and Powel rank 2 updat

Positive definitiveness of DFP update

Theorem (Positive definitiveness of DFP update)

Given Hj, symmetric and positive definite, then the DFP update
sps)
sty

Hyyryl Hy
yl Hyyx

Hyiy < Hy +

produce Hy.+1 positive definite if and only if s} yj. > 0.

Remark (Wolfe = DFP update is SPD)

Expanding sTyi > 0 we have Vf(wyi1)si > Vi(zr)sy, -

Re ber that in a minir search i we have s, = apy
with o > 0. But the second Wolfe condition for line-search is
Vf(@r +axp)pr > 2 V(ax)pr with 0 < ¢ < 1. But this imply:

sty > 0. }

Vf(zpi1)sk = 2 Vi(zi)se > VH(z)s, =




The Davidon Fletcher and Powel rank 2 update.

Proof.

Let be sy > 0: consider a z # 0 then

Hyyryl Hi P
Yy Hiyr S Yk

= (=" Hyyi)(yf Hiz) o (ZTTSk)2
y! Hyyy. 8L Yk

Hj, is SPD so that there exists the Cholesky decomposition
LL” = H}, Defining a = LTzand b= LT Yk We can write

2" Hyp12 =

(aa)(b"b) — (a”b)® | (<51
o7 STy

from the Cauchy-Schwartz inequality we have

(aTa)(bTb) > (aTb)? so that 2 Hy,12 > 0
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k<« 0;
@ assigned; g — Vif(z); H — V()L
while ||g|| > ¢ do
— compute search direction
d« Hg;
Approximate arg min,
— perform step

oo f(@ — ad) by linsearch;

T —x— ad,

— update Hj.;
y— Vi(z)-g; z+« Hy; g« Vi(z);
dd 22"
HH- o —
CdTy YTz
k—k+1;
end while

“The Davidon Fletcher and Powell rank 2 update

Proof.

To prove strict inequality remember from the Cauchy-Schwartz
inequality that (a”a)(b7b) = (a”b)? if and only if @ = Ab, i.e

LTz =\L"y, = 2= Ayk
but in this case
(z"s)? -2 (y"s1)?

=\N—=——>0 =
SZyk -?zyk

2THp12 > 0.
Let be 2" Hj1z > 0 for all z # 0: Choosing z = yj, we have

(y"se)

0 <y Hypyr =~ = sl yx
STy

]

Theorem (property of DFP update
Let be q(x)=i(z—a.)TA(x—z.)+c with AeR™"
symmetric and positive definite. Let be xg and Hy assigned. Let
{xx} and {H}} produced by the sequence {s;}

Q w1 — T+ S/

T T
spsp  Hj H,
Q Hyy— Hp+ 7‘_& ,M
SLYk yl Hyy
where sj. = aypy with oy, is obtained by exact line-search. Then
for j < k we have
@ gls;=0; [orthogonality property]
Q Hy; g [hereditary property]
Q s As; =0; [conjugate direction property]
@ The method terminate (i.e. vf(zm) =0)at x, =z, with
m < n. Ifn=m then H, = A~




The Davidon Fletcher and Powel rank 2 update.

Proof.

Points (1), (2) and (3) are proved by induction. The base of
induction is obvious, let be the theorem true for k > 0. Due to
exact line search we have:

-
it18k =0

moreover by induction for j < k we have g[',s; =0, in fact:
i i =2 @
Gk118) = g; 8j + ZL:/ (gi+1—9i)"s;
k-1 T
=0+ Z,:J (A(zis1 — z2) — Az — 2.))"'s;
k-1
= lej (A(zis1 — z:)) s

k-1
= Z,:] sTAs;=0. [induction + conjugacy prop.]
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“The Davidon Fletcher and Powell rank 2 update

Due to DFP construction we have
Hyayr = sk

by inductive hypothesis and DFP formula for j < k we have,
sTy; = sTAs; = 0, moreover

o

7
Sk8 H;,
Hypry; — Hyy, + 2569 Hevrty Hiy;
D KT Ty, yl Hyyj.
50 Hyyyl's
=38+ - [Hyyy = s
Sk Yk 'k Hiyn
Hiyi(gies — 9i)'s)
= g — A T o) - _
i o Hyy, [v; = 9541 - g5l
=8 [induction + ortho. prop.] ‘,

Proof.

By using 841 = —ag1Hi 1gks1 we have s]; As; =0, in fact:
T 1As; = — 1 Hey1(Azj — Az
84148) = —Ckp1Gks1 Hia (Azjin — Az))

= —arngi Hin(A(@in - 2.) - A(z; - z.))
= —akn1gi1 Hiva(gj1 — 95)
= —ar19f 1 Hi 1y,

k1914185 linduction + hereditary prop.]
=@

notice that we have used As; = y;.

Finally if m = n we have s; with j =0,1,..., n — 1 are conjugate

and linearly independent. From hereditary property and lemma on
slide 8

HyAsi = Hyyi = s

i.e. we have

H, Asj = s,

WAoo =1

due to linear independence of {s;} follows that H,, = A~’. o




@ The Broyden Fletcher Goldfarb and Shanno (BFGS) update
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“The Broyden Fletcher Goldfarb and Shanno (BFGS) update

o Starting from the Davidon Fletcher and Powell (DFP) rank 2
update formula

sisl Hyywy! Hy

Hjy1 — Hy +
slyx yl Hyyr

by the duality we obtain the Broyden Fletcher Goldfarb and
Shanno (BFGS) update formula

yryl _ Bysysl By

Biy1 — B+
yl sk s Bysy.

o The BFGS formula written in this way is not useful in the case
of large problem. We need an equivalent formula for the
inverse of the approximate Hessian. This can be done with a
generalization of the Sherman-Morrison formula.

@ Another update which maintain symmetry and positive
definitiveness is the Broyden Fletcher Goldfarb and Shanno
(BFGS,1970) rank 2 update.

o This update was independently discovered by the four authors.

@ A convenient way to introduce BFGS is by the concept of
duality.

o Duality means that if | found an update for the Hessian, say

By < U(By, sk, yk)

which satisfy Bj.;18; = ¥ (the secant condition on the
Hessian). Then by exchanging By, = H, and s;, = yj, we
obtain the update for the inverse of the Hessian, i.e

Hio1 — U(Hp, yr, si)

which satisfy Hj 1y, = s, (the secant condition on the
inverse of the Hessian).

Sherman-Morrison-Woodbury formula permit to explicit write the
inverse of a matrix changed with a rank k perturbation

Proposition (Sherman—-Morrison-Woodbury formula)

(A+UvT)yl=Al A WW(I+ VD) VAT
where

U=[unus.w] V= [on0...,0]

The Sherman—Morrison-Woodbury formula can be checked by a
direct calculation.




The previous formula can be written as:

k =
(A+Zu‘v{‘) oAl avcivTat
i=1

where
Cij =6, T, i,j=
=0+ olu; i =1,2...k

“The Broyden Fletcher Goldfarb and Shanno (BFGS) update

Proo (1/3)

Consider the Sherman-Morrison-Woodbury formula with k& = 2 and

Bysi.

wy = —=LEE__
(sTBysi)2

—vy

e Y
(s7yi)1/?

in this way (setting Hj, = B;.') we have

s T H,.
Cuu = 1+ vfuy = 14 Y7k
STy
T
s; BiH;Bys,
Cp=1+viuy = 7M:
STBysi
Cip = viuy = ul Bior _ (skBrsw)'2
= = =
(sTy)Y2(si Bisi)'2 — (sfyp)'/?
Co1 = viuy =-Cn }

The BFGS update for H

Proposition

By using the Sherman-Morrison-Woodbury formula the BFGS
update for H becomes:

HyygsT yl Hj.
Hyy1 — Hy — kYkSy + Skyy Hi

slyx
k
(4)
Or equivalently
T T T
SkYj Yk S SkS}
Higs— (1- Hy(1- + B
* SZyk) SZm) styr &)

ewton methods for minimization

“The Broyden Fletcher Goldfarb and Shanno (BFGS) updat

Proof.
In this way the matric C' has the form

(B a 1_1(0 —a
o-(%) == ¥)

yi Hiyy ool Bysi)'/?
(sz Y )1/2

stk
where setting U= H,U and V= H.V where

B=1+

w; = Hyu; and v; = Hyv; i=12

we have
Hy., — H,

HUC 'V'H, = H, -UC VT

1 TP o~ o B
Hi + (-~} Ty - D]
i+ (v + ) - St B




The Broyden Fletcher

Goldfarb and Shanno (Bf

updte

Substituting the values of a, 3, @'s and ¥'s we have we have

i iy
SkS) Y Hiyr
+ ;k(Huk uu)

Hyyes] + sryl Hi

Hpyy — Hi — T
sty

styr shyk

At this point the update formula (B) is a straightforward
calculation.
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Let be s/ ), > 0: consider a z # 0 then

3
8Lz

2THp12z = wT Hyw + +
SLYk

Tg )2
M where w =z —yy

sTyr

In order to have 27 Hj412 = 0 we must have w = 0 and
2Ts; = 0. But 27, = 0 imply w = = and this imply z = 0.

Let be 27 Hj..1z > 0 for all z # 0: Choosing z = y; we have
T, \2
Sk Yk,
0 <yl Hpaayp = ("Ti) = s
k

and thus s y; > 0.

Positive definitiveness of BFGS update

Theorem (Positive definitiveness of BFGS update)
Given Hy, symmetric and positive definite, then the DFP update

I va
s )HA-(I— v ) o
81 Yk Sk Yk

sis)
T
Sk Yk

Hin — (I-

produce Hy.1 positive definite if and only /fs[ yr > 0.

Remark (Wolfe = BFGS update is SPD)

Expanding sl yi > 0 we have Vf(xyi1)sk > Vf(xy)sk
Remember that in a minimum search algorithm we have s = ay.pr
with ay, > 0. But the second Wolfe condition for line-search is
Vf(zk + oxpr)pr = 2 Vi(z)pr with 0 < ¢a < 1. But this imply:

Vi(@rs1)sk > c2 Vi(zr)sk > Vi(zi)se =

sty > 0.
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k<
z assigned: g «
while ||g|| > ¢ do
— compute search direction
d«— Hg;
Approximate arg min,, o f(z

H -

VF( V2f(z)~L;

ad) by linsearch;
— perform step
T —x—ad;

— update Hy.yq

y « Vf(z) —g; z<— Hy, g« Vf(z);

zd” + d2" yTz\dd”
HeH-22m i (o= ) o
ke—k+1;

end while




The Broyden Fletcher Goldfarb and Shanno (BFGS) update

Theorem (property of BFGS update)

Letbe q(z) =}z —z.)TA(x—z.)+c with Ae R™"
symmetric and positive definite. Let be o and Ho assigned. Let
{2} and {H,} produced by the sequence {s)}

Q Tpy1 — Tp + Sk

Q@ Hyy— (17 E:Z‘L)H,C(I,

yst )
I

sty
where sy, = ay.py. with oy, is obtained by exact line-search. Then
for j < k we have

Q gl's;=0; [orthogonality property]
Q Hpy; = sj; [hereditary property]
Q s As; =0; [conjugate direction property]

@ The method terminate (i.e. Vf(Im) =0) at T, = T, with
m <n. Ifn=m then H, = A™!
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(
0, in fact:

4)

By using 11 = —aj1Hy 19k we have s7, | As

T T
Si4148) = —0rngip Hir1(Azj — Az))

= —apgh i Hir1(A(mj — 2.) — A(zj —x.))
= ’”’»"lggﬂHkﬂ(g/H - gj)

= —apgl Hiy,

= —ay419f,18;  [induction + hereditary prop.]
0

notice that we have used As; = y;

5

Proof. (1/4).

Points (1), (2) and (3) are proved by induction. The base of
induction is obvious, let be the theorem true for k > 0. Due to
exact line search we have:
gi1sk =0
moreover by induction for j < k we have g, ,s; =0, in fact:
i i 5
k4185 = 95 85 + zl:]

Ygir1 — 9:)7s;
=0+ Z
= Z,:‘(A(m — @)
2

(A(Im — )~ A(zi — 2.))"s;

[induction + conjugacy prop.]

Proof.
Due to BFGS construction we have

Hp 1y, = sk

by inductive hypothesis and BFGS formula for j < k we have,
siy; = 5| As; =0,

e T, T,
sy, sy, spsly,
Hy1y; (I = )Hk(y; LA ) f ks
Sk Yk Sk Yk Sk Yk
sk, 5.0
= (- k)HAy/ = [Hi,=s)]
Sky 81 Yk
s
== m‘ “si,

sty
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Finally if 7 = n we have s; with j = 0,1,...,n — 1 are conjugate
and linearly independent. From hereditary property and lemma on

slide 8
H,As = Hyyy, = s,
i.e. we have
H,Asp=s,, k=01....n-1
due to linear independence of {s;.} follows that H,, = A~*. [
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T

@ The DFP update
Hyysl + siylHy  sis?t
HPres - Hvss - oy Hi 5;4(1, F

Sk Yk 8) Yk Sk Yk
and BFGS update
> L Hyywyl Hy
P s S H e
Sk Yk Y Hiyr

maintains the symmetry and positive definitiveness.
o The following update

0 DFP BFGS
H{,\y — (1 0)HPEF 4+ 0HPH

maintain for any 6 the symmetry, and for 6 € [0, 1] also the
positive definitiveness.

vi Hiye

)

5

@ The Broyden class

“The Broyden c

Positive definitiveness of Broyden Class

pdate

Theorem (Positive definitiveness of Broyden Class update)

Given Hy, symmetric and positive definite, then the Broyden Class
update
0
Hiy < (1

0)HPEP

BFGS
41 +O0H

produce HY,, positive definite for any 6 € [0,1] if and only if
sTy, >0




T e [ S

Theorem (property of Broyden Class update)

o The Broyden Class update canbe written as
Let be q(z)=}

—2)TA(@—a,)+c with A€ R™"

0 pip T
symmetric and positive definite. Let be @o and Hy assigned. Let Hyq = Higy' + 0wy,
{x1} and {H}} produced by the sequence {s;} = HPFES + (0 - wgw]
Q Ty — Tyt 8k
@ H{, — (1-0)HPEP +0HPCS; where
where sy, = g with oy, is obtained by exact line-search. Then wi = (u Hy) V2 [-2 Hgy
. k= (Vi Hiyr 7 T
for j < k we have spye Yy Hiyr
T -0
0 g;5;=0; [orthogonality property] o For particular values of # we obtain
Q Hyy; =s;; [hereditary property] © 0 =0, the DFP update
Q sl As;=0; [conjugate direction property] © 0 =1, the BFGS update
© 0= sTye/(sx — Hyyi) yx the SR1 update
@ The method terminate (i.e. Vf(zm) =0) at x, = @, with © 0— (14 (yT Huy)sT )" the Hoshino update
m < n. Ifn=m then H, = A"
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