

Introduction

In this lecture some classical numerical scheme for the approximation of the zeroes of nonlinear one-dimensional equations are presented.

The methods are exposed in some details, moreover many of the ideas presented in this lecture can be extended to the multidimensional case.
(1) The Newton-Raphson method

- Standard Assumptions
- Local Convergence of the Newton-Raphson method
- Stopping criteria
(2) Convergence order
- Q-order of convergence
- R-order of convergence
(3) The Secant method
- Local convergence of the the Secant MethodThe quasi-Newton method
- Local convergence of quasi-Newton method
(5) Fixed-Point procedure
- Contraction mapping Theorem

Stopping criteria and q-order estimation

Formulation

Given $f:[a, b] \mapsto \mathbb{R}$
Find $\alpha \in[a, b]$ for which $f(\alpha)=0$.

```
Example
```

Let

$$
f(x)=\log (x)-1
$$

which has $f(\alpha)=0$ for $\alpha=\exp (1)$.

Some example

Consider the following three one-dimensional problems
(- $f(x)=x^{4}-12 x^{3}+47 x^{2}-60 x$;

- $g(x)=x^{4}-12 x^{3}+47 x^{2}-60 x+24$;
- $h(x)=x^{4}-12 x^{3}+47 x^{2}-60 x+24.1$;

The roots of $f(x)$ are $x=0, x=3, x=4$ and $x=5$ the real roots of $g(x)$ are $x=1$ and $x \approx 0.8888 ; h(x)$ has no real roots.

So in general a non linear problem may have

- One or more solutions;
- No solution.

Plotting of $f(x), g(x)$ and $h(x)$ (zoomed)

Plotting of $f(x), g(x)$ and $h(x)$

The original Newton procedure

Isaac Newton (1643-1727) used the following arguments

- Consider the polynomial $f(x)=x^{3}-2 x-5$ and take $x \approx 2$ as approximation of one of its root.
- Setting $x=2+p$ we obtain $f(2+p)=p^{3}+6 p^{2}+10 p-1$, if 2 is a good approximation of a root of $f(x)$ then p is a small number ($p \ll 1$) and p^{2} and p^{3} are very small numbers.
- Neglecting p^{2} and p^{3} and solving $10 p-1=0$ yields $p=0.1$.
- Considering $f(2+p+q)=f(2.1+q)=q^{3}+6.3 q^{2}+11.23 q+0.061$, neglecting q^{3} and q^{2} and solving $11.23 q+0.061=0$, yields $q=-0.0054$.
- Analogously considering $f(2+p+q+r)$ yields $r=0.00004863$.

Further considerations

- The Newton procedure construct the approximation of the real root $2.094551482 \ldots$ of $f(x)=x^{3}-2 x-5$ by successive correction.
- The corrections are smaller and smaller as the procedure advances.
- The corrections are computed by using a linear approximation of the polynomial equation.
- Consider the following function $f(x)=x^{3 / 2}-2$ and let $x \approx 1.5$ an approximation of one of its root.
- Setting $x=1.5+p$ yields $f(1.5+p)=-0.1629+1.8371 p+\mathcal{O}\left(p^{2}\right)$, if 1.5 is a good approximation of a root of $f(x)$ then $\mathcal{O}\left(p^{2}\right)$ is a small number.
- Neglecting $\mathcal{O}\left(p^{2}\right)$ and solving $-0.1629+1.8371 p=0$ yileds $p=0.08866$.
- Considering
$f(1.5+p+q)=f(1.5886+q)=0.002266+1.89059 q+\mathcal{O}\left(q^{2}\right)$, neglecting $\mathcal{O}\left(q^{2}\right)$ and solving $0.002266+1.89059 q=0$ yields $q=-0.001198$.

Let $f \in \mathrm{C}^{1}(a, b)$ and x_{0} be an approximation of a root of $f(x)$.
We approximate $f(x)$ by the tangent
line at $\left(x_{0}, f\left(x_{0}\right)\right)^{T}$.

$$
y=f\left(x_{0}\right)+\left(x-x_{0}\right) f^{\prime}\left(x_{0}\right) .
$$

The intersection of the line (\star) with the x axis, that is $x=x_{1}$, is the new approximation of the root of $f(x)$,

$$
0=f\left(x_{0}\right)+\left(x_{1}-x_{0}\right) f^{\prime}\left(x_{0}\right), \quad \Rightarrow \quad x_{1}=x_{0}-\frac{f\left(x_{0}\right)}{f^{\prime}\left(x_{0}\right)}
$$

$$
x_{k+1}=x_{k}-\frac{f\left(x_{k}\right)}{f^{\prime}\left(x_{k}\right)}
$$

Definition (Lipschitz function)

a function $g:[a, b] \mapsto \mathbb{R}$ is Lipschitz if there exists a constant γ such that

$$
|g(x)-g(y)| \leq \gamma|x-y|
$$

for all $x, y \in(a, b)$ satisfy

Example (Continuous non Lipschitz function)

Any Lipschitz function is continuous, but the converse is not true. Consider $g:[0,1] \mapsto \mathbb{R}, g(x)=\sqrt{x}$. This function is not Lipschitz, if not we have

$$
|\sqrt{x}-\sqrt{0}| \leq \gamma|x-0|
$$

but $\lim _{x \rightarrow 0^{+}} \sqrt{x} / x=\infty$.

Proof

From basic Calculus:

$$
f(y)-f(x)-f^{\prime}(x)(y-x)=\int_{x}^{y}\left[f^{\prime}(z)-f^{\prime}(x)\right] d z
$$

making the change of variable $z=x+t(y-x)$ we have

$$
\int_{x}^{y}\left[f^{\prime}(z)-f^{\prime}(x)\right] d z=\int_{0}^{1}\left[f^{\prime}(x+t(y-x))-f^{\prime}(x)\right](y-x) d t
$$

and

$$
\begin{aligned}
\left|f(y)-f(x)-f^{\prime}(x)(y-x)\right| & \leq \int_{0}^{1} \gamma t|y-x||y-x| d t \\
& =\frac{\gamma}{2}|y-x|^{2}
\end{aligned}
$$

In the study of convergence of numerical scheme, some standard regularity assumptions are assumed for the function $f(x)$.

Assumption (Standard Assumptions)

The function $f:[a, b] \mapsto \mathbb{R}$ is continuous, derivable with Lipschitz derivative $f^{\prime}(x)$. i.e.

$$
\left|f^{\prime}(x)-f^{\prime}(y)\right| \leq \gamma|x-y| . \quad \forall x, y \in[a, b]
$$

Lemma (Taylor expansion)

Let $f(x)$ satisfy the standard assumptions, then

$$
\left|f(y)-f(x)-f^{\prime}(x)(y-x)\right| \leq \frac{\gamma}{2}|x-y|^{2} . \quad \forall x, y \in[a, b]
$$

One Dimensional Non-Linear Problems

The Newton-Raphson method Local Convergence

Newton scheme converges locally near simple roots:

Theorem (Local Convergence of Newton method)

Let $f(x)$ satisfy standard assumptions, and α be a simple root (i.e. $\left.f^{\prime}(\alpha) \neq 0\right)$. If $\left|x_{0}-\alpha\right| \leq \delta$ with $C \delta \leq 1$ where

$$
C=\frac{\gamma}{\left|f^{\prime}(\alpha)\right|}
$$

then, the sequence generated by the Newton method satisfies:
(1) $\left|x_{k}-\alpha\right| \leq \delta$ for $k=0,1,2,3, \ldots$
(- $\left|x_{k+1}-\alpha\right| \leq C\left|x_{k}-\alpha\right|^{2}$ for $k=0,1,2,3, \ldots$

- $\lim _{k \mapsto \infty} x_{k}=\alpha$.

Proof

Consider a Newton step with $\left|x_{k}-\alpha\right| \leq \delta$ and

$$
\begin{aligned}
x_{k+1}-\alpha & =x_{k}-\alpha-\frac{f\left(x_{k}\right)-f(\alpha)}{f^{\prime}\left(x_{k}\right)} \\
& =\frac{f(\alpha)-f\left(x_{k}\right)-f^{\prime}\left(x_{k}\right)\left(\alpha-x_{k}\right)}{f^{\prime}\left(x_{k}\right)}
\end{aligned}
$$

taking absolute value and using the Taylor expansion lemma

$$
\left|x_{k+1}-\alpha\right| \leq \gamma\left|x_{k}-\alpha\right|^{2} /\left(2\left|f^{\prime}\left(x_{k}\right)\right|\right)
$$

$f^{\prime} \in \mathrm{C}^{1}(a, b)$ so that there exist a δ such that $2\left|f^{\prime}(x)\right|>\left|f^{\prime}(\alpha)\right|$ for all $\left|x_{k}-\alpha\right| \leq \delta$. Choosing δ such that $\gamma \delta \leq\left|f^{\prime}(\alpha)\right|$ we have

$$
\left|x_{k+1}-\alpha\right| \leq C\left|x_{k}-\alpha\right|^{2} \leq\left|x_{k}-\alpha\right|, \quad C=\gamma /\left|f^{\prime}(\alpha)\right|
$$

By induction we prove point 1. Point 2 and 3 follow trivially.
An iterative scheme generally does not find the solution in a finite number of steps. Thus, stopping criteria are needed to interrupt the computation. The major ones are:
(1) $\left|f\left(x_{k+1}\right)\right| \leq \tau$
(- $\left|x_{k+1}-x_{k}\right| \leq \tau\left|x_{k+1}\right|$

- $\left|x_{k+1}-x_{k}\right| \leq \tau \max \left\{\left|x_{k}\right|,\left|x_{k+1}\right|\right\}$
- $\left|x_{k+1}-x_{k}\right| \leq \tau \max \left\{\operatorname{typ} \mathbf{x},\left|x_{k+1}\right|\right\}$

Typ x is the typical size of x and $\tau \approx \sqrt{\varepsilon}$ where ε is the machine precision.

Definition (Q-order of a convergent sequence)
Let $\alpha \in \mathbb{R}$ and $x_{k} \in \mathbb{R}, k=0,1,2, \ldots$ Then $\left\{x_{k}\right\}$ is said:
(1) q-linearly convergent if there exists a constant $C \in(0,1)$ and an integer $m>0$ such that for all $k \geq m$

$$
\left|x_{k+1}-\alpha\right| \leq C\left|x_{k}-\alpha\right|
$$

- q-super-linearly convergent if there exists a sequence $\left\{C_{k}\right\}$ convergent to 0 such that

$$
\left|x_{k+1}-\alpha\right| \leq C_{k}\left|x_{k}-\alpha\right|
$$

- convergent sequence of q-order $p(p>1)$ if there exists a constant C and an integer $m>0$ such that for all $k \geq m$

$$
\left|x_{k+1}-\alpha\right| \leq C\left|x_{k}-\alpha\right|^{p}
$$

The prefix q in the q-order of convergence is a shortcut for quotient, and results from the quotient criteria of convergence of a sequence.

Remark

Let $\alpha \in \mathbb{R}$ and $x_{k} \in \mathbb{R}, k=0,1,2, \ldots$ Then $\left\{x_{k}\right\}$ is said:
(1) q-quadratic if is q-convergent of order p with $p=2$
() q-cubic if is q-convergent of order p with $p=3$
another useful generalization of q-order of convergence:
Definition (j-step q-order convergent sequence)
Let $\alpha \in \mathbb{R}$ and $x_{k} \in \mathbb{R}, k=0,1,2, \ldots$ Then $\left\{x_{k}\right\}$ is said j-step q-convergent of order p if there exists a constant C and an integer $m>0$ such that for all $k \geq m$
$\left|x_{k+j}-\alpha\right| \leq C\left|x_{k}-\alpha\right|^{p}$

Convergence order
R-rder of convergence
Root order convergence

A weaker definition of order of convergence is the following

Definition (R-order convergent sequence)

Let $\alpha \in \mathbb{R}$ and $\left\{x_{k}\right\}_{k=0}^{\infty} \subset \mathbb{R}$. Let $\left\{y_{k}\right\}_{k=0}^{\infty} \subset \mathbb{R}$ be a dominating sequence, i.e. there exists m and C such that

$$
\left|x_{k}-\alpha\right| \leq C\left|y_{k}-\alpha\right|, \quad k \geq m .
$$

Then $\left\{x_{k}\right\}$ is said at least:
(1) r-linearly convergent if $\left\{y_{k}\right\}$ is q-linearly convergent.
(3) r-super-linearly convergent if $\left\{y_{k}\right\}$ is q-super-linearly convergent.
(0) convergent sequence of r-order $p(p>1)$ if $\left\{y_{k}\right\}$ is a convergent sequence of q-order p.

There may exists convergent sequence that do not have a q-order of convergence.

Example (convergent sequence without a q-order)

Consider the following sequence

$$
x_{k}= \begin{cases}1+2^{-k} & \text { if } k \text { is not prime } \\ 1 & \text { otherwise }\end{cases}
$$

it is easy to show that $\lim _{k \mapsto \infty} x_{k}=1$ but $\left\{x_{k}\right\}$ cannot be q-order convergent.

Convergent sequences without a q-order of converge but with an r-order of convergence.

Example

Consider again the sequence

$$
x_{k}= \begin{cases}1+2^{-k} & \text { if } k \text { is not prime } \\ 1 & \text { otherwise }\end{cases}
$$

it is easy to show that the sequence

$$
\left\{y_{k}\right\}=\left\{1+2^{-k}\right\}
$$

is q-linearly convergent and that

$$
\left|x_{k}-1\right| \leq\left|y_{k}-1\right|
$$

for $k=0,1,2, \ldots$.

The q-order and r-order measure the speed of convergence of a sequence. A sequence may be convergent but cannot be measured by q-order or r-order.

Example

The sequence $\left\{x_{k}\right\}=\{1+1 / k\}$ may not be q-linearly convergent, unless $C<1$ becomes

$$
\left|x_{k+1}-1\right| \leq C\left|x_{k}-1\right| \quad \Rightarrow \quad \frac{1}{k+1} \leq \frac{C}{k}
$$

also implies

$$
\frac{k(1-C)-C}{k(k+1)} \leq 0
$$

have that for $k>C /(1-C)$ the inequality is not satisfied.

The secant method: a geometric point of view

Let us take $f \in \mathrm{C}(a, b)$ and x_{0} and x_{1} be different approximations of a root of $f(x)$. We can approximate $f(x)$ by the secant line for $\left(x_{0}, f\left(x_{0}\right)\right)^{T}$ and $\left(x_{1}, f\left(x_{1}\right)\right)^{T}$.

$$
y=\frac{f\left(x_{0}\right)\left(x_{1}-x\right)+f\left(x_{1}\right)\left(x-x_{0}\right)}{x_{1}-x_{0}} .
$$

Algorithm (Secant scheme)

Let $x_{0} \neq x_{1}$ assigned, for $k=1,2, \ldots$..

$$
x_{k+1}=x_{k}-\frac{f\left(x_{k}\right)}{\frac{f\left(x_{k}\right)-f\left(x_{k-1}\right)}{x_{k}-x_{k-1}}}=\frac{x_{k-1} f\left(x_{k}\right)-x_{k} f\left(x_{k-1}\right)}{f\left(x_{k}\right)-f\left(x_{k-1}\right)}
$$

Remark

In the secant method near convergence we have $f\left(x_{k}\right) \approx f\left(x_{k-1}\right)$, so that numerical cancellation problem may arise. In this case we must stop the iteration before such a problem is encountered, or we must modify the secant method near convergence.
Newton method is a fast (q-order 2) numerical scheme to approximate the root of a function $f(x)$ but needs the knowledge of the first derivative of $f(x)$. Sometimes first derivative is not available or not computable, in this case a numerical procedure to approximate the root which does not use derivative is required. A simple modification of the Newton-Raphson scheme where the first derivative is approximated by a finite difference produces the secant method:

$$
x_{k+1}=x_{k}-\frac{f\left(x_{k}\right)}{a_{k}}, \quad a_{k}=\frac{f\left(x_{k}\right)-f\left(x_{k-1}\right)}{x_{k}-x_{k-1}}
$$

The intersection of the line (\star) with the x axes at $x=x_{2}$ is the new approximation of the root of $f(x)$

$$
0=\frac{f\left(x_{0}\right)\left(x_{1}-x_{2}\right)+f\left(x_{1}\right)\left(x_{2}-x_{0}\right)}{x_{1}-x_{0}}, \quad \Rightarrow \quad x_{2}=x_{1}-\frac{f\left(x_{1}\right)}{\frac{f\left(x_{1}\right)-f\left(x_{0}\right)}{x_{1}-x_{0}}} .
$$

Theorem

Let $f(x)$ satisfy standard assumptions, and α be a simple root (i.e. $\left.f^{\prime}(\alpha) \neq 0\right)$; then, there exists $\delta>0$ such that $C \delta \leq \exp (-p)<1$ where

$$
C=\frac{\gamma}{\left|f^{\prime}(\alpha)\right|} \quad \text { and } \quad p=\frac{1+\sqrt{5}}{2}=1.618034 \ldots
$$

For all $x_{0}, x_{1} \in[\alpha-\delta, \alpha+\delta]$ with $x_{0} \neq x_{1}$ we have:
(- $\left|x_{k}-\alpha\right| \leq \delta$ for $k=0,1,2,3, \ldots$
(9) the sequence $\left\{x_{k}\right\}$ is convergent to α with r-order at least p.

From Lagrange ${ }^{1}$ theorem and divided difference properties (see next lemma):

$$
\begin{gathered}
\frac{f\left(x_{k}\right)-f\left(x_{k-1}\right)}{x_{k}-x_{k-1}}=f^{\prime}\left(\eta_{k}\right), \quad \eta_{k} \in I\left[x_{k-1}, x_{k}\right], \\
\left|\frac{\left(f\left(x_{k}\right)-f(\alpha)\right) /\left(x_{k}-\alpha\right)-\left(f\left(x_{k-1}\right)-f(\alpha)\right) /\left(x_{k-1}-\alpha\right)}{x_{k}-x_{k-1}}\right| \leq \frac{\gamma}{2}
\end{gathered}
$$

where $I[a, b]$ is the smallest interval containing a, b. By using these equations, we can write

$$
\left|x_{k+1}-\alpha\right| \leq\left|x_{k}-\alpha\right|\left|x_{k-1}-\alpha\right| \frac{\gamma}{2\left|f^{\prime}\left(\eta_{k}\right)\right|}, \quad \eta_{k} \in I\left[x_{k-1}, x_{k}\right]
$$

Subtracting α on both side of secant scheme

$$
x_{k+1}-\alpha=\left(x_{k}-\alpha\right)\left(x_{k-1}-\alpha\right) \frac{\frac{f\left(x_{k}\right)}{x_{k}-\alpha}-\frac{f\left(x_{k-1}\right)}{x_{k-1}-\alpha}}{f\left(x_{k}\right)-f\left(x_{k-1}\right)} .
$$

Moreover, because $f(\alpha)=0$

$$
\begin{aligned}
& \frac{f\left(x_{k}\right)}{x_{k}-\alpha}-\frac{f\left(x_{k-1}\right)}{x_{k-1}-\alpha} \\
& f\left(x_{k}\right)-f\left(x_{k-1}\right)
\end{aligned}=\frac{\frac{f\left(x_{k}\right)-f(\alpha)}{x_{k}-\alpha}-\frac{f\left(x_{k-1}\right)-f(\alpha)}{x_{k-1}-\alpha}}{f\left(x_{k}\right)-f\left(x_{k-1}\right)}, \quad \begin{aligned}
& \frac{f\left(x_{k}\right)-f(\alpha)}{x_{k}-\alpha}-\frac{f\left(x_{k-1}\right)-f(\alpha)}{x_{k-1}-\alpha} \\
& x_{k}-x_{k-1} \\
& \left(\frac{f\left(x_{k}\right)-f\left(x_{k-1}\right)}{x_{k}-x_{k-1}}\right)^{-1}
\end{aligned}
$$

As α is a simple root, there exists $\delta>0$ such that for all $x \in[\alpha-\delta, \alpha+\delta]$ we have $2\left|f^{\prime}(x)\right| \geq\left|f^{\prime}(\alpha)\right|$; if x_{k} and x_{k-1} are in $x \in[\alpha-\delta, \alpha+\delta]$ we have

$$
\left|x_{k+1}-\alpha\right| \leq C\left|x_{k}-\alpha\right|\left|x_{k-1}-\alpha\right|
$$

by reducing δ, we obtain $C \delta \leq \exp (-p)<1$, and by induction, we can show that $x_{k} \in[\alpha-\delta, \alpha+\delta]$ for $k=1,2,3, \ldots$

To prove r-order, we set $e_{i}=C\left|x_{i}-\alpha\right|$ so that

$$
\left|x_{k+1}-\alpha\right| \leq C\left|x_{k}-\alpha\right|\left|x_{k-1}-\alpha\right| \quad \Rightarrow \quad e_{i+1} \leq e_{i} e_{i-1}
$$

Now we build a majoring sequence $\left\{E_{k}\right\}$ defined as
$E_{1}=\max \left\{e_{0}, e_{1}\right\}, E_{0} \geq E_{1}$ and $E_{k+1}=E_{k} E_{k-1}$. It is easy to show that $e_{k} \leq E_{k}$, in fact

$$
e_{k+1} \leq e_{k} e_{k-1} \leq E_{k} E_{k-1}=E_{k+1} .
$$

By searching a solution of the form $E_{k}=E_{0} \exp \left(-z^{k}\right)$ we have

$$
\exp \left(-z^{k+1}\right)=\exp \left(-z^{k}\right) \exp \left(-z^{k-1}\right)=\exp \left(-z^{k}-z^{k-1}\right)
$$

so that z must satisfy $\exp \left(-z^{k-1}\left(z^{2}-z-1\right)\right)=1$ or:
$z^{2}-z-1=0, \quad \Rightarrow \quad z_{1,2}=\frac{1 \pm \sqrt{5}}{2}=\left\{\begin{array}{l}1.618034 \ldots \\ -0.618034 \ldots\end{array}\right.$

Divided difference bound

Lemma

Let $f(x)$ satisfying standard assumptions, then

$$
\left|\frac{\frac{f(\alpha+h)-f(\alpha)}{h}-\frac{f(\alpha-k)-f(\alpha)}{k}}{h+k}\right| \leq \frac{\gamma}{2}
$$

The proof use the trick function

$$
G(t):=\frac{\frac{f(\alpha+t h)-f(\alpha)}{h}-\frac{f(\alpha-t k)-f(\alpha)}{k}}{h+k},
$$

Note that $G(1)$ is the finite difference of the lemma.

A simple modification on Newton scheme produces a whole classes of numerical schemes. if we take

$$
x_{k+1}=x_{k}-\frac{f\left(x_{k}\right)}{a_{k}}
$$

different choice of a_{k} produce different numerical scheme:
(1) If $a_{k}=f^{\prime}\left(x_{k}\right)$ we obtain the Newton Raphson method

- If $a_{k}=f^{\prime}\left(x_{0}\right)$ we obtain the chord method.
(0) If $a_{k}=f^{\prime}\left(x_{m}\right)$ where $m=[k / p] p$ we obtain the Shamanskii method.
- If $a_{k}=\frac{f\left(x_{k}\right)-f\left(x_{k-1}\right)}{x_{k}-x_{k-1}}$ we obtain the secant method
(0) If $a_{k}=\frac{f\left(x_{k}\right)-f\left(x_{k}-h_{k}\right)}{h_{k}}$ we obtain the secant finite difference method.

Lemma

Let $f(x)$ satisfies standard assumptions and consider the sequence generated by

$$
x_{k+1}=x_{k}-\frac{f\left(x_{k}\right)}{a_{k}}, \quad a_{k}=\frac{f\left(x_{k}\right)-f\left(x_{k}-h_{k}\right)}{h_{k}}
$$

let α be a simple root and h_{k} satisfying

$$
\gamma\left|h_{k}\right|<\left|f^{\prime}\left(x_{k}\right)\right|
$$

then the following inequality is true

$$
\left|x_{k+1}-\alpha\right| \leq \frac{\gamma}{2\left|f^{\prime}\left(x_{k}\right)\right|-\gamma\left|h_{k}\right|}\left(\left|x_{k}-\alpha\right|+\left|h_{k}\right|\right)\left|x_{k}-\alpha\right|
$$

Remark

By choosing $h_{k}=x_{k-1}-x_{k}$ in the secant finite difference method, we obtain the secant method, so that this method is a generalization of the secant method.

Remark

If $h_{k} \neq x_{k-1}-x_{k}$ the secant finite difference method needs two evaluation of $f(x)$ per step, while the secant method needs only one evaluation of $f(x)$ per step.

Remark

In the secant method near convergence we have $f\left(x_{k}\right) \approx f\left(x_{k-1}\right)$ so that numerical cancellation problem can arise. The Secant Finite Difference scheme does not have this problem provided that h_{k} is not too small.

Proof

Let α be a simple root of $f(x)$ (i.e. $f(\alpha) \neq 0$) and $f(x)$ satisfy standard assumptions, then we can write

$$
\begin{aligned}
x_{k+1}-\alpha= & x_{k}-\alpha-a_{k}^{-1} f\left(x_{k}\right) \\
= & a_{k}^{-1}\left[f(\alpha)-f\left(x_{k}\right)-a_{k}\left(\alpha-x_{k}\right)\right] \\
= & a_{k}^{-1}\left[f(\alpha)-f\left(x_{k}\right)-f^{\prime}\left(x_{k}\right)\left(\alpha-x_{k}\right)\right. \\
& \left.\quad+\left(f^{\prime}\left(x_{k}\right)-a_{k}\right)\left(\alpha-x_{k}\right)\right]
\end{aligned}
$$

By using thed Taylor expansion Lemma we have

$$
\left|x_{k+1}-\alpha\right| \leq\left|a_{k}\right|^{-1}\left(\frac{\gamma}{2}\left|x_{k}-\alpha\right|+\left|f^{\prime}\left(x_{k}\right)-a_{k}\right|\right)\left|x_{k}-\alpha\right|
$$

Proof.
Local convergence of quasi-Newton method
If $f(x)$ satisfies standard assumptions, then

$$
\left|f^{\prime}\left(x_{k}\right)-a_{k}\right|=\left|f^{\prime}\left(x_{k}\right)-\frac{f\left(x_{k}\right)-f\left(x_{k}-h_{k}\right)}{h_{k}}\right| \leq \frac{\gamma}{2}\left|h_{k}\right|
$$

and that the finite difference secant scheme satisfies:

$$
\left|x_{k+1}-\alpha\right| \leq \frac{\gamma}{2\left|a_{k}\right|}\left(\left|x_{k}-\alpha\right|+\left|h_{k}\right|\right)\left|x_{k}-\alpha\right|
$$

Moreover, form

$$
\left|f^{\prime}\left(x_{k}\right)\right| \leq\left|f^{\prime}\left(x_{k}\right)-a_{k}\right|+\left|a_{k}\right| \leq\left|a_{k}\right|+\frac{\gamma}{2}\left|h_{k}\right|
$$

it follows that

$$
\left|x_{k+1}-\alpha\right| \leq \frac{\gamma}{2\left|f^{\prime}\left(x_{k}\right)\right|-\gamma\left|h_{k}\right|}\left(\left|x_{k}-\alpha\right|+\left|h_{k}\right|\right)\left|x_{k}-\alpha\right|
$$

Fixed-Point procedure

Definition (Fixed point)

Given a map $\mathbf{G}: D \subset \mathbb{R}^{m} \mapsto \mathbb{R}^{m}$ we say that \boldsymbol{x}_{\star} is a fixed point of \mathbf{G} if:

$$
\boldsymbol{x}_{\star}=\mathbf{G}\left(\boldsymbol{x}_{\star}\right) .
$$

Searching for a zero of $f(x)$ is the same as searching for a fixed point of:

$$
g(x)=x-f(x) .
$$

A natural way to find a fixed point is by using iterations. For example by starting from x_{0} we build the sequence

$$
x_{k+1}=g\left(x_{k}\right), \quad k=1,2, \ldots
$$

We ask when the sequence $\left\{x_{i}\right\}_{i=0}^{\infty}$ is convergent to α.

Theorem

Let $f(x)$ satisfies standard assumptions, and α be a simple root then, there exists $\delta>0$ and $\eta>0$ such that if $\left|x_{0}-\alpha\right|<\delta$ and $0<\left|h_{k}\right| \leq \eta$; the sequence $\left\{x_{k}\right\}$ given by

$$
x_{k+1}=x_{k}-\frac{f\left(x_{k}\right)}{a_{k}}, \quad a_{k}=\frac{f\left(x_{k}\right)-f\left(x_{k}-h_{k}\right)}{h_{k}},
$$

for $k=1,2, \ldots$ is defined and q-linearly converges to α. Moreover,
(1) If $\lim _{k \rightarrow \infty} h_{k}=0$ then $\left\{x_{k}\right\}$-super-linearlyconverges to α.
(2) If there exists a constant C such that $\left|h_{k}\right| \leq C\left|x_{k}-\alpha\right|$ or $\left|h_{k}\right| \leq C\left|f\left(x_{k}\right)\right|$ then the convergence is q-quadratic.

- If there exists a constant C such that $\left|h_{k}\right| \leq C\left|x_{k}-x_{k-1}\right|$ then the convergence is:
- two-step q-quadratic;
- one-step r-order with order $p=(1+\sqrt{5}) / 2=1.618 \ldots$

Example (Fixed point Newton)

Newton-Raphson scheme can be written in the fixed point form by setting:

$$
g(x)=x-\frac{f(x)}{f^{\prime}(x)}
$$

Example (Fixed point secant)

Secant scheme can be written in the fixed point form by setting:

$$
\mathbf{G}(\mathbf{x})=\binom{\frac{x_{2} f\left(x_{1}\right)-x_{1} f\left(x_{2}\right)}{f\left(x_{1}\right)-f\left(x_{2}\right)}}{x_{1}}
$$

Theorem (Contraction mapping)

Let $\mathbf{G}: D \mapsto D \subset \mathbb{R}^{n}$ such that there exists $L<1$

$$
\|\mathbf{G}(\mathbf{x})-\mathbf{G}(\mathbf{y})\| \leq L\|\mathbf{x}-\mathbf{y}\|, \quad \forall \mathbf{x}, \mathbf{y} \in D
$$

Let \boldsymbol{x}_{0} such that $B_{\rho}\left(\boldsymbol{x}_{0}\right)=\left\{\boldsymbol{x} \mid\left\|\boldsymbol{x}-\boldsymbol{x}_{0}\right\| \leq \rho\right\} \subset D$ where $\rho=\left\|\mathbf{G}\left(\boldsymbol{x}_{0}\right)-\boldsymbol{x}_{0}\right\| /(1-L)$, then

- There exists a unique fixed point x_{\star} in $B_{\rho}\left(x_{0}\right)$.
- The sequence $\left\{\boldsymbol{x}_{k}\right\}$ generated by $\boldsymbol{x}_{k+1}=\mathbf{G}\left(\boldsymbol{x}_{k}\right)$ remains in $B_{\rho}\left(\boldsymbol{x}_{0}\right)$ and q-linearly converges to \boldsymbol{x}_{\star} with constant L.
- The following error estimate is valid

$$
\left\|x_{k}-x_{\star}\right\| \leq\left\|x_{1}-x_{0}\right\| \frac{L^{k}}{1-L}
$$

Prove existence, uniqueness and rate
The sequence $\left\{\boldsymbol{x}_{k}\right\}_{0}^{\infty}$ is a Cauchy sequence so that there is the limit $\boldsymbol{x}_{\star}=\lim _{k \mapsto \infty} \boldsymbol{x}_{k}$. To prove that \boldsymbol{x}_{\star} is a fixed point:

$$
\begin{aligned}
\left\|\boldsymbol{x}_{\star}-\mathbf{G}\left(\boldsymbol{x}_{\star}\right)\right\| & \leq\left\|\boldsymbol{x}_{\star}-\boldsymbol{x}_{k}\right\|+\left\|\boldsymbol{x}_{k}-\mathbf{G}\left(\boldsymbol{x}_{k}\right)\right\|+\left\|\mathbf{G}\left(\boldsymbol{x}_{k}\right)-\mathbf{G}\left(\boldsymbol{x}_{\star}\right)\right\| \\
& \leq(1+L)\left\|\boldsymbol{x}_{\star}-\boldsymbol{x}_{k}\right\|+L^{k}\left\|\boldsymbol{x}_{1}-\boldsymbol{x}_{0}\right\| \underset{k \mapsto \infty}{\longrightarrow} 0
\end{aligned}
$$

Uniqueness is proved by contradiction, let be \boldsymbol{x} and \boldsymbol{y} two fixed points:

$$
\|\boldsymbol{x}-\boldsymbol{y}\|=\|\mathbf{G}(\boldsymbol{x})-\mathbf{G}(\boldsymbol{y})\| \leq L\|\boldsymbol{x}-\boldsymbol{y}\|<\|\boldsymbol{x}-\boldsymbol{y}\|
$$

To prove convergence rate notice that $\boldsymbol{x}_{k+m} \mapsto \boldsymbol{x}_{\star}$ for $m \mapsto \infty$:

$$
\begin{aligned}
\left\|\boldsymbol{x}_{k}-\boldsymbol{x}_{\star}\right\| & \leq\left\|\boldsymbol{x}_{k}-\boldsymbol{x}_{k+m}\right\|+\left\|\boldsymbol{x}_{k+m}-\boldsymbol{x}_{\star}\right\| \\
& \leq \frac{L^{k}}{1-L}\left\|\boldsymbol{x}_{1}-\boldsymbol{x}_{0}\right\|+\left\|\boldsymbol{x}_{k+m}-\boldsymbol{x}_{\star}\right\|
\end{aligned}
$$

$$
\left\|\boldsymbol{x}_{k+m}-\boldsymbol{x}_{k}\right\| \leq L\left\|\boldsymbol{x}_{k+m-1}-\boldsymbol{x}_{k-1}\right\| \leq \cdots \leq L^{k}\left\|\boldsymbol{x}_{m}-\boldsymbol{x}_{0}\right\|
$$

and

$$
\begin{aligned}
\left\|\boldsymbol{x}_{m}-\boldsymbol{x}_{0}\right\| & \leq \sum_{l=0}^{m-1}\left\|\boldsymbol{x}_{l+1}-\boldsymbol{x}_{l}\right\| \leq \sum_{l=0}^{m-1} L^{l}\left\|\boldsymbol{x}_{1}-\boldsymbol{x}_{0}\right\| \\
& \leq \frac{1-L^{m}}{1-L}\left\|\boldsymbol{x}_{1}-\boldsymbol{x}_{0}\right\| \leq \frac{\left\|\boldsymbol{x}_{1}-\boldsymbol{x}_{0}\right\|}{1-L}
\end{aligned}
$$

so that

$$
\left\|\boldsymbol{x}_{k+m}-\boldsymbol{x}_{k}\right\| \leq \frac{L^{k}}{1-L}\left\|\boldsymbol{x}_{1}-\boldsymbol{x}_{0}\right\| \leq \rho
$$

This prove that $\left\{\boldsymbol{x}_{k}\right\}_{0}^{\infty} \subset B_{\rho}\left(\boldsymbol{x}_{0}\right)$ and that is a Cauchy sequence

Example

Newton-Raphson in fixed point form

$$
g(x)=x-\frac{f(x)}{f^{\prime}(x)}, \quad g^{\prime}(x)=\frac{f(x) f^{\prime \prime}(x)}{\left(f^{\prime}(x)\right)^{2}},
$$

If α is a simple root of $f(x)$ then

$$
g^{\prime}(\alpha)=\frac{f(\alpha) f^{\prime \prime}(\alpha)}{\left(f^{\prime}(\alpha)\right)^{2}}=0,
$$

If $f(x) \in \mathrm{C}^{2}$ then $g^{\prime}(x)$ is continuous in a neighborhood of α and by choosing ρ small enough we have

$$
\left|g^{\prime}(x)\right| \leq L<1, \quad x \in[\alpha-\rho, \alpha+\rho]
$$

From the contraction mapping theorem, it follows from that the Newton-Raphson method is locally convergent when α is a simple root.

Suppose that α is a fixed point of $g(x)$ and $g \in \mathrm{C}^{p}$ with

$$
g^{\prime}(\alpha)=g^{\prime \prime}(\alpha)=\cdots=g^{(p-1)}(\alpha)=0,
$$

by Taylor Theorem

$$
g(x)=g(\alpha)+\frac{(x-\alpha)^{p}}{p!} g^{(p)}(\eta),
$$

so that

$$
\left|x_{k+1}-\alpha\right|=\left|g\left(x_{k}\right)-g(\alpha)\right| \leq \frac{\left|g^{(p)}\left(\eta_{k}\right)\right|}{p!}\left|x_{k}-\alpha\right|^{p} .
$$

If $g^{(p)}(x)$ is bounded in a neighborhood of α it follows that the procedure has locally q-order of p.

Consequently,

$$
g^{\prime}(\alpha)=\frac{n(n-1) h(\alpha)^{2}}{n^{2} h(\alpha)^{2}}=1-\frac{1}{n}
$$

so that

$$
\left|g^{\prime}(\alpha)\right|=1-\frac{1}{n}<1
$$

and the Newton-Raphson scheme is locally q-linearly convergent with coefficient $1-1 / n$.

Newton-Raphson in fixed point form

$$
g(x)=x-\frac{f(x)}{f^{\prime}(x)}, \quad g^{\prime}(x)=\frac{f(x) f^{\prime \prime}(x)}{\left(f^{\prime}(x)\right)^{2}},
$$

If α is a multiple root, i.e.

$$
f(x)=(x-\alpha)^{n} h(x), \quad h(\alpha) \neq 0 \quad n>1
$$

it follows that
$f^{\prime}(x)=n(x-\alpha)^{n-1} h(x)+(x-\alpha)^{n} h^{\prime}(x)$
$f^{\prime \prime}(x)=(x-\alpha)^{n-2}\left[\left(n^{2}-n\right) h(x)+2 n(x-\alpha) h^{\prime}(x)+(x-\alpha)^{2} h^{\prime \prime}(x)\right]$

- Consider an iterative scheme that produces a sequence $\left\{x_{k}\right\}$ that converges to α with q-order p.
- This means that there exists a constant C such that

$$
\left|x_{k+1}-\alpha\right| \leq C\left|x_{k}-\alpha\right|^{p} \quad \text { for } k \geq m
$$

- If $\lim _{k \rightarrow \infty} \frac{\left|x_{k+1}-\alpha\right|}{\left|x_{k}-\alpha\right|^{p}}$ exists and converge say to C then we have

$$
\left|x_{k+1}-\alpha\right| \approx C\left|x_{k}-\alpha\right|^{p} \quad \text { for large } k
$$

- We can use this last expression to obtain an estimate of the error even if the values of p is unknown by using the only known values.
(- If $\left|x_{k+1}-\alpha\right| \leq C\left|x_{k}-\alpha\right|^{p}$ we can write:

$$
\begin{aligned}
\left|x_{k}-\alpha\right| & \leq\left|x_{k}-x_{k+1}\right|+\left|x_{k+1}-\alpha\right| \\
& \leq\left|x_{k}-x_{k+1}\right|+C\left|x_{k}-\alpha\right|^{p} \\
& \Downarrow \\
\left|x_{k}-\alpha\right| & \leq \frac{\left|x_{k}-x_{k+1}\right|}{1-C\left|x_{k}-\alpha\right|^{p-1}}
\end{aligned}
$$

(-) If x_{k} is so near to the solution that $C\left|x_{k}-\alpha\right|^{p-1} \leq \frac{1}{2}$, then

$$
\left|x_{k}-\alpha\right| \leq 2\left|x_{k}-x_{k+1}\right|
$$This fact justifies the two stopping criteria

$$
\begin{array}{lr}
\left|x_{k+1}-x_{k}\right| \leq \tau & \text { Absolute tolerance } \\
\left|x_{k+1}-x_{k}\right| \leq \tau \max \left\{\left|x_{k}\right|,\left|x_{k+1}\right|\right\} & \text { Relative tolerance }
\end{array}
$$

(c) The ratio

$$
\log \frac{\left|x_{k+2}-\alpha\right|}{\left|x_{k+1}-\alpha\right|} / \log \frac{\left|x_{k+1}-\alpha\right|}{\left|x_{k}-\alpha\right|} \approx p
$$

is expressed in term of unknown errors uses the error which is not known.

- If we are near to the solution, we can use the estimation $\left|x_{k}-\alpha\right| \approx\left|x_{k+1}-x_{k}\right|$ so that

$$
\log \frac{\left|x_{k+2}-x_{k+3}\right|}{\left|x_{k+1}-x_{k+2}\right|} / \log \frac{\left|x_{k+1}-x_{k+2}\right|}{\left|x_{k}-x_{k+1}\right|} \approx p
$$

nd three iterations are enough to estimate the q-order of the sequence.
(1) Consider an iterative scheme that produce a sequence $\left\{x_{k}\right\}$ converging to α with q-order p.
(9) If $\left|x_{k+1}-\alpha\right| \approx C\left|x_{k}-\alpha\right|^{p}$ then the ratio:
$\log \frac{\left|x_{k+1}-\alpha\right|}{\left|x_{k}-\alpha\right|} \approx \log \frac{C\left|x_{k}-\alpha\right|^{p}}{\left|x_{k}-\alpha\right|}=(p-1) \log C^{\frac{1}{p-1}}\left|x_{k}-\alpha\right|$
and analogously
$\log \frac{\left|x_{k+2}-\alpha\right|}{\left|x_{k+1}-\alpha\right|} \approx \log \frac{C^{1+p}\left|x_{k}-\alpha\right|^{p^{2}}}{C\left|x_{k}-\alpha\right|^{p}}=p(p-1) \log C^{\frac{1}{p-1}}\left|x_{k}-\alpha\right|$

- From this two ratios we can deduce p as follows

$$
\log \frac{\left|x_{k+2}-\alpha\right|}{\left|x_{k+1}-\alpha\right|} / \log \frac{\left|x_{k+1}-\alpha\right|}{\left|x_{k}-\alpha\right|} \approx p
$$

(0) if the the step length is proportional to the value of $f(x)$ as in the Newton-Raphson scheme, i.e. $\left|x_{k}-\alpha\right| \approx M\left|f\left(x_{k}\right)\right|$ we can simplify the previous formula as:

$$
\log \frac{\left|f\left(x_{k+2}\right)\right|}{\left|f\left(x_{k+1}\right)\right|} / \log \frac{\left|f\left(x_{k+1}\right)\right|}{\left|f\left(x_{k}\right)\right|} \approx p
$$

- Such estimation are useful to check the code implementation. In fact, if we expect the order p and we see the order $r \neq p$, something is wrong in the implementation or in the theory!

The methods presented in this lesson can be generalized for higher dimension. In particular
(c) Newton-Raphson

- multidimensional Newton scheme
- inexact Newton scheme
(- Secant
- Broyden scheme
- quasi-Newton
- finite difference approximation of the Jacobian
moreover those method can be globalized.

國 J. Stoer and R. Bulirsch
Introduction to numerical analysis
Springer-Verlag, Texts in Applied Mathematics, 12, 2002.
E. J. Dennis, Jr. and Robert B. Schnabel

Numerical Methods for Unconstrained Optimization and Nonlinear Equations
SIAM, Classics in Applied Mathematics, 16, 1996.

