

Assumption (SPD)

The matrix \boldsymbol{A} is assumed to be symmetric and positive definite, in fact,

$$abla \mathsf{q}(\boldsymbol{x})^T = rac{1}{2} (\boldsymbol{A} + \boldsymbol{A}^T) \boldsymbol{x} - \boldsymbol{b} = \boldsymbol{A} \boldsymbol{x} - \boldsymbol{b}$$

and

$$\nabla^2 q(\mathbf{x}) = \frac{1}{2} (\mathbf{A} + \mathbf{A}^T) = \mathbf{A}$$

From the sufficient condition for a minimum we have that $\nabla q(\pmb{x}_{\star})^T = \pmb{0},~i.e.$

 $Ax_{\star} = b$

and $\nabla^2 q(x_*) = A$ is SPD.

Conjugate Direction minimization The toy problem

By setting

$$\begin{split} & \boldsymbol{A} = \nabla^2 \mathsf{f}(\boldsymbol{x}_\star), \\ & \boldsymbol{b} = \nabla^2 \mathsf{f}(\boldsymbol{x}_\star) \boldsymbol{x}_\star - \nabla \mathsf{f}(\boldsymbol{x}_\star) \\ & \boldsymbol{c} = \mathsf{f}(\boldsymbol{x}_\star) - \nabla \mathsf{f}(\boldsymbol{x}_\star) \boldsymbol{x}_\star + \frac{1}{2} \boldsymbol{x}_\star^T \nabla^2 \mathsf{f}(\boldsymbol{x}_\star) \boldsymbol{x}_\star \end{split}$$

we have

$$f(\bm{x}) = \frac{1}{2} \bm{x}^T \bm{A} \bm{x} - \bm{b}^T \bm{x} + c + \mathcal{O}(\|\bm{x} - \bm{x}_\star\|^3)$$

• So that we expect that when an iterate x_k is near x_\star then we can neglect $\mathcal{O}(||x - x_\star||^3)$ and the asymptotic behavior is the same of the guadratic problem.

The toy problem

 In the following we study the convergence rate of the Steepest Descent and Conjugate Gradient methods applied to

$$q(\boldsymbol{x}) = \frac{1}{2}\boldsymbol{x}^T \boldsymbol{A} \boldsymbol{x} - \boldsymbol{b}^T \boldsymbol{x} + c$$

where A is an SPD matrix.

• This assumption simplify the analysis but it is also useful in the non linear case. In fact, by expanding a generic function f(x) near its minimum x_* we have

$$\begin{split} \mathsf{f}(\boldsymbol{x}) &= \mathsf{f}(\boldsymbol{x}_{\star}) + \nabla \mathsf{f}(\boldsymbol{x}_{\star})(\boldsymbol{x} - \boldsymbol{x}_{\star}) \\ &+ \frac{1}{2}(\boldsymbol{x} - \boldsymbol{x}_{\star})^T \nabla^2 \mathsf{f}(\boldsymbol{x}_{\star})(\boldsymbol{x} - \boldsymbol{x}_{\star}) + \mathcal{O}(\|\boldsymbol{x} - \boldsymbol{x}_{\star}\|) \end{split}$$

The toy problem

Conjugate Direction

(3/3)

 $x_{*}\|^{3}$

 we can rewrite the quadratic problem in many different way as follows

$$\begin{aligned} \mathsf{q}(\boldsymbol{x}) &= \frac{1}{2} (\boldsymbol{x} - \boldsymbol{x}_{\star})^T \boldsymbol{A} (\boldsymbol{x} - \boldsymbol{x}_{\star}) + c' \\ &= \frac{1}{2} (\boldsymbol{A} \boldsymbol{x} - \boldsymbol{b})^T \boldsymbol{A}^{-1} (\boldsymbol{A} \boldsymbol{x} - \boldsymbol{b}) + c' \end{aligned}$$

where

$$c' = c + \frac{1}{2} \boldsymbol{x}_{\star}^T \boldsymbol{A} \boldsymbol{x}_{\star}$$

 This last forms are useful in the study of the steepest descent method.

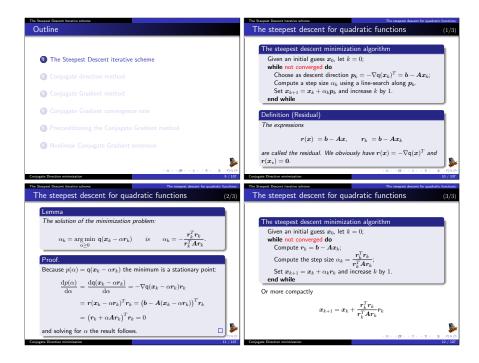
7 / 107 Conjugate Direction minimization

(B) (2) (2) 2 040

S - (S) (S) (S) (S)

101 (B) (2) (2) (2) 2 940

(1/3)



The Steepest Descent iterative scheme

The steepest descent reduction step

0.000

13 / 10

È.

15 / 107

The next lemma bound the reduction of $q(x_{k+1})$ by the value of $q(x_k)$:

Lemma

Consider the steepest descent for quadratic function, than we have the following estimate

$$\|\boldsymbol{x}_{\star} - \boldsymbol{x}_{k+1}\|_{\boldsymbol{A}}^2 = \|\boldsymbol{x}_{\star} - \boldsymbol{x}_{k}\|_{\boldsymbol{A}}^2 \left(1 - \frac{(\boldsymbol{r}_{k}^T \boldsymbol{r}_{k})^2}{(\boldsymbol{r}_{k}^T \boldsymbol{A}^{-1} \boldsymbol{r}_{k})(\boldsymbol{r}_{k}^T \boldsymbol{A} \boldsymbol{r}_{k})}\right)$$

where

$$\|\boldsymbol{x}\|_{\boldsymbol{A}} = \sqrt{\boldsymbol{x}^T \boldsymbol{A} \boldsymbol{x}}$$

is the energy norm induced by the SPD matrix A.

Conjugate Direction minimization The Steepest Descent iterative scheme

The steepest descent reduction step

Proof.

Substituting
$$\alpha_k = rac{m{r}_k^T m{r}_k}{m{r}_k^T m{A} m{r}_k}$$
 we obtain

$$q(x_{k+1}) = q(x_k) - \frac{1}{2} \frac{(r_k^T r_k)^2}{r_k^T A r_k}$$

this shows that the steepest descent method reduce at each step the objective function q(x).

Using the expression
$$q(x) = \frac{1}{2}r(x)^T A^{-1}r(x) + c'$$
 we can write

$$\frac{1}{2} \boldsymbol{r}_{k+1}^T \boldsymbol{A}^{-1} \boldsymbol{r}_{k+1} = \frac{1}{2} \boldsymbol{r}_k^T \boldsymbol{A}^{-1} \boldsymbol{r}_k - \frac{1}{2} \frac{(\boldsymbol{r}_k^T \boldsymbol{r}_k)^2}{\boldsymbol{r}_k^T \boldsymbol{A} \boldsymbol{r}_k}$$

The Steepest Descent iterative scheme

Pr

The steepest descent reduction step

101 101 121 121 2 OLO 16 / 107

$$\begin{aligned} & \text{oof.} & (1/3). \\ & \text{e want bound } \mathbf{q}(\boldsymbol{x}_{k+1}) \text{ by } \mathbf{q}(\boldsymbol{x}_k): \\ & \mathbf{x}_{k+1}) = \mathbf{q}\left(\boldsymbol{x}_k + \alpha_k \boldsymbol{x}_k\right) \\ & = \frac{1}{2} \left(\boldsymbol{A} \boldsymbol{x}_k + \alpha_k \boldsymbol{A} \boldsymbol{r}_k - \boldsymbol{b} \right)^T \boldsymbol{A}^{-1} \left(\boldsymbol{A} \boldsymbol{x}_k + \alpha_k \boldsymbol{A} \boldsymbol{r}_k - \boldsymbol{b} \right) + c' \\ & = \frac{1}{2} \left(\alpha_k \boldsymbol{A} \boldsymbol{r}_k - \boldsymbol{r}_k \right)^T \boldsymbol{A}^{-1} \left(\alpha_k \boldsymbol{A} \boldsymbol{r}_k - \boldsymbol{r}_k \right) + c' \\ & = \frac{1}{2} \mathbf{r}_k^T \boldsymbol{A}^{-1} \mathbf{r}_k + \frac{1}{2} \alpha_k^2 \mathbf{r}_k^T \boldsymbol{A} \boldsymbol{r}_k - \alpha_k \mathbf{r}_k^T \boldsymbol{r}_k + c' \\ & = \mathbf{q}(\boldsymbol{x}_k) + \frac{1}{2} \alpha_k \left(\alpha_k \boldsymbol{r}_k^T \boldsymbol{A} \boldsymbol{r}_k - 2 \mathbf{r}_k^T \boldsymbol{r}_k \right) \end{aligned}$$

Proof.

or better

$$\bm{r}_{k+1}^T \bm{A}^{-1} \bm{r}_{k+1} = \bm{r}_k^T \bm{A}^{-1} \bm{r}_k \left(1 - \frac{(\bm{r}_k^T \bm{r}_k)^2}{(\bm{r}_k^T \bm{A}^{-1} \bm{r}_k) (\bm{r}_k^T \bm{A} \bm{r}_k)} \right)$$

noticing that $r_k = b - Ax_k = Ax_\star - Ax_k = A(x_\star - x_k)$ we have

$$\|\boldsymbol{x}_{\star} - \boldsymbol{x}_{k+1}\|_{\boldsymbol{A}}^{2} = \|\boldsymbol{x}_{\star} - \boldsymbol{x}_{k}\|_{\boldsymbol{A}}^{2} \left(1 - \frac{(\boldsymbol{r}_{k}^{T}\boldsymbol{r}_{k})^{2}}{(\boldsymbol{r}_{k}^{T}\boldsymbol{A}^{-1}\boldsymbol{r}_{k})(\boldsymbol{r}_{k}^{T}\boldsymbol{A}\boldsymbol{r}_{k})}\right)$$

where

$$\|\boldsymbol{x}\|_{\boldsymbol{A}} = \sqrt{\boldsymbol{x}^T \boldsymbol{A} \boldsymbol{x}}$$

is the energy norm induced by the SPD matrix A.

The Steepest Descent iterative scheme

The steepest descent convergence rat

19 / 107

The Steepest Descent iterative scheme

Proof

The estimate of the convergence rate for the steepest descent method is linked to the estimate of the term

$$\frac{(\boldsymbol{r}_k^T\boldsymbol{r}_k)^2}{(\boldsymbol{r}_k^T\boldsymbol{A}^{-1}\boldsymbol{r}_k)(\boldsymbol{r}_k^T\boldsymbol{A}\boldsymbol{r}_k)}$$

in particular we can prove

Lemma (Kantorovic)

Let $\mathbf{A} \in \mathbb{R}^{n \times n}$ an SPD matrix then the following inequality is valid $1 \le \frac{(x^T A x)(x^T A^{-1} x)}{(x^T x)^2} \le \frac{(M + m)^2}{4Mm}$ for all $x \neq 0$. Where $m = \lambda_1$ is the smallest eigenvalue of A and $M = \lambda_n$ is the biggest eigenvalue of A. The Steepest Descent iterative scheme The steepest descent convergence rate Proof. STEP 2: eigenvector expansions. Matrix $A \in \mathbb{R}^{n \times n}$ is an SPD matrix so that there exists u_1, u_2, \ldots, u_n a complete orthonormal eigenvectors set with $0 < \lambda_1 < \lambda_2 < \cdots < \lambda_n$ corresponding eigenvalues. Let be $x \in \mathbb{R}^n$ then $\boldsymbol{x} = \sum_{k=1}^{n} \alpha_k \boldsymbol{u}_k, \quad \boldsymbol{x}^T \boldsymbol{x} = \sum_{k=1}^{n} \alpha_k^2$ so that $(\mathbf{x}^T \mathbf{A} \mathbf{x})(\mathbf{x}^T \mathbf{A}^{-1} \mathbf{x}) = h(\alpha_1, \dots, \alpha_n)$ where $h(\alpha_1, \dots, \alpha_n) = \left(\sum_{k=1}^n \alpha_k^2 \lambda_k\right) \left(\sum_{k=1}^n \alpha_k^2 \lambda_k^{-1}\right)$

then the lemma can be reformulated

- Find maxima and minima of h(a1,...,an)
- subject to ∑ⁿ_{k−1} α²_k = 1.

Proof. (1)) STEP 1: problem reformulation. First of all notice that $\frac{(x^T A x)(x^T A^{-1} x)}{(x^T x)^2} = \frac{(y^T A y)(y^T A^{-1} y)}{(y^T y)^2}$ for all $y = \alpha x$ with $\alpha \neq 0$. Choosing $\alpha = ||x||^{-1}$ have: $\min_{\|x\|=1} (z^T A z)(z^T A^{-1} z) \le \frac{(x^T A x)(x^T A^{-1} x)}{(x^T x)^2} \le \max_{\|x\|=1} (z^T A z)(z^T A^{-1} z)$ (2) Proof. (2

The Steepest Descent iterative sch Proof.

STEP 3: problem reduction. By using Lagrange multiplier maxima and minima are the stationary points of:

$$q(\alpha_1, ..., \alpha_n, \mu) = h(\alpha_1, ..., \alpha_n) + \mu \left(\sum_{k=1}^n \alpha_k^2 - 1 \right)$$

setting $A=\sum_{k=1}^n \alpha_k^2 \lambda_k$ and $B=\sum_{k=1}^n \alpha_k^2 \lambda_k^{-1}$ we have

$$\frac{\partial g(\alpha_1, \dots, \alpha_n, \mu)}{\partial \alpha_k} = 2\alpha_k(\lambda_k B + \lambda_k^{-1}A + \mu) = 0$$

so that

• Or λ_k is a root of the quadratic polynomial $\lambda^2 B + \lambda \mu + A$. in any case there are at most 2 coefficients α 's not zero.^a

"the argument should be improved in the case of multiple eigenvalues

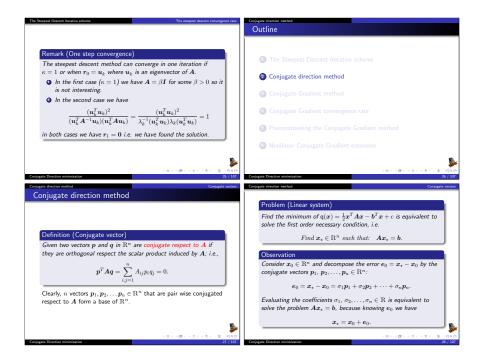
(ロントロント (ロントロ)

Conjugate Direction minimiz

The Steepest Descent iterative sche

The steepest descent convergence rate The Steepest Descent iterative scheme

$$\begin{aligned} & \text{Proof.} & (f_{n}) \\ & \text{STEP 4: problem reformulation. say α_{i} and α_{j} are the only non zero coefficients, then $\alpha_{i}^{2} + \alpha_{j}^{2} = 1$ and we can write $h(\alpha_{1}, \ldots, \alpha_{n}) = (\alpha_{i}^{2}\lambda_{i} + \alpha_{j}^{2}\lambda_{j})(\alpha_{i}^{2}\lambda_{i}^{-1} + \alpha_{j}^{2}\lambda_{j}^{-1}) \\ &= \alpha_{i}^{4} + \alpha_{j}^{4} + \alpha_{i}^{2}\alpha_{j}^{2}\left(\frac{\lambda_{i}}{\lambda_{j}} + \frac{\lambda_{j}}{\lambda_{i}}\right) \\ &= \alpha_{i}^{4} + \alpha_{j}^{4} + \alpha_{i}^{2}\alpha_{j}^{2}\left(\frac{\lambda_{i}}{\lambda_{j}} + \frac{\lambda_{j}}{\lambda_{i}}\right) \\ &= \alpha_{i}^{4}(1 - \alpha_{j}^{2}) + \alpha_{i}^{2}(\alpha_{j}^{2} + (\lambda_{i} - \lambda_{j})^{2}) \\ &= 1 + \alpha_{i}^{2}(1 - \alpha_{j}^{2}) \frac{(\lambda_{i} - \lambda_{j})^{2}}{\lambda_{i}\lambda_{j}} \leq (\lambda + \lambda_{j})^{2} \\ &= 1 + \alpha_{i}^{2}(1 - \alpha_{i}^{2}) \frac{(\lambda_{i} - \lambda_{j})^{2}}{\lambda_{i}\lambda_{j}} \leq (\lambda + \lambda_{j})^{2} \\ &= 1 + \alpha_{i}^{2}(1 - \alpha_{i}^{2}) \frac{(\lambda_{i} - \lambda_{j})^{2}}{\lambda_{i}\lambda_{j}} \leq (\lambda + \lambda_{j})^{2} \\ &= 1 + \alpha_{i}^{2}(1 - \alpha_{i}^{2}) \frac{(\lambda_{i} - \lambda_{j})^{2}}{\lambda_{i}\lambda_{j}} \leq (\lambda + \lambda_{j})^{2} \\ &= 1 + \alpha_{i}^{2}(1 - \alpha_{i}^{2}) \frac{(\lambda_{i} - \lambda_{j})^{2}}{\lambda_{i}\lambda_{j}} \leq (\lambda + \lambda_{j})^{2} \\ &= 1 + \alpha_{i}^{2}(1 - \alpha_{i}^{2}) \frac{(\lambda_{i} - \lambda_{j})^{2}}{\lambda_{i}\lambda_{j}} \leq (\lambda + \lambda_{j})^{2} \\ &= 1 + \alpha_{i}^{2}(1 - \alpha_{i}^{2}) \frac{(\lambda_{i} - \lambda_{j})^{2}}{\lambda_{i}\lambda_{j}} \leq (\lambda + \lambda_{j})^{2} \\ &= 1 + \alpha_{i}^{2}(1 - \alpha_{i}^{2}) \frac{(\lambda_{i} - \lambda_{j})^{2}}{\lambda_{i}\lambda_{j}} \leq (\lambda + \lambda_{j})^{2} \\ &= 0 \text{ to und} \quad (\lambda + \lambda_{j})^{2} (\lambda_{i}\lambda_{j}) \text{ consider the function } \\ &= f(\lambda + \alpha_{i})^{2} - \alpha_{i}^{2}(\lambda_{i} + \lambda_{j}) \\ &= 1 + \alpha_{i}^{2}(\alpha_{i}^{2} + \frac{\lambda_{i}}{\lambda_{i}}) \\ &= 0 \text{ to und} \quad (\lambda + \lambda_{i})^{2} \\ &= 0 \text{ to und} \quad (\lambda + \lambda_{i})^{2} \\ &= 0 \text{ to und} \quad (\lambda + \lambda_{i})^{2} \\ &= 0 \text{ to und} \quad (\lambda + \lambda_{i})^{2} \\ &= 0 \text{ to und} \quad (\lambda + \lambda_{i})^{2} \\ &= 0 \text{ to und} \quad (\lambda + \lambda_{i})^{2} \\ &= 0 \text{ to und} \quad (\lambda + \lambda_{i})^{2} \\ &= 0 \text{ to und} \quad (\lambda + \lambda_{i})^{2} \\ &= 0 \text{ to und} \quad (\lambda + \lambda_{i})^{2} \\ &= 0 \text{ to und} \quad (\lambda + \lambda_{i})^{2} \\ &= 0 \text{ to und} \quad (\lambda + \lambda_{i})^{2} \\ &= 0 \text{ to und} \quad (\lambda + \lambda_{i})^{2} \\ &= 0 \text{ to und} \quad (\lambda + \lambda_{i})^{2} \\ &= 0 \text{ to und} \quad (\lambda + \lambda_{i})^{2} \\ &= 0 \text{ t$$$



Conjugate direction method

Conjugate vectors Conjugate direction method

0 ... 2 ... 2 ... 2 ... 0 ... 0

101121121

Observation

Using conjugacy the coefficients $\sigma_1, \sigma_2, \ldots, \sigma_n \in \mathbb{R}$ can be computed as

$$\sigma_i = \frac{\mathbf{p}_i^T \mathbf{A} \mathbf{e}_0}{\mathbf{p}_i^T \mathbf{A} \mathbf{p}_i}, \quad \text{for } i = 1, 2, \dots, n.$$

In fact, for all $1 \le i \le n$, we have

 $\begin{aligned} p_i^T \boldsymbol{A} \boldsymbol{e}_0 &= p_i^T \boldsymbol{A} \left(\sigma_1 \boldsymbol{p}_1 + \sigma_2 \boldsymbol{p}_2 + \ldots + \sigma_n \boldsymbol{p}_n \right), \\ &= \sigma_1 \boldsymbol{p}_i^T \boldsymbol{A} \boldsymbol{p}_1 + \sigma_2 \boldsymbol{p}_i^T \boldsymbol{A} \boldsymbol{p}_2 + \ldots + \sigma_n \boldsymbol{p}_i^T \boldsymbol{A} \boldsymbol{p}_n, \\ &= \sigma_i \boldsymbol{p}_i^T \boldsymbol{A} \boldsymbol{p}_i, \end{aligned}$

because $p_i^T A p_j = 0$ for $i \neq j$.

Conjugate Direction minimization
Conjugate direction method
Step: $x_0 o x_1$

At the first step we consider the subspace $x_0 + {
m SPAN}\{p_1\}$ which consists in vectors of the form

$$x(\alpha) = x_0 + \alpha p_1$$
 $\alpha \in \mathbb{R}$

The minimization problem becomes:

$$\begin{split} & \text{Minimization step } \boldsymbol{x}_0 \to \boldsymbol{x}_1 \\ & \text{Find } \boldsymbol{x}_1 = \boldsymbol{x}_0 + \alpha_1 p_1 \text{ (i.e., find } \alpha_1!) \text{ such that:} \\ & \quad \left\| \boldsymbol{x}_{\star} - \boldsymbol{x}_1 \right\|_{\boldsymbol{A}} = \min_{\boldsymbol{\alpha} \in \mathbb{R}} \left\| \boldsymbol{x}_{\star} - (\boldsymbol{x}_0 + \alpha p_1) \right\|_{\boldsymbol{A}}, \end{split}$$

The conjugate direction method evaluate the coefficients $\sigma_1,$ $\sigma_2,\ldots,\sigma_n\in\mathbb{R}$ recursively in n steps, solving for $k\geq 0$ the minimization problem:

Conjugate direction method

 $\begin{array}{l} \mbox{Given } \boldsymbol{x}_{0}; \ k \leftarrow 0; \\ \mbox{repeat} \\ k \leftarrow k+1; \\ \mbox{Find } \boldsymbol{x}_{k} \in \boldsymbol{x}_{0} + \mathcal{V}_{k} \mbox{ such that:} \end{array}$

$$oldsymbol{x}_k = rgmin_{oldsymbol{x} \in oldsymbol{x}_0 + \mathcal{V}_k} \|oldsymbol{x}_\star - oldsymbol{x}\|_{\mathcal{A}}$$

until k = n

where \mathcal{V}_k is the subspace of \mathbb{R}^n generated by the first k conjugate direction; i.e.,

$$V_k = \text{SPAN} \{ p_1, p_2, ..., p_k \}.$$

Conjugate Direction minimization

Solving first step method 1

The minimization problem is the minimum respect to $\boldsymbol{\alpha}$ of the quadratic:

$$\begin{split} & \rho(\alpha) = \| \boldsymbol{x}_{\star} - (\boldsymbol{x}_0 + \alpha \boldsymbol{p}_1) \|_{\boldsymbol{A}}^2, \\ & = (\boldsymbol{x}_{\star} - (\boldsymbol{x}_0 + \alpha \boldsymbol{p}_1))^T \boldsymbol{A} \left(\boldsymbol{x}_{\star} - (\boldsymbol{x}_0 + \alpha \boldsymbol{p}_1) \right) \\ & = (\boldsymbol{e}_0 - \alpha \boldsymbol{p}_1)^T \boldsymbol{A} \left(\boldsymbol{e}_0 - \alpha \boldsymbol{p}_1 \right), \\ & = \boldsymbol{e}_0^T \boldsymbol{A} \boldsymbol{e}_0 - 2 \alpha \boldsymbol{p}_1^T \boldsymbol{A} \boldsymbol{e}_0 + \alpha^2 \boldsymbol{p}_1^T \boldsymbol{A} \boldsymbol{p}_1. \end{split}$$

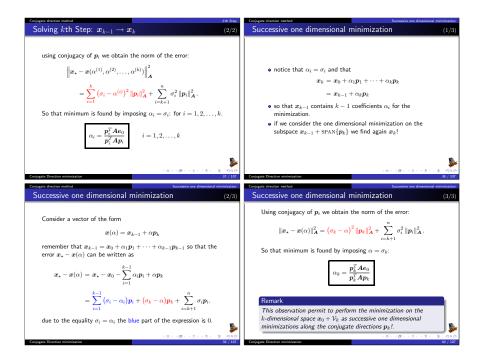
minimum is found by imposing:

$$\frac{\mathrm{d}\Phi(\alpha)}{\mathrm{d}\alpha} = -2\boldsymbol{p}_1^T \boldsymbol{A} \boldsymbol{e}_0 + 2\alpha \boldsymbol{p}_1^T \boldsymbol{A} \boldsymbol{p}_1 = 0 \quad \Rightarrow \quad \alpha_1 = \frac{\boldsymbol{p}_1^T \boldsymbol{A} \boldsymbol{e}_0}{\boldsymbol{p}_1^T \boldsymbol{A} \boldsymbol{p}_1}$$

(き) (と) (と) と のくひ 31/107 Contents 1 920 S (S) (S) (B) (0

Conjugate direction method Conjugate direction method Solving first step method 2 Solving first step method 2 Remember the error expansion: Because $\boldsymbol{x}_1 - \boldsymbol{x}_2 = \sigma_1 \boldsymbol{p}_1 + \sigma_2 \boldsymbol{p}_2 + \dots + \sigma_n \boldsymbol{p}_n$ $\|\boldsymbol{x}_{\star} - \boldsymbol{x}(\alpha)\|_{\boldsymbol{A}}^{2} = (\sigma_{1} - \alpha)^{2} \|\boldsymbol{p}_{1}\|_{\boldsymbol{A}}^{2} + \sum_{\boldsymbol{\alpha}} \sigma_{2}^{2} \|\boldsymbol{p}_{i}\|_{\boldsymbol{A}}^{2},$ Let $x(\alpha) = x_0 + \alpha p_1$, the difference $x_+ - x(\alpha)$ becomes: we have that $\boldsymbol{x}_{+} - \boldsymbol{x}(\alpha) = (\sigma_1 - \alpha)\boldsymbol{p}_1 + \sigma_2\boldsymbol{p}_2 + \ldots + \sigma_n\boldsymbol{p}_n$ due to conjugacy the error $||x_{\star} - x(\alpha)||_A$ becomes $\|\boldsymbol{x}_{\star} - \boldsymbol{x}(\alpha_1)\|_{\boldsymbol{A}}^2 = \sum_{i=1}^n \sigma_i^2 \|\boldsymbol{p}_i\|_{\boldsymbol{A}}^2 \le \|\boldsymbol{x}_{\star} - \boldsymbol{x}(\alpha)\|_{\boldsymbol{A}}^2 \qquad \text{for all } \alpha \neq \sigma_1$ $\|x_{\star} - x(\alpha)\|_{A}^{2}$ so that minimum is found by imposing $\alpha_1 = \sigma_1$: $= \left((\sigma_1 - \alpha) \boldsymbol{p}_1 + \sum_{i=1}^{n} \sigma_i \boldsymbol{p}_i \right)^T \boldsymbol{A} \left((\sigma_1 - \alpha) \boldsymbol{p}_1 + \sum_{i=1}^{n} \sigma_j \boldsymbol{p}_i \right)$ $\alpha_1 = \frac{p_1^T A e_0}{p^T A p_1}$ $= (\sigma_1 - \alpha)^2 p_1^T A p_1 + \sum_{j=0}^{\infty} \sigma_j^2 p_j^T A p_j$ This argument can be generalized for all k > 1 (see next slides). Conjugate direction method Conjugate direction method Step, $x_{k-1} \rightarrow x_k$ Solving kth Step: $x_{k-1} \rightarrow x_k$ Remember the error expansion: For the step from k - 1 to k we consider the subspace of \mathbb{R}^n $V_{\nu} = \text{SPAN} \{ p_1, p_2, \dots, p_k \}$ $\boldsymbol{x}_1 - \boldsymbol{x}_2 = \sigma_1 \boldsymbol{n}_1 + \sigma_2 \boldsymbol{n}_2 + \dots + \sigma_n \boldsymbol{n}_n$ Consider a vector of the form which contains vectors of the form: $\mathbf{x}(\alpha^{(1)}, \alpha^{(2)}, \dots, \alpha^{(k)}) = \mathbf{x}_0 + \alpha^{(1)}\mathbf{p}_1 + \alpha^{(2)}\mathbf{p}_2 + \dots + \alpha^{(k)}\mathbf{p}_k$ $\mathbf{x}(\alpha^{(1)}, \alpha^{(2)}, \dots, \alpha^{(k)}) = \mathbf{x}_0 + \alpha^{(1)}\mathbf{p}_1 + \alpha^{(2)}\mathbf{p}_2 + \dots + \alpha^{(k)}\mathbf{p}_k$ the error $x_{+} - x(\alpha^{(1)}, \alpha^{(2)}, \dots, \alpha^{(k)})$ can be written as The minimization problem becomes: Minimization step $x_{k-1} \rightarrow x_k$ $x_{\star} - x(\alpha^{(1)}, \alpha^{(2)}, \dots, \alpha^{(k)}) = x_{\star} - x_0 - \sum_{i=1}^{n} \alpha^{(i)} p_i,$ Find $\mathbf{x}_k = \mathbf{x}_0 + \alpha_1 \mathbf{p}_1 + \alpha_2 \mathbf{p}_2 + \ldots + \alpha_k \mathbf{p}_k$ (i.e. $\alpha_1, \alpha_2, \ldots, \alpha_k$) such that: $= \sum_{i=1}^{k} (\sigma_{i} - \alpha^{(i)}) \mathbf{p}_{i} + \sum_{i=1}^{n} \sigma_{i} \mathbf{p}_{i}.$ $\|\boldsymbol{x}_{\star} - \boldsymbol{x}_{k}\|_{\boldsymbol{A}} = \min_{\boldsymbol{\alpha}^{(1)}, \boldsymbol{\alpha}^{(2)}, \boldsymbol{\alpha}^{(k) \in \mathcal{R}}} \|\boldsymbol{x}_{\star} - \boldsymbol{x}(\boldsymbol{\alpha}^{(1)}, \boldsymbol{\alpha}^{(2)}, \dots, \boldsymbol{\alpha}^{(k)})\|_{\boldsymbol{A}}$

Conjugate Direction minimization



Conjugate direction method

Successive one dimensional minimiz

Successive one dimensional minimization

CONTRACTOR OF A DESCRIPTION OF A DESCRIP

Conjugate direction method

Successive one dimensional minimizatio

Problem (one dimensional successive minimization)

Find $x_k = x_{k-1} + \alpha_k p_k$ such that:

$$\|\boldsymbol{x}_{\star} - \boldsymbol{x}_{k}\|_{\boldsymbol{A}} = \min_{\alpha \in \mathbb{R}} \|\boldsymbol{x}_{\star} - (\boldsymbol{x}_{k-1} + \alpha \boldsymbol{p}_{k})\|_{\boldsymbol{A}}$$

The solution is the minimum respect to α of the quadratic:

$$\begin{split} \Phi(\alpha) &= \left(\boldsymbol{x}_{\star} - \left(\boldsymbol{x}_{k-1} + \alpha \boldsymbol{p}_k \right) \right)^T \boldsymbol{A} \left(\boldsymbol{x}_{\star} - \left(\boldsymbol{x}_{k-1} + \alpha \boldsymbol{p}_k \right) \right), \\ &= \left(\boldsymbol{e}_{k-1} - \alpha \boldsymbol{p}_k \right)^T \boldsymbol{A} \left(\boldsymbol{e}_{k-1} - \alpha \boldsymbol{p}_k \right), \\ &= \boldsymbol{e}_{k-1}^T \boldsymbol{A} \boldsymbol{e}_{k-1} - 2\alpha \boldsymbol{p}_k^T \boldsymbol{A} \boldsymbol{e}_{k-1} + \alpha^2 \boldsymbol{p}_k^T \boldsymbol{A} \boldsymbol{p}_k. \end{split}$$

minimum is found by imposing:

$$\frac{\mathrm{d}\Phi(\alpha)}{\mathrm{d}\alpha} = -2p_k^T \mathbf{A} \mathbf{e}_{k-1} + 2\alpha p_k^T \mathbf{A} \mathbf{p}_k = 0 \quad \Rightarrow \qquad \alpha_k = \frac{p_k^T \mathbf{A} \mathbf{e}_{k-1}}{p_k^T \mathbf{A} \mathbf{p}_k}$$

Conjugate direction method

- The one step minimization in the space x₀ + V_n and the successive minimization in the space x_{k-1} + SPAN{p_k}, k = 1, 2, ..., n are equivalent if p_is are conjugate.
- The successive minimization is useful when p_is are not known in advance but must be computed as the minimization process proceeds.
- The evaluation of α_k is apparently not computable because e_i is not known. However noticing

$$Ae_k = A(x_* - x_k) = b - Ax_k = r_k$$

we can write

$$\alpha_k = \boldsymbol{p}_k^T \boldsymbol{A} \boldsymbol{e}_{k-1} / \boldsymbol{p}_k^T \boldsymbol{A} \boldsymbol{p}_k = \boldsymbol{p}_k^T \boldsymbol{r}_{k-1} / \boldsymbol{p}_k^T \boldsymbol{A} \boldsymbol{p}_k =$$

· Finally for the residual is valid the recurrence

 $r_k = b - Ax_k = b - A(x_{k-1} + \alpha_k p_k) = r_{k-1} - \alpha_k Ap_k.$

Conjugate Direction minimization

• In the case of minimization on the subspace $x_0 + \mathcal{V}_k$ we have:

$$\alpha_k = \boldsymbol{p}_k^T \boldsymbol{A} \boldsymbol{e}_0 / \boldsymbol{p}_k^T \boldsymbol{A} \boldsymbol{p}_k$$

• In the case of one dimensional minimization on the subspace $m{x}_{k-1} + \mathrm{SPAN}\{m{p}_k\}$ we have:

$$\alpha_k = \boldsymbol{p}_k^T \boldsymbol{A} \boldsymbol{e}_{k-1} / \boldsymbol{p}_k^T \boldsymbol{A} \boldsymbol{p}_k$$

 Apparently they are different results, however by using the conjugacy of the vectors p_i we have

$$p_k^T A \boldsymbol{e}_{k-1} = p_k^T A(\boldsymbol{x}_* - \boldsymbol{x}_{k-1})$$
$$= p_k^T A(\boldsymbol{x}_* - (\boldsymbol{x}_0 + \alpha_1 \boldsymbol{p}_1 + \dots + \alpha_{k-1} \boldsymbol{p}_{k-1}))$$
$$= p_k^T A \boldsymbol{e}_0 - \alpha_1 p_k^T A \boldsymbol{p}_1 - \dots - \alpha_{k-1} p_k^T A \boldsymbol{p}_{k-1}$$
$$= p_k^T A \boldsymbol{e}_0$$

Conjugate Direction minimiz

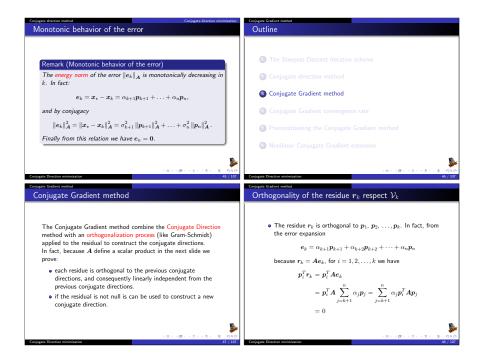
Conjugate direction minimization

Algorithm (Conjugate direction minimization)

 $\begin{array}{l} k \leftarrow 0; \ x_0 \ \text{assigned}; \\ r_0 \leftarrow b - Ax_0; \\ \text{while not converged to} \\ k \leftarrow k+1; \\ \alpha_k \leftarrow \frac{r_L^2 - p_L^2}{k_L Ap_k}; \\ x_k \leftarrow x_{k-1} + \alpha_k p_k; \\ r_k \leftarrow r_{k-1} - \alpha_k Ap_k; \\ end \ \text{while} \end{array}$

Observation (Computazional cost)

The conjugate direction minimization requires at each step one matrix-vector product for the evaluation of α_k and two update AXPY for x_k and r_k .



Building new conjugate direction

Conjugate Gradient method

onjugate Direction m Conjugate Gradient method

Conjugate Gradient method

• If $r_{k} \neq 0$ it can be used to build the new direction p_{k+1} by a Gram-Schmidt orthogonalization process

$$p_{k+1} = r_k + \beta_1^{(k+1)} p_1 + \beta_2^{(k+1)} p_2 + \ldots + \beta_k^{(k+1)} p_k$$

where the k coefficients $\beta_1^{(k+1)}$, $\beta_2^{(k+1)}$, ..., $\beta_k^{(k+1)}$ must satisfy:

$$p_i^T A p_{k+1} = 0$$
, for $i = 1, 2, ..., k$.

ALC: NO COMP.

D1 (A) (2) (2) (2) 2 000

51 / 10

The choice of the residual $r_k \neq 0$ for the construction of the new conjugate direction p_{l+1} has three important consequences:

- simplification of the expression for \(\alpha_k\);
- Orthogonality of the residual r_k from the previous residue r_0 . $r_1, \ldots, r_{k-1};$
- three point formula and simplification of the coefficients $\beta_i^{(k+1)}$

this facts will be examined in the next slides.

Building new conjugate direction

(repeating from previous slide)

$$p_{k+1} = r_k + \beta_1^{(k+1)} p_1 + \beta_2^{(k+1)} p_2 + \dots + \beta_k^{(k+1)} p_k,$$

expanding the expression:

$$\begin{split} &= p_i^l A p_{k+1}, \\ &= p_i^T A (r_k + \beta_1^{(k+1)} p_1 + \beta_2^{(k+1)} p_2 + \dots + \beta_k^{(k+1)} p_k), \\ &= p_i^T A r_k + \beta_1^{(k+1)} p_i^T A p_i, \\ &\Rightarrow \begin{bmatrix} \beta_i^{(k+1)} = -\frac{p_i^T A r_k}{p_i^T A p_i} \end{bmatrix} \quad i = 1, 2, \dots, k \end{split}$$

Conjugate Direction m Conjugate Gradient method

Simplification of the expression for α_k

Writing the expression for p_k from the orthogonalization process

$$p_k = r_{k-1} + \beta_1^{(k+1)} p_1 + \beta_2^{(k+1)} p_2 + \ldots + \beta_{k-1}^{(k+1)} p_{k-1},$$

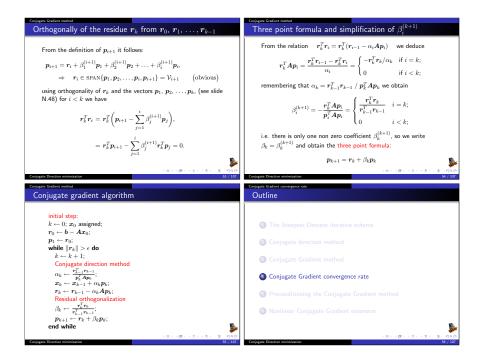
using orthogonality of r_{k-1} and the vectors $p_1, p_2, \ldots, p_{k-1}$, (see slide N.48) we have

$$r_{k-1}^T p_k = r_{k-1}^T (r_{k-1} + \beta_1^{(k+1)} p_1 + \beta_3^{(k+1)} p_2 + \ldots + \beta_{k-1}^{(k+1)} p_{k-1}),$$

= $r_{k-1}^T r_{k-1}.$

recalling the definition of α_k it follows:

$$\alpha_k = \frac{\boldsymbol{e}_{k-1}^T \boldsymbol{A} \boldsymbol{p}_k}{\boldsymbol{p}_k^T \boldsymbol{A} \boldsymbol{p}_k} = \frac{\boldsymbol{r}_{k-1}^T \boldsymbol{p}_k}{\boldsymbol{p}_k^T \boldsymbol{A} \boldsymbol{p}_k} = \begin{bmatrix} \frac{\boldsymbol{r}_{k-1}^T \boldsymbol{r}_{k-1}}{\boldsymbol{p}_k^T \boldsymbol{A} \boldsymbol{p}_k} \end{bmatrix}$$



Conjugate Gradient convergence rate

Polynomial residual expansions

57 / 10

🗖 🐌

59 / 10

Lemma

The residuals and cojugate directions for the Conjugate Gradient iterative scheme of slide 55 can be written as

$$r_k = P_k(A)r_0$$
 $k = 0, 1, ..., n$
 $p_k = Q_{k-1}(A)r_0$ $k = 1, 2, ..., n$

where $P_k(x)$ and $Q_k(x)$ are k-degree polynomial such that $P_{k}(0) = 1$ for all k.

Proof. The proof is by induction. Base k = 0: $p_1 = r_0$ so that $P_0(x) = 1$ and $Q_0(x) = 1$. (B) (2) (2) (2) Conjugate Direction minimization Conjugate Gradient convergence rate Polynomial residual expansions Corollary $e_k = P_k(A)e_0.$ Proof. $\boldsymbol{e}_k = \boldsymbol{x}_\star - \boldsymbol{x}_k = \boldsymbol{A}^{-1} \boldsymbol{r}_k$ $= \mathbf{A}^{-1} P_{\mathbf{h}}(\mathbf{A}) \mathbf{r}_{0}$

$$= P_k(\mathbf{A})\mathbf{A}^{-1}\mathbf{r}_0$$

= $P_k(\mathbf{A})(\mathbf{x}_{\star} - \mathbf{x}_0)$
= $P_k(\mathbf{A})\mathbf{e}_0.$

Polynomial residual expansions

Proof.

Let the expansion valid for k-1. Consider the recursion for the residual:

$$\begin{aligned} \boldsymbol{r}_k &= \boldsymbol{r}_{k-1} - \alpha_k \boldsymbol{A} \boldsymbol{p}_k \\ &= P_{k-1}(\boldsymbol{A}) \boldsymbol{r}_0 + \alpha_k \boldsymbol{A} Q_{k-1}(\boldsymbol{A}) \boldsymbol{r}_0 \\ &= \big(P_{k-1}(\boldsymbol{A}) + \alpha_k \boldsymbol{A} Q_{k-1}(\boldsymbol{A}) \big) \boldsymbol{r}_0 \end{aligned}$$

then $P_k(x) = P_{k-1}(x) + \alpha_k x Q_{k-1}(x)$ and $P_k(0) = P_{k-1}(0) = 1$. Consider the recursion for the conjugate direction

$$p_{k+1} = P_k(\boldsymbol{A})\boldsymbol{r}_0 + \beta_k Q_{k-1}(\boldsymbol{A})\boldsymbol{r}_0$$
$$= (P_k(\boldsymbol{A}) + \beta_k Q_{k-1}(\boldsymbol{A}))\boldsymbol{r}_0$$

then $Q_k(x) = P_k(x) + \beta_k Q_{k-1}(x)$.

Conjugate Direction mi Conjugate Gradient convergence rate

Polynomial residual expansions

Lemma

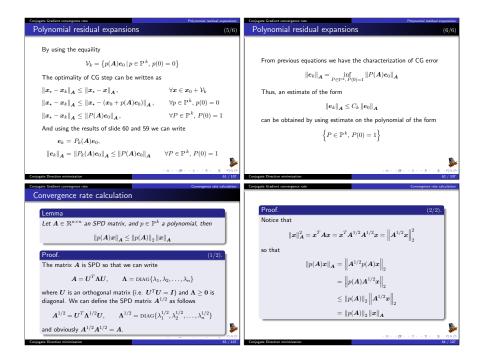
For the Conjugate Gradient iterative scheme of slide n.55 we have:

$$V_k = \{p(A)e_0 | p \in \mathbb{P}^k, p(0) = 0\}$$

Proof.

Using expansion of slide n.57 and $r_0 = Ae_0$ we have:

$$\begin{aligned} \mathcal{V}_{k} &= \operatorname{SPAN}\left\{\boldsymbol{p}_{1}, \boldsymbol{p}_{2}, \dots, \boldsymbol{p}_{k}\right\} \\ &= \left\{\sum_{i=0}^{k-1} \beta_{i} Q_{i}(\boldsymbol{A}) \boldsymbol{r}_{0} \middle| (\beta_{0}, \dots, \beta_{k-1}) \in \mathbb{R}^{k-1} \right\} \\ &= \left\{q(\boldsymbol{A}) \boldsymbol{A} \boldsymbol{e}_{0} \middle| \boldsymbol{p} \in \mathbb{P}^{k-1}\right\} = \left\{p(\boldsymbol{A}) \boldsymbol{e}_{0} \middle| \boldsymbol{p} \in \mathbb{P}^{k}, p(0) = 0\right\} \end{aligned}$$



Conjugate Gradient convergence rate

Convergence rate calculation

Conjugate Gradient convergence rate

Starting the error estimate

Convergence rate calculation

Let $\mathbf{A} \in \mathbb{R}^{n \times n}$ an SPD matrix, and $p \in \mathbb{P}^k$ a polynomial, then

$$\|p(\boldsymbol{A})\|_2 = \max_{\boldsymbol{\lambda} \in \sigma(\boldsymbol{A})} |p(\boldsymbol{\lambda})|$$

Proof

The matrix $p(\boldsymbol{A})$ is symmetric, and for a generic symmetric matrix \boldsymbol{B} we have

$$\|\boldsymbol{B}\|_2 = \max_{\lambda \in \sigma(\boldsymbol{B})} |\lambda|$$

observing that if λ is an eigenvalue of A then $p(\lambda)$ is an eigenvalue of p(A) the thesis easily follows.

Conjugate Direction minimization

Finite termination of Conjugate Gradient

Theorem (Finite termination of Conjugate Gradient)

Let $A \in \mathbb{R}^{n \times n}$ an SPD matrix, the the Conjugate Gradient applied to the linear system Ax = b terminate finding the exact solution in at most n-step.

Proof.

From the estimate

$$\|\boldsymbol{e}_{k}\|_{\boldsymbol{A}} \leq \inf_{P \in \mathbb{P}^{k}, P(0)=1} \left[\max_{\lambda \in \sigma(\boldsymbol{A})} |P(\lambda)|\right] \|\boldsymbol{e}_{0}\|_{\boldsymbol{A}}$$

 $P(x) = \prod_{\lambda \in \sigma(\mathbf{A})} (x - \lambda) / \prod_{\lambda \in \sigma(\mathbf{A})} (0 - \lambda)$

10110-0411-0211-0211

67 / 10

choosing

we have $\max_{\lambda \in \sigma(A)} |P(\lambda)| = 0$ and $||e_n||_A = 0$.

 $\|\boldsymbol{e}_k\|_{\boldsymbol{A}} \leq \inf_{P \in \mathbb{P}^k, P(0)=1} \|P(\boldsymbol{A})\boldsymbol{e}_0\|_{\boldsymbol{A}}$ \blacklozenge Combining the last two lemma we easily obtain the estimate

 $\|\boldsymbol{e}_{k}\|_{\boldsymbol{A}} \leq \inf_{\boldsymbol{P} \in \mathbb{P}^{k}} \inf_{\boldsymbol{P}(0)=1} \left[\max_{\boldsymbol{\lambda} \in \boldsymbol{\sigma}(\boldsymbol{A})} |\boldsymbol{P}(\boldsymbol{\lambda})|\right] \|\boldsymbol{e}_{0}\|_{\boldsymbol{A}}$

• The convergence rate is estimated by bounding the constant $\inf_{P \in \mathcal{V}^k, P(n) = 1} \left[\max_{\lambda \in \sigma(A)} |P(\lambda)| \right]$

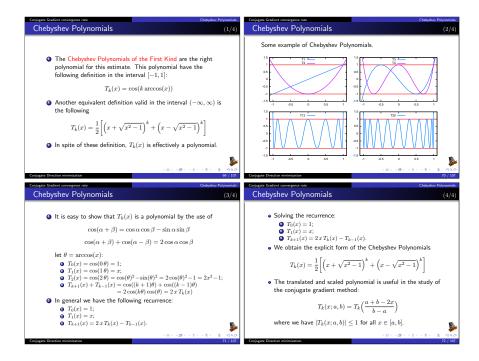
The following bound, is useful

 $\max_{\boldsymbol{\lambda} \in \sigma(\boldsymbol{A})} |P(\boldsymbol{\lambda})| \leq \max_{\boldsymbol{\lambda} \in [\lambda_1, \lambda_n]} |P(\boldsymbol{\lambda})|$

in particular the final estimate will be obtained by

$$\inf_{P \in \mathbb{P}^{k}, P(0)=1} \left[\max_{\lambda \in \sigma(\mathbf{A})} |P(\lambda)| \right] \leq \max_{\lambda \in [\lambda_{1}, \lambda_{n}]} \left| \bar{P}_{k}(\lambda) \right|$$

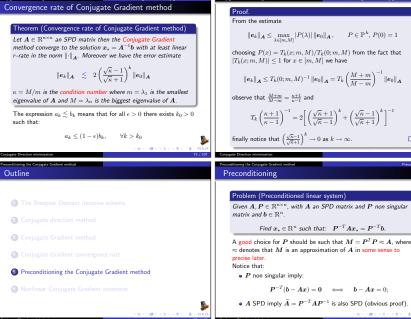
where $\bar{P}_k(x)$ is an opportune k-degree polynomial for which $\bar{P}_k(0) = 1$ and it is easy to evaluate $\max_{\lambda \in [\lambda_1, \lambda_n]} |\bar{P}_k(\lambda)|$.



onvergence rate of Conjugate Gradient method

Conjugate Gradient convergence rate

Convergence rate of Conjugate Gradient metho



Now we reformulate the preconditioned system:

Problem (Preconditioned linear system)

Given $A, P \in \mathbb{R}^{n \times n}$, with A an SPD matrix and P non singular matrix and $b \in \mathbb{R}^n$ the preconditioned problem is the following:

Find
$$\widetilde{x_{\star}} \in \mathbb{R}^n$$
 such that: $\widetilde{Ax_{\star}} = 0$

where

onjugate Direction minimizat Preconditioning the Conjugate Gradient method

$$\widetilde{A} = P^{-T}AP^{-1}$$
 $\widetilde{b} = P^{-T}b$

notice that if x_{+} is the solution of the linear system Ax = b then $\widetilde{x_{+}} = Px_{+}$ is the solution of the linear system $\widetilde{A}x = \widetilde{b}$.

Conjugate gradient algorithm applied to $\widetilde{A}\widetilde{x} = \widetilde{b}$ require the evaluation of thing like:

$$\widetilde{A}\widetilde{p}_k = P^{-T}AP^{-1}\widetilde{p}_k.$$

this can be done without evaluate directly the matrix \tilde{A} , by the following operations:

• solve $Ps'_k = \tilde{p}_k$ for $s'_k = P^{-1}\tilde{p}_k$;

• solve
$$P^T s_{i'}^{''} = s_{i'}^{''}$$
 for $s_{i'}^{''} = P^{-T} s''$.

Step 1 and 3 require the solution of two auxiliary linear system. This is not a big problem if P and P^T are triangular matrices (see e.g. incomplete Cholesky).

Preconditioning the Conjugate Gradient method PCG: preliminary version

$k \leftarrow 0$; x_0 assigned;

initial step:

 $\tilde{x}_0 \leftarrow Px_0$; $\tilde{r}_0 \leftarrow \tilde{b} - \tilde{A}\tilde{x}_0$; $\tilde{p}_1 \leftarrow \tilde{r}_0$; while $\|\tilde{r}_k\| > \epsilon$ do $k \leftarrow k + 1$: Conjugate direction method $\widetilde{\alpha}_{k} \leftarrow \frac{\widetilde{\mathbf{r}}_{k-1}^{T}\widetilde{\mathbf{r}}_{k-1}}{\mathbf{r}_{k-1}}$. $\tilde{x}_k \leftarrow \tilde{x}_{k-1} + \tilde{\alpha}_k \tilde{p}_k;$ $\widetilde{r}_{k} \leftarrow \widetilde{r}_{k-1} - \widetilde{\alpha}_{k} A \widetilde{p}_{k}$ Residual orthogonalization $\tilde{\beta}_k \leftarrow \frac{\tilde{r}_k^T \tilde{r}_k}{\tilde{r}_{k-1}^T \tilde{r}_{k-1}};$ $\tilde{p}_{k+1} \leftarrow \tilde{r}_k + \tilde{\beta}_k \tilde{p}_k$; end while final step $P^{-1}\tilde{x}_k$;

Preconditioning the Conjugate Gradient method

However... we can reformulate the algorithm using only the matrices A and P!

Definition

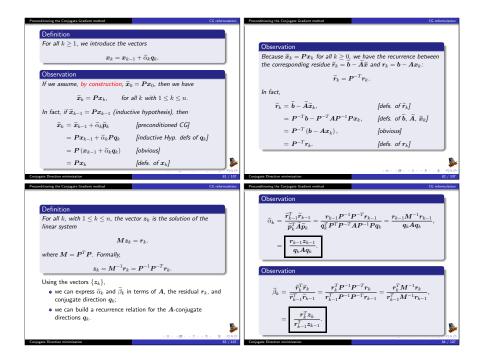
For all $k \ge 1$, we introduce the vector $\mathbf{a}_k = \mathbf{P}^{-1} \tilde{\mathbf{p}}_k$

Observation

If the vectors $\tilde{p}_1, \tilde{p}_2, ..., \tilde{p}_k$ for all $1 \le k \le n$ are \tilde{A} -conjugate, then the corresponding vectors a_1, a_2, \dots, a_k are A-conjugate. In fact

$$\boldsymbol{q}_j^T \boldsymbol{A} \boldsymbol{q}_i = \underbrace{\tilde{\boldsymbol{p}}_j^T \boldsymbol{P}^{-T}}_{=\boldsymbol{q}_i^T} \boldsymbol{A} \underbrace{\boldsymbol{P}^{-1} \tilde{\boldsymbol{p}}_i}_{=\boldsymbol{q}_j^T} = \widetilde{\boldsymbol{p}}_j^T \underbrace{\tilde{\boldsymbol{A}}}_{=\boldsymbol{P}^{-T} \boldsymbol{A} \boldsymbol{P}^{-1}}_{i} \\ \text{if } i \neq j,$$

that is a consequence of \tilde{A} -conjugation of vectors \tilde{p}_i .



Preconditioning the Conjugate Gradient method

0.00 5 15 15 1000

D1 (A) (2) (2) (2) 2 000

PCG: final version

Observation

Using the vector $z_k = M^{-1}r_k$, the following recurrence is true

$$q_{k+1} = z_k + \beta_k q_k$$

In fact:

$$\begin{split} & \bar{p}_{k+1} = \bar{r}_k + \beta_k \bar{p}_k & [preconditioned \ CG] \\ & P^{-1} \bar{p}_{k+1} = P^{-1} \bar{r}_k + \bar{\beta}_k P^{-1} \bar{p}_k & [left \ mult \ P^{-1}] \\ & P^{-1} \bar{p}_{k+1} = P^{-1} P^{-T} r_k + \bar{\beta}_k P^{-1} \bar{p}_k & [r_{k+1} = P^{-T} r_{k+1}] \\ & P^{-1} \bar{p}_{k+1} = M^{-1} r_k + \bar{\beta}_k P^{-1} \bar{p}_k & [M^{-1} = P^{-1} P^{-T}] \\ & q_{k+1} = z_k + \bar{\beta}_k q_k & [q_k = P^{-1} \bar{p}_k] \end{split}$$

initial step: $k \leftarrow 0$; x_0 assigned; $r_0 \leftarrow b - Ax_0; q_1 \leftarrow r_0;$ while $||z_{i\cdot}|| > \epsilon$ do $k \leftarrow k + 1$: Conjugate direction method $\widetilde{\alpha}_k \leftarrow \frac{\mathbf{r}_{k-1}^T \mathbf{z}_{k-1}}{\widetilde{\mathbf{z}}_{k-1}}$ $x_k \leftarrow x_{k-1} + \tilde{\alpha}_k q_k$; $r_k \leftarrow r_{k-1} - \tilde{\alpha}_k A q_k;$ Preconditioning $z_k = M^{-1}r_k$: Residual orthogonalization $\tilde{\beta}_k \leftarrow \frac{\mathbf{r}_k^T \mathbf{z}_k}{\mathbf{r}_{k-1}^T \mathbf{z}_{k-1}};$ $q_{k+1} \leftarrow z_k + \tilde{\beta}_k q_k;$ end while

Nonlinear Conjugate Gradient extension

Conjugate Direction minimiza Outline

- Conjugate direction method
- Conjugate Gradient convergence rate
- 6 Nonlinear Conjugate Gradient extension

The conjugate gradient algorithm can be extended for nonlinear minimization

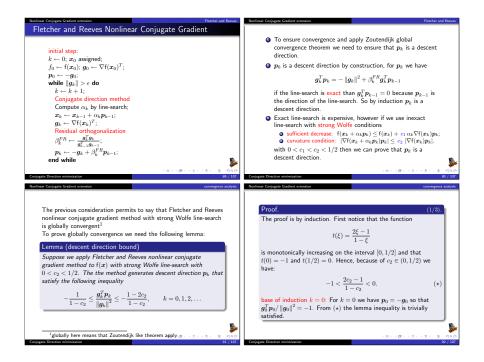
Nonlinear Conjugate Gradient extension

- Eletcher and Reeves extend CG for the minimization of a general non linear function f(x) as follows:
 - Substitute the evaluation of \(\alpha_k\) by an line search Substitute the residual r_k with the gradient $\nabla f(x_k)$
- We also translate the index for the search direction p_k to be more consistent with the gradients. The resulting algorithm is in the next slide

```
Conjugate Direction minimization
```

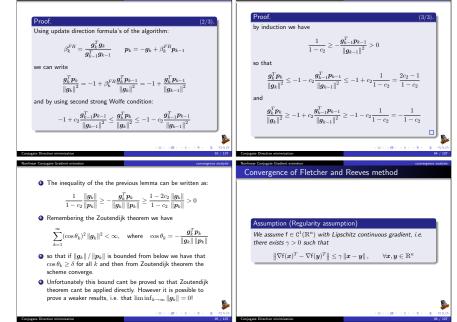
Conjugate Direction minimi

Nonlinear Conjugate Gradient extension



convergence analysis

Nonlinear Conjugate Gradient extension



Nonlinear Conjugate Gradient extension

convergence analysis

Nonlinear Conjugate Gradient extension

