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In the following we study the convergence rate of the Generic
minimization algorithm applied to a quadratic function q(z) with
exact line search. The function

1
q(x) = §zTAz —blzte

can be viewed as a n-dimensional generalization of the
1-dimensional parabolic model

Generic minimization algorithm

Given an initial guess x, let k = 0;

while not converged do
Find a descent direction py. at xy;
Compute a step size oy using a line-search along pj.
Set @j.41 = @ + aPr and increase k by 1.

end while

Assumption (Symmetry)

The matrix A is assumed to be symmetric, in fact,

A= ASymm  gSkew

where
ASymm _ ASvmm — (ASymmyT
ASkew _ ASkew — (g SkewyT
moreover

2T Az — o7 ASvmmy 4 oT ASkewy, _ o T ASymm g,

so that only the symmetric part of A contribute to q(x).

Direction minimization




Assumption (SPD)

The matrix A is assumed to be symmetric and positive definite, in
fact,

Vo@)" = (A +AT)a b= Az b
and

Viq(z

)

1 Ty _
FA+aT) =4

From the sufficient condition for a minimum we have that
Va(z.)T =0, ie.

Az, =b

and V2q(x,) = A is SPD.

The toy problem

o By setting
A= V().
b = V(z,)z, — Vi(z.)
o= f(m) ~ Vi), + L2l Vi),
we have
@) = 32" Az b + o+ Oz — o)
o So that we expect that when an iterate @ is near x, then we

can neglect O(|jx — . |*) and the asymptotic behavior is the
same of the quadratic problem

The toy problem

o In the following we study the convergence rate of the Steepest
Descent and Conjugate Gradient methods applied to

q(z) = %a:TAa: —blz+te

where A is an SPD matrix.

e This assumption simplify the analysis but it is also useful in
the non linear case. In fact, by expanding a generic function
f(x) near its minimum x, we have

f(z) = f(z,) + V(z,)(z — z,)

e -2 V() @~ 2. + Oz~ 2.P)

@ we can rewrite the quadratic problem in many different way as
follows

q(z) = %(m —a) A —z) + ¢

%(Aw _0)TA Az —b)+¢
where

’
4

1r
-+ —x, Az,
5ol Aw

@ This last forms are useful in the study of the steepest descent
method

Y T——

5

1

The toy problem
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The Steepest Descent iterative scheme T

pest descent for quadratic functions.

@ The Steepest Descent iterative scheme

uadratic functions

The steepest descent f

Lemma

The solution of the minimization problem:

s
i Ary

ap = argmin q(@ —ary) i ap=—
az0

Because p(a) = q(@ — ary) the minimum is a stationary point:

dp(a) _ da(xx —ark) _
o = P = —Va(zr — arp)ri

= r(@y —ar)Try = (b— A(wy, — ary) 'y

= (rp+adr) r =0

and solving for o the result follows. O

The steepest descent for quadratic functions

The steepest descent minimization algorithm

Given an initial guess @, let k

while not converged do
Choose as descent direction py,

Compute a step size aj. using a line-search along py.
Set @ji1 = @ + agpy, and increase k by 1.
end while

ef n (Residual)
The expressions

=b— Az, T =b— Az

are called the residual. We obviously have (;
r(@,) = 0. B

c fon minimization 10

Given an initial guess @y, let k
while not converged do
Compute 7, = b — Axy;

T
TiTk .

Compute the step size ap = o
P P SIZE Ok =0T Ay
Set @j.1 = @) + g7k and increase k by 1.
end while

Or more compactly

o
vl Ary

Thy1 = T

Direction minimization




The Steepest Descent iterative scheme. The steepest descent for quadratic functions The

The steepest descent reduction step (1/4) The steepest descent reduction step

The next lemma bound the reduction of q(zy.1) by the value of
e
We want bound q(@1) by q(zy):

Consider the steepest descent for quadratic function, than we have q(@r+1) = q (@ +awrr)
the following estimate

1 .
5 (Azy + arArg — b)" A7 (Amy + ap Ary, — b) + ¢

2
ll#x — 2ks1lla =

ey (1- (nfre)?
w A (rTA Try)(rT Ary)

% (o Ary — )T A~ (apAry — 1) + ¢

where 1 1,
= 2r[A"n + EQﬁTZArk —arfr 4+
2] 4 = VaT Az 1
T 95T,
) ) ) = q(@) + = T Ary — 2rT
is the energy norm induced by the SPD matrix A. aax) + o (aur Ary —2rii)

The cheme

The steepest descent reductio

The steepest descent reduction ste|

Ty or better
Substituting o = —& £ we obtain T2
r{ Ay, A =i (7 (k)
. G ' L3 (rTA=Tr) (rT Ary)
B 1(Tm)? * i
a@k+1) = a(@k) — 5 A, noticing that 7y, = b— Az = Az, — Az = A(z, — ;) we have

this shows that the steepest descent method reduce at each step e = @pa |y = e — )l (1 - (rfr)?
the objective function q(z). s HElA s ela (rT A Try)(r] Ary)

1
Using the expression q() = (i

T A-1r(x) + ¢ we can write:

where
LI PRI W PR (. lella = VaT4z
9 k+1 k+1 = 5Tk Tk 21‘[Ark
3 B is the energy norm induced by the SPD matrix A B

Y ——



The Steepest Descent iteative scheme.

The steepest descent

The estimate of the convergence rate for the steepest descent
method is linked to the estimate of the term

(rim)?
(T A~ Tr0)(rT Ary)

in particular we can prove

Lemma (Kantorovic)
Let A € R™ " an SPD matrix then the following inequality is valid
- (2T Az)(@T A 'z) (M +m)?
= (@Tz)? =T AMm

for all @ # 0. Where m = Ay is the smallest eigenvalue of A and
M = \, is the biggest eigenvalue of A.

STEP 2: eigenvector expansions. Matrix A € R"*" is an SPD
matrix so that there exists u;, ua, .
eigenvectors set with 0 < A\; < Ay <
eigenvalues. Let be @ € R" then

u,, a complete orthonormal
« < A, corresponding

so that (27 Az) (2T A~'z) = h(a

Bon, ... an) = (Z;‘:labk) > uﬁA;l)
then the lemma can be reformulated:
o Find maxima and minima of h(a,
@ subject to Y b af = 1.

)

Proof.

STEP 1: problem reformulation. First of all notice that

@ Az)@"A ') _ (y"Ay)(y"Ay)
(2Tx)? - ¥"y)?

for all y = az with @ # 0. Choosing a = |||~ have:

HmHin (2TAz)(zTA'2) <
=l=1

(27 Az)(2T A" 'z)
(aTx)?

< max (27 Az)(zTA12)
Jlzll=1

STEP 3: problem reduction. By using Lagrange multiplier maxima
and minima are the stationary points of:

setting A = Y71, o) and B = Y7, aA; ! we have

Qn, j1)

=20 (MB+ A M A+ p) =0

so that
Q@ Oroag=0;

@ Or )\ is a root of the quadratic polynomial A2B + A + A
in any case there are at most 2 coefficients o's not zero. ?

“the argument should be improved in the case of multiple eigenvalues

Direction minimization
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The Steepest Descent iteative scheme.

The steepest descent convergence rate.

Proo

STEP 4: problem reformulation. say a; and a; are the only non
zero coefficients, then a7 + a7 = 1 and we can write
Blan, . an) = (afh +aih) (@A +adAT)

A A

41 A0 o202 (2 i

:a,+n,+a,n,( + )
g AUV

4 4 4 5 9 o f N A
= a2(1—a?) +a2(1 - o) + alad (x + Tf)

AL A
o (E+2-2)
(AUYERIDY

Convergence rate of Steepest Descent

The steepest descent c

The Kantorovich inequality permits to prove:
Theorem (Convergence rate of Steepest Descent)
Let A € R™"™ an SPD matrix then the steepest descent method:

s

Ty = T +
* T Ary,

Tk

converge to the solution . = A~'b with at least linear g-rate in
the norm ||-|| 5. Moreover we have the error estimate

K—1

Ct1 — & < —
I = mulla < 227

[ — 2]l o

& = M/m is the condition number where m = Ay is the smallest
eigenvalue of A and M = ), is the biggest eigenvalue of A.

Proof.

STEP 5: bounding maxima and minima. notice that

0<p0-p<g  vBeb
i — )2 Ai=X)? _ Qi+ N)?
g (i ] ;
i dsredl =Sy SN Sy Do

to bound (\; + A;)%/(4););) consider the function
f(x) = (1 + )2/ which is increasing for # > 1 so that we have
D 4Mm

and finally

Remember from slide N°16

2 2
e = el = o — il (1

(rir)? )

T (rTA ) (7T Ary)
from Kantorovich inequality

- (rTry)? oy AMm (M —m)?
(TA ) (T Ary) — (M +m)?  (M+m)?

so that

s = @ps1lla < 2. — @] 4

O

e Direction minimization



Remark (One step convergence)

The steepest descent method can converge in one iteration if
k= 1 or when 1o = uy, where wy, is an eigenvector of A.
@ In the first case (k = 1) we have A
is not interesting.

BI for some (3 > 0 so it

@ In the second case we have

@Pwl  fwp
(uf A=) (uf Aug) — A (wf u) A (u] w)

in both cases we have vy = 0 i.e. we have found the solution.

Conjugate direction me

Definition (Conjugate vector)

Given two vectors p and q in R™ are conjugate respect to A if
they are orthogonal respect the scalar product induced by A; ie.,

n

p'Ag= Y Aypig;=0.
ij=1

Clearly, n vectors py, pa,...p, € R" that are pair wise conjugated
respect to A form a base of R".

© Conjugate direction method

5

Problem (Linear system)

Find the minimum of q(x) = a” Az — b’ + c is equivalent to
solve the first order necessary condition, i.e.

Find x, € R" such that: Az, =

Consider xy € R™ and decompose the error ey = @, — xq by the
conjugate vectors pi, Pz, ... Pn € R":

€ = Ty — To = 01P1 + 02P2 + - + TnPn.

Evaluating the coefficients o1, o3, on € R is equivalent to
solve the problem Ax, = b, because knowing ey we have

=20+ €.

Direction minimization



onjugate direction method

Observation
Using conjugacy the coefficients oy, o3,. .., on € R can be
computed as
T A
oi=PE =120
p! Ap;

In fact, for all 1 < i < n, we have
pi Aeg = pl A(01p1 + 09pa + .. + oupn)
= 01p] Ap1 + 02p] Aps + ...+ 0up] Apa,
= n,pTAp,.

because p! Ap; = 0 fori # j.

At the first step we consider the subspace xy + SPAN{p; } which
consists in vectors of the form

z(a) = xo + apy aeR

The minimization problem becomes:

Minimization step &y — x;
Find z; = 29 + aup (i.e., find a;!) such that:

o — @1l 0 = min |« — (@0 + ap1)ll 4

The conjugate direction method evaluate the coefficients oy,
09,...,0n € R recursively in n steps, solving for k > 0 the
minimization problem:

Conjugate direction method

Given zg; k — 0;

repeat
k—k+1;
Find z). € g + Vj such that:
x), = argmin [z, — x| 4
@€ xo+Vi

until k =n

where V. is the subspace of R™ generated by the first k conjugate
direction; i.e.,

Vi = SPAN{p1, P2, .. .. i} 5‘

respect to a of the

The minimization problem is the
quadratic:

D(a) = . — (@0 +ap1)|a

= (@, — (w0 + ap1))” A (@, = (w0 + ap1)) ,
= (es—ap)) Ales—ap1).
= el Aey — 2ap] Aeg + o*pl Ap;.

minimum is found by imposing:

dd(e) -
S = —wlAe+20pf Api =0 > [ = ST Ap

Direction minimization



e —]

Solving first step method 2

Remember the error expansion:
T, —Tg = 01P1 + 02P2 + - + OuPn.
Let x(a) = @ + ap;, the difference x, — z(a) becomes:
z, —x(a) = (01 —a)p1 + o2p2 + ...+ 0upn
due to conjugacy the error |z, —x(a)| 4 becomes

. = 2(a)%

= (lor -+ o) A((er i+ Y om)
i=2 =2

n
= (01— a)’p{ Ap1 + Y_o?p] Ap;
=2

For the step from & — 1 to k we consider the subspace of R"
Vi = SPAN{p1, P2, ..., P}
which contains vectors of the form:
z(aW,a®, . a®) = 2+ aVp; +aPps + ...+ aFp,

The minimization problem becomes:

Minimization step a

Find @) = @0 + a1p1 + aspz + . . . + apy (i.e. ar,az, ..., ax)

such that:

z, z(n<‘1,0<2).....a“‘>)|‘
A

Nl =l = a),a e ®eR ‘

Conjugate dirction method

Solving first step method 2

Because
llaes — (@)% = (01 — a)? o]l + ini Ipill%a
i=2
we have that
2. —@(en) 5 = iuf Pl < llze = @)y foralla#o

=2

so that minimum is found by imposing a; = o1:

ap = Pl Acy
p{ Ap:
This argument can be generalized for all k > 1 (see next slides) “

Remember the error expansion:

x, — @) =01P1+ 2Pz ++ + TP
Consider a vector of the form
2z(a®,0®,...,a®) = 2o + aWp; + a@py + ... + aPpy,

the error 2, — z(aM,a® ... o) can be written as

Direction minimization



L e ,
Vel + > oF lpilla-
i=k+1

direction method
cessive one dimensi | minimizatiol
Consider a vector of the form

z(a) = @1 + apy
remember that @y = @g + a1p1 + -+ + @p_1Pr_1 SO that the
error z, — x(a) can be written as

1

> api+apr

=Y (oi—a)pi+ (or — )i+ Y oipic
i=k+1

due to the equality o; = a; the blue part of the expression is 0.

So that minimum is found by imposing o; = o;: fori =1,2,..., k.

imensional minimization

5

[r————

Conjugate dirction method

Successive one dimensional minimization

@ notice that o; = o; and that
2 = @+ pr + -+ Py
= Xp_1 + appi
@ so that @j_; contains k — 1 coefficients a; for the
minimization.
o if we consider the one dimensional minimization on the
subspace @1 + SPAN{p;} we find again x;!

Successive

dimensional minimizati

Using conjugacy of p; we obtain the norm of the error:

.
s —@(0) = (o — o) Ipela + Y o [Ipills -
i=k+1

So that minimum is found by imposing a = o,

A
Pl Apic

This observation permit to perform the minimization on the
k-dimensional space xo + V. as successive one dimensional
minimizations along the conjugate directions py.!.

Direction minimization
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Problem (one dimensional successive minimization)
Find @), = &)1 + ay.py, such that:

ll2x =@l o = min e, — (@1 +oPi)lla

The solution is the minimum respect to a of the quadratic:
D(a) = (@ — (@1 +app)” A2y — (@1 +apr) ,
= (ex—1—ap)” A(er1 —apr).
= e} Aej_1 — 2apl Aey_; + o*pl Apy.

minimum is found by imposing:

13 , ;
¢ l’(”) = —2pl Aey_y + 20pl Ap =0 =
do .

jve one dimensional minimization

@ The one step minimization in the space g + V), and the
successive minimization in the space @j_1 4+ SPAN{py},
k=1,2,...,n are equivalent if p;s are conjugate.

@ The successive minimization is useful when p;s are not known
in advance but must be computed as the minimization process
proceeds

The evaluation of ay is apparently not computable because e;
is not known. However noticing

Aey = Al@, — x3) = b— Az, =1y
we can write
oy = pl Aep1 | pf Apy, = piri-1 | PL Apr =

o Finally for the residual is valid the recurrence

r=b— Az = b— A(xp )+ apr) = i1 — ok Ap. B

@ In the case of minimization on the subspace @ + V. we have:
i = pj Aey / pi, Apy

@ In the case of one dimensional minimization on the subspace
@)1 + SPAN{py,} we have:

oy, = pi Aei_1 [ ph Apr.

@ Apparently they are different results, however by using the
conjugacy of the vectors p; we have

plAes 1 = pl Az, — 1)
= prA(m. — (T + a1p1 + -+ + p_1Pk-1))

~ a1pf Api

= piAey | %

= pj Aeg — arpf Ap; — -+

e direction m minimization

Conjugate direction minimization

Algorithm (Conjugate direction minimization)
k —0; xo assigned;
ro — b— Az,
while not converged do
k—k+1;
ek
PrApy
T — Th—1 + OkPk/
Tk < Tho1 — AP/
end while

ap —

Observation (Computazional cost)

The conjugate direction minimization requires at each step one
matrix—vector product for the evaluation of . and two update
AXPY for ), and . b

Direction minimization




Monotonic behavi

Remark (Monotonic behavior of the error)

The energy norm of the error |lex]| 5 is monotonically decreasing in
k. In fact:

€k = Ty — Tk = O +1Pk+1 + - .- + QnPry
and by conjugacy
llexlla = llee — @il = os [Pl + -+ o7 Ipalls -

Finally from this relation we have e,, = 0.

The Conjugate Gradient method combine the Conjugate Direction
method with an orthogonalization process (like Gram-Schmidt)
applied to the residual to construct the conjugate directions.

In fact, because A define a scalar product in the next slide we
prove:

o each residue is orthogonal to the previous conjugate
directions, and consequently linearly independent from the
previous conjugate directions.

o if the residual is not null is can be used to construct a new
conjugate direction

Dir

© Conjugate Gradient method

© The residue 7, is orthogonal to pi, po. ....px. In fact, from
the error expansion

€k = Qp1Pkt1 + Qkg2Pk42 + 0+ OnPn
because 1, = Aey, fori=1,2,..., k we have
Pl = pl Aey

=plA Y apj= 3 aplAp;
j=k+1

I
o

5




onjugate Gradient method

Building new conjugate direction

Building new conjugate direction

(repeating from previous slide)

o The conjugate direction method build one new direction at st = 1 By gy ey g
each step.

o If 74 # 0 it can be used to build the new direction pj+; by a

expanding the expression:
Gram-Schmidt orthogonalization process

0 = p! Apis1,
k+1 k+1) k+1
Pr =7+ B8 py+ 85 py 1 0, = plA(r+ 85 py + 5 py 4o g5V py),
(k+1) - o(k+1) A+ X
::)Z:feythe k coefficients 3 LBy B must — pT A + A*,(M”ILTAPH
plApri =0, fori=1,2,..., k.

Writing the expression for py, from the orthogonalization process

The choice of the residual ). # 0 for the construction of the new

(k+1) Ak (k
" A . pr =y + By 4 68y 4 R “Upy,
conjugate direction py.+; has three important consequences:
@ simplification of the expression for a; using orthogonality of 7,1 and the vectors py, p, ..., pr—1, (see
” ) ) slide N.48) we have
@ Orthogonality of the residual 7, from the previous residue 7,
. k+1 (k41 k+1
T TRt rape = iy (e + 8y + 88 s 4 g8 ),
@ three point formula and simplification of the coefficients
S(k+1)

i

T
=l e
this facts will be examined in the next slides. recalling the definition of « it follows:

T T T
e APk TP Th_1Tk—1

plAp.  plAp. | plAp:

Direction minimization
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Orthogonally of the residue 7, from rg, 7y, ...,

From the definition of p;1 it follows:

i+1 i+ (i1
pirr = ri+ B py 4+ 85 py 44 gy,

= 1 € SPAN{p1,p2.. .., PiPir1} = Vin (obvious)
using orthogonality of 7, and the vectors py, po, ..., py, (see slide

N.48) for i < k we have

(i+1
o= of (pe = )

i=1

:
(i1
=rlpis— Y A elp =0,
=

Conjugate gradient algorithm

initial step:
k « 0; o assigned;
To — b — Axo;
P To;
while [|r;|| > ¢ do
ke—k+1;
Conjugate direction method
Tr_1Tk-1
Py APr:
T — Tp—1 + OkPk;

aj ;
T Tho1 — g Apg;
Residual orthogonalization
'y
Pra1 = T+ Brpi
end while

(k+1)
i

Three point formula and simplification of 3

From the relation {7 =] (ri-1 — a;Ap;)  we deduce

Ty —pT —rlrifoy ifi=k
o7 Ap; =TTl rkr,:{ KT/
% 0 ifi<k

remembering that o, = 17 ri_; / pl Apy. we obtain

-
rTry
k
k1) _ 77“[/\11. B B
’ pl Ap; i )
i<k
i.e. there is only one non zero coefficient 4" "), so we write

B = B and obtain the three point formula:

Pra1 =Tk + PPk

@ Conjugate Gradient convergence rate

e




Polynomial residual exps

Polynomial residual expansions (1/6)

Polynomial residual expansions

The residuals and cojugate directions for the Conjugate Gradient
iterative scheme of slide 55 can be written as

7, = Pp(A)rg k=0,1,..., n
P = Qr-1(A)ro

where Py.(x) and Qi (x) are k-degree polynomial such that
Pi(0) =1 for all k.

k=1,2,..., n

Proof.
The proof is by induction
Base k = 0: pL=ro

so that Py(x) =1 and Qo(x

Polynomial residual expansions

1

e =, —ap = A
= A7'P(A)rg
= P(A)Ary
= Pi(A) (2.
= Pi(A)eo.

Tk

)

Proof.
Let the expansion valid for k — 1
residual:

Consider the recursion for the

Tk = Th-1 — O APy
= Pr1(A)rg + 0 AQp—1(A)rg
= (Pk,l(A) + p AQx—1(A))ro
then Py (z) = P (2) + a4zQpr (z) and Pi(0) = Pey (0) = 1.
Consider the recursion for the conjugate direction
Prs1 = Pe(A)ro + BrQi-1(A)ro
= (Pi(A) + BrQx-1(A))T0

then Qp(z) = Pi(x) + 3:Qk—1() =

Polynomial residual expansions

Lemma
For the Conjugate Gradient iterative scheme of slide n.55 we have:

Vi = {p(A)eq | p € P*, p(0) = 0}

Proof.
Using expansion of slide n.57 and ry = Aeg we have:

Vi = SPAN{p1,p2. ... Pi}
k-1

= {Z BiQi(A)ro
=0

= {a(A)Ae |p € P} = {p(A)eq|p € P, p(0) = 0}

=8

60/ 107




Polynomial residual expansions

Polynomial residual expansions (5/6)

By using the equaility
Vi = {p(A)eo|p € P¥, p(0) = 0}

The optimality of CG step can be written as

|@s — @il 4 < llwe — ] 4, Yo €z + Vi
vp e P, p(0) =0

VP e P*, P(0) =1

[ =@l 4 < @0 = (@0 +p(A)eo) ]l 4 -

@ —@ill4 < 1P(A)eol 4

And using the results of slide 60 and 59 we can write
er = P(Ae,

lexla = IPi(A)eoll s < | P(A)eolls VP €P*, P(0) =1

rate calculation

ergence rate calculati

Let A € R™™ an SPD matrix, and p € P* a polynomial, then
[p(A)z] 4 < [Ip(A)l; 12l o

The matrix A is SPD so that we can write

A=U"AU, A =DIAG{A1, Mg, .. A}

where U is an orthogonal matrix (i.e. UTU = I) and A > 0 is
diagonal. We can define the SPD matrix A!/? as follows
A2 = prac{AA N2

A2 — UTA2y, A2y

and obviously A/2A/2 = A, ;,

P —

From previous equations we have the characterization of CG error

inf P(A)e
et IP(Aeol g

llexlla =
Thus, an estimate of the form
llexlla < C lleolla

can be obtained by using estimate on the polynomial of the form

{P € Pk, P(0) = 1}

Notice that

lelfy = 7 Az = 7 AV2 V2 = || 412}
so that
Ip(A)all 4 = | 4*p(a)e],
],
< I, 472,

= [Ip(A)llz |=]| o

YT ——




Let A € R"™" an SPD matrix, and p € P* a polynomial, then

A, = X
lp(A)ll Ag}j;\ﬁ(*)\

The matrix p(A) is symmetric, and for a generic symmetric matrix
B we have

B[, = max [}

1B, = ma 13

observing that if A is an eigenvalue of A then p()) is an eigenvalue
of p(A) the thesis easily follows o

Finite termination of Conjugate Gradient

Finite termination of Conjugate Gradient

Theorem (Finite termination of Conjugate Gradient)

Let A € R"™™ an SPD matrix, the the Conjugate Gradient applied
to the linear system Ax = b terminate finding the exact solution
in at most n-step.

Proof

From the estimate

< inf ax |P(\
lewla <, it [ mas 1POVI ] lealla
choosing P@)= [ @=»/ I 0-»
Aea(A) Aea(A)
we have max,e(a) [P(A)| =0 and [[e,| 5 = 0. m]

o Starting the error estimate

e inf P(A)e
leslla <, _jnt  1P(Aerls

o Combining the last two lemma we easily obtain the estimate

elas, nt [ max [POV]] e
I kHAfl,&F“,m) AEUM\ (M1 | lleoll a

@ The convergence rate is estimated by bounding the constant

inf ax |P(X
Pet‘*‘,npun,q [Aennq(fx 1P M

Convergence rate of Conjugate Gradi

@ The constant

inf max [P(A) \}
PepPk, P(0)=1 LAea(A)

is not easy to evaluate,
@ The following bound, is useful
ax |P(A\)] < 8 P\
A POLS e, POV
@ in particular the final estimate will be obtained by

1P| <

mas | BV

inf [
PePk, P(0)=1 Aew(A A An

where Py(z) is an opportune k-degree polynomial for which
D,(0) =1 and it is easy to evaluate maxyepy, 1, [ Pr(N)]-

YT ——

5
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Ty ———— Chebyshev

Polynom

Chebyshev Polynomials

@ The Chebyshev Polynomials of the First Kind are the right
polynomial for this estimate. This polynomial have the
following definition in the interval [~ 1, 1]:

Ty () = cos(k arccos(x))

@ Another equivalent definition valid in the interval (—oc,00) is

the following
eV ]

@ |In spite of these definition, T}.(x) is effectively a polynomial.

cos(a + ) = cos acos

cos(a + ) + cos(a — ) = 2cos acos 3

let 0 = arccos(x):

S((k + 1)) + cos((k — 1))
os(kf) cos(0) = 22 Ty ()
@ In general we have the following recurrence:

0 Ty(x) =1;

o Ti(x)

ebyshev Polynom

Some example of Chebyshev Polynomials.

— 15

0s

]

05

15

15

1

05

1

ebyshev Polynomials

@ Solving the recurrence:
Q Ti(x) =1
Q Ti(z) =ux;
Q Ty T ().
o We obtain the explicit form of the Chebyshev Polynomials

' -]

o The translated and scaled polynomial is useful in the study of
the conjugate gradient method:

a+b—2

)

a,b)| <1 forall z € [a,b]

Ty(z:a,b) = Tk(

where we have [T},

e Direction minimization




Convergence rate of

Theorem (Convergence rate of Conjugate Gradient method)
Let A € R™" an SPD matrix then the Conjugate Gradient
method converge to the solution . = A~'b with at least linear
r-rate in the norm ||| 4. Moreover we have the error estimate

VE+1
k= M/m is the condition number where m = Ay is the smallest
eigenvalue of A and M = \,, is the biggest eigenvalue of A.

k
k-1
lela S z(f ) leolla

The expression aj < b means that for all ¢ > 0 there exists ko > 0
such that:

ar < (-, Yk >k

@ Preconditioning the Conjugate Gradient method

Convergence rate of Conjugate Gradient method

From the estimate

< max |P(A ,  PePFPO0)=1
HEKHAf/\En[]’:}R,]‘ (Ml lleoll a € (0)

choosing P(x) = Ty(a:m, M) /T},(0; m. M) from the fact that
|Ti(ax;m, M)| < 1 for & € [m, M] we have
-1
) llenla

llexll 4 < Ti(0;m, M)~ leoll 4 = T

Mim _ s+l
observe that 7777 = =5 an

a

Db

Problem (Preconditioned linear system)

Given A, P € R"™", with A an SPD matrix and P non singular
matrix and b € R™.

Find x. € R" such that: P~" Az, = P~"b.

A good choice for P should be such that M = PTP ~ A, where
~ denotes that M is an approximation of A in some sense to
precise later

Notice that:

o P non singular imply:

PT(b- Az

0 = b-Az=0;

o ASPD imply A= P~TAP~! is also SPD (obvious proof). |9

Y T——
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Now we reformulate the preconditioned system:

Problem (Preconditioned linear system)

Given A, P € R"*", with A an SPD matrix and P non singular
matrix and b € R™ the preconditioned problem is the following:

Find @, € R” such that: ~ Az, = b
where

A=PTAP! b=P b

notice that if @, is the solution of the linear system Az = b then
Z, = Pz, is the solution of the linear system Az = b.

Conjugate gradient algorithm applied to AZ = b require the
evaluation of thing like:
Ap, =P TAP 'p,.

this can be done without evaluate directly the matrix A, by the
following operations:

Q solve Ps, = py, for s}, = P~'py;

Q evaluate s} = As);

@ solve PTs) = s/ for s} = P~Ts"
Step 1 and 3 require the solution of two auxiliary linear system.

This is not a big problem if P and P7 are triangular matrices (see
e.g. incomplete Cholesky).

G reformulation

5

initial step:
k— 0; xp assigned;
g — Pxg; 7o — b — AZg; p1 — To;
while [[7]| > ¢ do
k—k+1;
Cor\jugite direction method

~ ~k ke -
Ty, — Tp_1 + OPk;
P Tr1 — K AP
Residual orthogonalization
X s

7

e
Prr1 — Tk + b
end while
final step
Play

However. we can reformulate the algorithm using only the
matrices A and P!
Defi

For all k > 1, we introduce the vector q;. = P

reformulation

Observation

. Pk foralll <k <mn are Z-conjugate,
.. qi are A-conjugate.

If the vectors py, P2, ..
then the corresponding vectors qi, g2,
In fact.

T ST p-T -1~ _ =T =
q; Aqi=p; P~ AP 'p,=p; A pi=0, ifi#j,
=z .

i

that is a consequence of A-conjugation of vectors p;.

Direction minimization
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Preconditioning the Conjugate Gradient method

CG reformution |

CG reformution
For all k > 1, we introduce the vectors
Because &), = Py, for all k > 0, we have the recurrence between
the corresponding residue 7}, — AZ and r = b — Awmy:

) = Tp—1 + AkQk-

If we assume, by construction, Ty = Px, then we have

=P Ty

In fact,

T = Pxy, for all k with 1 < k < n.

_ Tk = b— Ay, [defs. of 7]
In fact, if &y = Pxy_y (inductive hypothesis), then

Fy = Ty + Wbk [preconditioned CG]

=P "o P TAP Py,

[defs. of b, A, F]

=P T (b- Axy), [obvious]
= Pz, +arPg; [inductive Hyp. defs of qi] .
=P Ty [defs. of ry]
= P (xp_1 + 0rqr) [obvious]
- Pz, [defs. of x] | >

njugate Direction minimization 51/ 107

reformulation reformulation

. -
For all k, with 1 < k < n, the vector z, is the solution of the = Th-1 T P P

Gy = tTEl  Thels =
linear system plAp.  4f PTP-TAP-'Pq;

1My
arAqgy.

Mz =7y

where M = PTP. Formally,

zr=M"'r,= PP Ty

Using the vectors {z},

=1~4 T p—-1p-T, T -1
o ) = e TP~ Ty M-y,
o we can express @y and [y in terms of A, the residual 74, and e =
conjugate direction gy; TiaTh-1 T PTIP ey m  Mlrey
o we can build a recurrence relation for the A-conjugate -
directions gy, _ Ti Zk

Tazk 5‘

Direction minimization




Preconditioning the Conjugate Gradient method CG reformulation |

Preconditioning the Conjugate Gradient method G reformulation

PCG: final version

initia step:

Using the vector zj, = M ~'ry, the following recurrence is true k < 0; x) assigned;

~ ro —b— Azo; 1 — ro;
Qi1 = 2 + Brdi while ||z > ¢ do
ke—k+1;

In fact: Conjugate direction method

Prr1 = i+ Bibr [preconditioned CG] Gy DaZot

af Aq,
P 5+ 5Py [left mult P~] Tp = Th-1 + G
. o _— » Ty Tpo1 — QpAqk;
PP = PP v+ BPT Py [ri1 = P rn] Preconditioning

— = il = —1 =M'r
M v+ B P 'y M =P P, = koo

et AP TP ] / Residual orthogonalization
. e = o
= 2 + Brar [ar = P~'pi] By — 2
ey

Qo1 2+ Bri;

end while “

PP =

PPy

Qk+1

linear Conjugate Gradient extensiol

@ The conjugate gradient algorithm can be extended for
nonlinear minimization.
@ Fletcher and Reeves extend CG for the minimization of a
general non linear function f(x) as follows:
@ Substitute the evaluation of ay by an line search
@ Substitute the residual . with the gradient Vf(x)
@ We also translate the index for the search direction py, to be
more consistent with the gradients. The resulting algorithm is
in the next slide

@ Nonlinear Conjugate Gradient extension

Direction minimization



Nonlinear Conjugate Gradient extension

initial step:
k + 0; xg assigned;
Jo— f(@o); go — Vi(ao)T;
Po < —4os
while [|gi|| > ¢ do
ke—k+1;
Conjugate direction method
Compute ay, by line-search;
T — Tp—1 + Pr—1;
g — V(@)
Residual orthogonalization

7
grn e,
P
Pe— —gk + B pry;
end while B
e " VE |

The previous consideration permits to say that Fletcher and Reeves
nonlinear conjugate gradient method with strong Wolfe line-search
is globally convergent!

To prove globally convergence we need the following lemma:

Lemma (descent direction bound)
Suppose we apply Fletcher and Reeves nonlinear conjugate
gradient method to f(x) with strong Wolfe line-search with
0 < ¢z < 1/2. The the method generates descent direction py, that
satisfy the following inequality

i 5
1 < 9 p;; < —2cp
2 llgel

B k=0,1,2,...

-

@ To ensure convergence and apply Zoutendijk global

convergence theorem we need to ensure that py, is a descent
direction.

@ po is a descent direction by construction, for pj, we have

llgell® + 1"

gipn = 9t Pt

if the line-search is exact than g7 py.—, = 0 because py,_; is
the direction of the line-search. So by induction py is a
descent direction
@ Exact line-search is expensive, however if we use inexact
line-search with strong Wolfe conditions
@ sufficient decrease: f(ay, + arpr) < (@) + ¢ ak V(i)
@ curvature condition: |Vf(ay, + axpi)pkl < ¢ [V(a)pel-
with 0 < ¢ < ¢ < 1/2 then we can prove that py, is a
descent direction.

Proof
The proof is by induction. First notice that the function
=il
) =T

is monotonically increasing on the interval [0,1/2] and that

t(0) = —1 and #(1/2) = 0. Hence, because of c; € (0,1/2) we
have:
2c -1
—l< <0 ()

base of induction / = 0: For k = 0 we have py = —go so that
920/ llg0])* = —1. From (x) the lemma inequality is trivially
satisfied

Direction minimization




Nonlinear Conjugate Gradient oxtension

Proof.

Using update direction formula’s of the algorithm:

T
i 9k P
= 9 = g+ B Dk s

gl 1981
we can write
gk _ ”mg;’ L g
2 2
lgxl lgxl llgs—1l

and by using second strong Wolfe condition:

Nonlinear Conjugate Gradient extension

L gl
Te]

95, P) —2c2 Jlgall
llgxl HmH ST o e~

@ Remembering the Zoutendijk theorem we have

. vl

S (cos ) gell® < oo, where cosfy, = —TEPE

= gl 1|

@ so that if ||gx ||/ |[px|| is bounded from below we have that
cos B > ¢ for all k and then from Zoutendijk theorem the
scheme converge.

@ Unfortunately this bound cant be proved so that Zoutendijk
theorem cant be applied directly. However it is possible to
prove a weaker results, i.e. that liminfy_.o [|gk|| = 0!

@ The inequality of the the previous lemma can be written as:

g9t Py glpk 9 pr
ey S Ty S —l-epm e
lge—1l® ~ llgell gl

5

by induction we have
@
—1Pk—1
i >0
llgr—l
so that
T, a7 3
e 1Pk—1 1 2c—1
O e ===
llg|l llgr—1l -z 1-c,
and
gl gL 1P >
2 = TP
llgel llgr—1ll

Nonii

Convergence of Flet

Assumption (Regularity assumption)

We assume f € C1(IR™) with Lipschitz continuous gradient, i.e.
there exists y > (0 such that
[| V()"

vl <vle-yl, VeyeR”

Direction minimization
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Theorem (Convergence of Fletcher and Reeves method)
Suppose the method of Fletcher and Reeves is implemented with
strong Wolfe line-search with 0 < ¢; < ¢z < 1/2. If f(x) and xg
satisfy the previous regularity assumptions, then

liminf [|ge/| = 0
k—oo

Proof. (1/4)
From previous Lemma we have

1 llgel
— ez [|px|

cos O > =12 000

substituting in Zoutendijk condition we have Z i W
=1 |IPk
k=1

The proof is by contradiction. in fact if theorem is not true than

the series diverge. Next we want to bound ||py||.

Nonlinear Conjugate Gr

Proof. (bound

ng ||px/)

12 and using repeatedly the last inequality we

setting c3 =
obtain

IPel® < s llgell* + (£ (es llger® + (

)2 lIpe-all)

4 . = Ik
= el (loul ™ + ge-al ) + g2t -
L3

A

< callgnl* (el + lgu-al 2 + llge-2l )

2
-3l

A

&

g
M-

g

Proof. (bounding ||

Using second Wolfe condition and previous Lemma
|9Fpr1| < —c20i P Sita Hgk W’

using pr. = —gi + Bf Fpr_1 we have

2 2 3 1 3 2
IPell* < llgsll® + 2667 |gi Pror| + (B |pr-r |

< llgel® +

2¢2 R 2
B o—1 11" + (4
T— Cz‘ e lgr—1ll ¢

recall that 3% = ||ge|* / |lge—1]|” then

+u

llpell® < Hngz +(BE? Ipea®

"2 pra

Proof.

Suppose now by contradiction there exists > 0 such that
llgkll = & 2 by using the regularity assumptions we have

.
Ipell® < es llgell* D llgsll = < s llgsll 52k

J=1

Substituting in Zoutendijk condition we have

>3

this contradict assumption.

lgsll* 62 g1
2 .
1 el 3

“the correct assumption is that there exists ko such that ||gx|| > & for
k > ko but this complicate a little bit the following inequality without
introducing new idea

(]
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Nonlinear Conjugate Gradient extension

Weakness of Fletcher and Reeves method

Nonlinear Conjugate Gradient extension Polack and Ribiére

Polack and Ribiére Nonlinear Conjugate Gradient

o Suppose that py is a bad search direction, i.e. cos 0 ~ 0.

@ From the descent direction bound Lemma (see slide 91) we
have
L lgel > cosfy > 1-2 ‘ng
1—czlpxll e el ~

so that to have cos ), ~ 0 we needs ||py|| > ||gk||

o since py is a bad direction near orthogonal to gy it is likely
that the step is small and @41 ~ . If so we have also
g1~ gr and BEE ~

o but remember that py1 — —gi1 + Jk“m, so that

Pk+1 = Pk

This means that a long sequence of unproductive iterates will

follows.

@ The previous problem can be elided if we restart anew when
the iterate stagnate.

@ Restarting is obtained by simply set 3/ = 0.

@ A more elegant solution can be obtained with a new definition
of (i due to Polack and Ribiére is the following:

gpm = 9 L9k — gk1)
Gic—19k-1
@ This definition of ;?:_y" is identical of ;?;'_"" in the case of
quadratic function because g7 g1 = 0. The definition differs
in non linear case and in particular when there is stagnation
ie. gr ~ gi_1 we have 3’ ~ 0, i.e. we have an automatic
restart.

Nonii

Weakness of Polack and Ribiére method

initial step:
k — 0; ) assigned;
fo —f(@o); go — Vi(zo)":
Po — —go;
while ||gi|| > ¢ do
k—k+1;
Conjugate direction method
Compute ay, by line-search;
T) = Tp—1 + Pr-1;
g1, — V(@)
Residual orthogonalization
PR — M
191
Pr — ywr jk Pr—1:
end while

o Although the modification is minimal, for the Polack and
Ribiére method with strong Wolfe line-search it can happen
that py is not a descent direction

@ If py is not a descent direction we can restart i.e. set
BER =0 or modify B as follows

BERT = max{g", 0}

this new coefficient with a modified Wolfe line-search ensure
that py, is a descent direction.
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Weakness of Polack and Ri

@ Polack and Ribiére choice on the average perform better than
Fletcher and Reeves but there is not convergence results!

@ Although there is not convergence results there is a negative
results due to Powell:

Consider the Polack and Ribiére method with exact line-search.

There exists a twice continuously differentiable function
f:R*— R and a starting point x such that the sequence of
gradients { ||gk|| } is bounded away from zero.

o However is spite of this results Polack and Ribiére is the first
choice among conjugate direction methods.
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o There are many other modification of the coefficient 3 that
collapse to the same coefficient in the case o quadratic
function. One important choice is the Hestenes and Stiefel
choice

S _ 9L (g —gr-1)
k (97 — gl )Pe1

o For this choice there is similar convergence results of Fletcher
and Reeves and similar performance.
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