Non-linear problems in n variable

Lectures for PHD course on Unconstrained Numerical Optimization

Enrico Bertolazzi

DIMS - Università di Trento

May 2008

4□ → 4割 → 4 = → 4 = → 3 = ·

Non-linear problems in n variable

1 / 78

Outline

- 1 The Newton Raphson
- 2 The Frobenius matrix norm
- 3 The Broyden method
- 4 The dumped Broyden method
- 5 Stopping criteria and q-order estimation

The problem to solve

Problem

Given $\mathbf{F}:D\subseteq\mathbb{R}^n\mapsto\mathbb{R}^n$

Find $x_{\star} \in D$ for which $\mathbf{F}(x_{\star}) = 0$.

Example

Let

$$\mathbf{F}(\mathbf{x}) = \begin{pmatrix} x_1^2 + x_2^3 + 7 \\ x_1 + x_2 + 1 \end{pmatrix}$$

which has $\mathbf{F}(\boldsymbol{x}_{\star}) = \mathbf{0}$ for $\boldsymbol{x}_{\star} = (1, -2)^T$.

Non-linear problems in n variable

3 / 7

The Newton Raphson

Outline

- 1 The Newton Raphson
- 2 The Frobenius matrix norm
- 3 The Broyden method
- 4 The dumped Broyden method
- 5 Stopping criteria and q-order estimation

The Newton procedure

(1/3)

Consider the following map

$$\mathbf{F}(\mathbf{x}) = \begin{pmatrix} x_1^2 + x_2^3 + 7 \\ x_1 + x_2 + 1 \end{pmatrix}$$

we known an approximation of a root $x_0 \approx (1.1, -1.9)^T$.

ullet Setting $oldsymbol{x}_1 = oldsymbol{x}_0 + oldsymbol{p}$ we obtain 1

$$\mathbf{F}(\boldsymbol{x}_0 + \boldsymbol{p}) = \begin{pmatrix} 1.351 \\ 0.2 \end{pmatrix} + \begin{pmatrix} 2.2 & 10.83 \\ 1 & 1 \end{pmatrix} \begin{pmatrix} p_1 \\ p_2 \end{pmatrix} + \mathbf{\mathcal{O}}(\|\boldsymbol{p}\|^2)$$

if x_0 is a good approximation of a root of $\mathbf{F}(x)$ then $\mathbf{\mathcal{O}}(\|\mathbf{p}\|^2)$ is a small vector.

¹Here $\vec{\mathcal{O}}(x)$ means $(\mathcal{O}(x),\ldots,\mathcal{O}(x))^T$

5 / 78

Non-linear problems in $\,n\,$ variable

The Newton Raphson

The Newton procedure

The Newton procedure

(2/3)

• Neglecting $\vec{\mathcal{O}}(\|p\|^2)$ and solving

$$\begin{pmatrix} 1.351 \\ 0.2 \end{pmatrix} + \begin{pmatrix} 2.2 & 10.83 \\ 1 & 1 \end{pmatrix} \begin{pmatrix} p_1 \\ p_2 \end{pmatrix} = \mathbf{0}$$

we obtain $p = (-0.094438, -0.105562)^T$.

Now we set

$$m{x}_1 = m{x}_0 + m{p} = egin{pmatrix} 1.005562 \\ -2.0055612 \end{pmatrix}$$

The Newton procedure

(3/3)

Considering

$$\mathbf{F}(\boldsymbol{x}_1 + \boldsymbol{q}) = \begin{pmatrix} -0.05576 \\ 810^{-7} \end{pmatrix} + \begin{pmatrix} 2.0111 & 12.0668 \\ 1 & 1 \end{pmatrix} \begin{pmatrix} q_1 \\ q_2 \end{pmatrix} + \vec{\mathcal{O}}(\|\boldsymbol{q}\|^2)$$

• Neglecting $\vec{\mathcal{O}}(\|\boldsymbol{q}\|^2)$ and solving

$$\begin{pmatrix} -0.05576 \\ 810^{-7} \end{pmatrix} + \begin{pmatrix} 2.0111 & 12.0668 \\ 1 & 1 \end{pmatrix} \begin{pmatrix} q_1 \\ q_2 \end{pmatrix} = \mathbf{0}$$

we obtain $\mathbf{q} = (-0.0055466, 0.0055458)^T$.

• Now we set $x_2 = x_1 + q = (1.000015, -2.000015)^T$

Non-linear problems in n variable

7 / 78

The Newton Raphson

The Newton procedure

The Newton procedure: a modern point of view

(1/2)

The previous procedure can be resumed as follows:

- ① Consider the following function $\mathbf{F}(x)$. We known an approximation of a root x_0 .
- Expand by Taylor series

$$\mathbf{F}(oldsymbol{x}) = \mathbf{F}(oldsymbol{x}_0) +
abla \mathbf{F}(oldsymbol{x}_0) (oldsymbol{x} - oldsymbol{x}_0) + oldsymbol{\mathcal{O}}(\|oldsymbol{x} - oldsymbol{x}_0\|^2)$$

3 Drop the term $\vec{\mathcal{O}}(\|x-x_0\|^2)$ and solve

$$\mathbf{0} = \mathbf{F}(\boldsymbol{x}_0) + \nabla \mathbf{F}(\boldsymbol{x}_0)(\boldsymbol{x} - \boldsymbol{x}_0)$$

Call x_1 this solution.

 \bullet Repeat 1-3 with x_1 , x_2 , x_3 , ...

The Newton procedure: a modern point of view

(2/2)

Algorithm (Newton iterative scheme)

Let x_0 assigned, then for k = 0, 1, 2, ...

• Solve for p_k :

$$abla \mathbf{F}(oldsymbol{x}_k) oldsymbol{p}_k + \mathbf{F}(oldsymbol{x}_k) = \mathbf{0}$$

Update

$$\boldsymbol{x}_{k+1} = \boldsymbol{x}_k + \boldsymbol{p}_k$$

9 / 78

Non-linear problems in n variable

The Newton Raphson

Standard Assumptions

Standard Assumptions

In the study of convergence of numerical scheme, some standard regularity assumption are assumed for the function $\mathbf{F}(x)$.

Assumption (Standard Assumptions)

The function $\mathbf{F}: D \subset \mathbb{R}^n \mapsto \mathbb{R}^n$ is continuous, differentiable with Lipschitz derivative $\nabla \mathbf{F}(\mathbf{x})$. i.e.

$$\|\nabla \mathbf{F}(\mathbf{x}) - \nabla \mathbf{F}(\mathbf{y})\| \le \gamma \|\mathbf{x} - \mathbf{y}\| \qquad \forall \mathbf{x}, \mathbf{y} \in D \subset \mathbb{R}^n$$

Lemma (Taylor like expansion)

Let $\mathbf{F}(x)$ satisfy the standard assumptions, then

$$\|\mathbf{F}(\boldsymbol{y}) - \mathbf{F}(\boldsymbol{x}) - \nabla \mathbf{F}(\boldsymbol{x})(\boldsymbol{y} - \boldsymbol{x})\| \le \frac{\gamma}{2} \|\boldsymbol{x} - \boldsymbol{y}\|^2 \quad \forall \boldsymbol{x}, \boldsymbol{y} \in D \subset \mathbb{R}^n$$

Proof.

From basic Calculus:

$$\mathbf{F}(\boldsymbol{y}) - \mathbf{F}(\boldsymbol{x}) = \int_0^1 \nabla \mathbf{F}(\boldsymbol{x} + t(\boldsymbol{y} - \boldsymbol{x}))(\boldsymbol{y} - \boldsymbol{x}) dt$$

subtracting on both side $abla \mathbf{F}(m{x})(m{y}-m{x})$ we have

$$\mathbf{F}(\boldsymbol{y}) - \mathbf{F}(\boldsymbol{x}) - \nabla \mathbf{F}(\boldsymbol{x})(\boldsymbol{y} - \boldsymbol{x}) =$$

$$\int_0^1 \left[\nabla \mathbf{F}(\boldsymbol{x} + t(\boldsymbol{y} - \boldsymbol{x})) - \nabla \mathbf{F}(\boldsymbol{x}) \right] (\boldsymbol{y} - \boldsymbol{x}) dt$$

and taking the norm

$$\|\mathbf{F}(\boldsymbol{y}) - \mathbf{F}(\boldsymbol{x}) - \nabla \mathbf{F}(\boldsymbol{x})(\boldsymbol{y} - \boldsymbol{x})\| \le \int_0^1 \gamma t \|\boldsymbol{y} - \boldsymbol{x}\|^2 dt$$

Non-linear problems in n variable

11 / 78

The Newton Raphson

Standard Assumptions

Lemma (Jacobian norm control)

Let $\mathbf{F}(x)$ satisfying standard assumptions, and $\nabla \mathbf{F}(x_\star)$ non singular. Then there exists $\delta>0$ such that for all $\|x-x_\star\|\leq \delta$ we have

$$|2^{-1} \| \nabla \mathbf{F}(\boldsymbol{x}) \| \le \| \nabla \mathbf{F}(\boldsymbol{x}_{\star}) \| \le 2 \| \nabla \mathbf{F}(\boldsymbol{x}) \|$$

and

$$2^{-1} \|\nabla \mathbf{F}(\boldsymbol{x})^{-1}\| \le \|\nabla \mathbf{F}(\boldsymbol{x}_{\star})^{-1}\| \le 2 \|\nabla \mathbf{F}(\boldsymbol{x})^{-1}\|$$

The Newton Raphson Standard Assumptions

Proof. (1/3).

From standard assumptions choosing $\gamma \delta \leq 2^{-1} \| \nabla \mathbf{F}(\boldsymbol{x}_\star) \|$

$$\|\nabla \mathbf{F}(\boldsymbol{x})\| \le \|\nabla \mathbf{F}(\boldsymbol{x}) - \nabla \mathbf{F}(\boldsymbol{x}_{\star})\| + \|\nabla \mathbf{F}(\boldsymbol{x}_{\star})\|$$

$$\le \gamma \|\boldsymbol{x} - \boldsymbol{x}_{\star}\| + \|\nabla \mathbf{F}(\boldsymbol{x}_{\star})\|$$

$$< (3/2) \|\nabla \mathbf{F}(\boldsymbol{x}_{\star})\| < 2 \|\nabla \mathbf{F}(\boldsymbol{x}_{\star})\|$$

again choosing $\gamma \delta \leq 2^{-1} \|\nabla \mathbf{F}(\boldsymbol{x}_{\star})\|$

$$\|\nabla \mathbf{F}(\boldsymbol{x}_{\star})\| \leq \|\nabla \mathbf{F}(\boldsymbol{x}_{\star}) - \nabla \mathbf{F}(\boldsymbol{x})\| + \|\nabla \mathbf{F}(\boldsymbol{x})\|$$
$$\leq \gamma \|\boldsymbol{x} - \boldsymbol{x}_{\star}\| + \|\nabla \mathbf{F}(\boldsymbol{x})\|$$
$$\leq 2^{-1} \|\nabla \mathbf{F}(\boldsymbol{x}_{\star})\| + \|\nabla \mathbf{F}(\boldsymbol{x})\|$$

so that $2^{-1} \|\nabla \mathbf{F}(\boldsymbol{x}_{\star})\| \leq \|\nabla \mathbf{F}(\boldsymbol{x})\|$.

Non-linear problems in $\,n\,$ variable

The Newton Raphson

Standard Assumptions

Proof. (2/3).

From the continuity of the determinant there exists a neighbor with $\nabla \mathbf{F}(x)$ non singular for all $||x - x_{\star}|| \leq \delta$.

$$\begin{aligned} \left\| \nabla \mathbf{F}(\boldsymbol{x})^{-1} - \nabla \mathbf{F}(\boldsymbol{x}_{\star})^{-1} \right\| \\ & \leq \left\| \nabla \mathbf{F}(\boldsymbol{x})^{-1} \right\| \left\| \nabla \mathbf{F}(\boldsymbol{x}_{\star}) - \nabla \mathbf{F}(\boldsymbol{x}) \right\| \left\| \nabla \mathbf{F}(\boldsymbol{x}_{\star})^{-1} \right\| \\ & \leq \gamma \left\| \boldsymbol{x} - \boldsymbol{x}_{\star} \right\| \left\| \nabla \mathbf{F}(\boldsymbol{x})^{-1} \right\| \left\| \nabla \mathbf{F}(\boldsymbol{x}_{\star})^{-1} \right\| \end{aligned}$$

and choosing δ such that $\gamma \delta \|\nabla \mathbf{F}(x_\star)^{-1}\| \leq 2^{-1}$ we have

$$\left\| \nabla \mathbf{F}(\boldsymbol{x})^{-1} - \nabla \mathbf{F}(\boldsymbol{x}_{\star})^{-1} \right\| \le 2^{-1} \left\| \nabla \mathbf{F}(\boldsymbol{x})^{-1} \right\|$$

and using this last inequality

$$\|\nabla \mathbf{F}(\boldsymbol{x}_{\star})^{-1}\| \leq \|\nabla \mathbf{F}(\boldsymbol{x}_{\star})^{-1} - \nabla \mathbf{F}(\boldsymbol{x})^{-1}\| + \|\nabla \mathbf{F}(\boldsymbol{x})^{-1}\|$$
$$\leq (3/2) \|\nabla \mathbf{F}(\boldsymbol{x})^{-1}\| \leq 2 \|\nabla \mathbf{F}(\boldsymbol{x})^{-1}\|$$

The Newton Raphson Standard Assumptions

Proof. (3/3).

Using last inequality again

$$\begin{aligned} \left\| \nabla \mathbf{F}(\boldsymbol{x})^{-1} \right\| &\leq \left\| \nabla \mathbf{F}(\boldsymbol{x})^{-1} - \nabla \mathbf{F}(\boldsymbol{x}_{\star})^{-1} \right\| + \left\| \nabla \mathbf{F}(\boldsymbol{x}_{\star})^{-1} \right\| \\ &\leq 2^{-1} \left\| \nabla \mathbf{F}(\boldsymbol{x})^{-1} \right\| + \left\| \nabla \mathbf{F}(\boldsymbol{x}_{\star})^{-1} \right\| \end{aligned}$$

so that

$$2^{-1} \|\nabla \mathbf{F}(\boldsymbol{x})^{-1}\| \le \|\nabla \mathbf{F}(\boldsymbol{x}_{\star})^{-1}\|$$

choosing δ such that for all $\|\boldsymbol{x}-\boldsymbol{x}_\star\| \leq \delta$ we have $\nabla \mathbf{F}(\boldsymbol{x})$ non singular and $\gamma \delta \leq 2^{-1} \|\nabla \mathbf{F}(\boldsymbol{x}_\star)\|$ and $\gamma \delta \|\nabla \mathbf{F}(\boldsymbol{x}_\star)^{-1}\| \leq 2^{-1}$ then the inequality of the lemma are true.

Non-linear problems in n variable

15 / 76

The Newton Raphson

Local Convergence of Newton method

Theorem (Local Convergence of Newton method)

Let $\mathbf{F}(x)$ satisfying standard assumptions, and x_{\star} a simple root (i.e. $\nabla \mathbf{F}(x_{\star})$ non singular). Then, if $||x_0 - x_{\star}|| \leq \delta$ with $C\delta \leq 1$ where

$$C = \gamma \left\| \nabla \mathbf{F}(\boldsymbol{x}_{\star})^{-1} \right\|$$

then, the sequence generated by Newton method satisfies:

- **1** $\|x_k x_{\star}\| \le \delta$ for k = 0, 1, 2, 3, ...
- **2** $\|\boldsymbol{x}_{k+1} \boldsymbol{x}_{\star}\| \le C \|\boldsymbol{x}_k \boldsymbol{x}_{\star}\|^2$ for $k = 0, 1, 2, 3, \dots$
- $\mathbf{3} \lim_{k \to \infty} \boldsymbol{x}_k = \boldsymbol{x}_{\star}.$
- The point 2 of the theorem is the second *q*-order of convergence of Newton method.

Proof.

Consider a Newton step with $\|oldsymbol{x}_k - oldsymbol{x}_\star\| \leq \delta$ and

$$egin{aligned} oldsymbol{x}_{k+1} - oldsymbol{x}_{\star} &= oldsymbol{x}_k - oldsymbol{x}_{\star} -
abla \mathbf{F}(oldsymbol{x}_k)^{-1} ig[\mathbf{F}(oldsymbol{x}_k) - \mathbf{F}(oldsymbol{x}_{\star}) - \mathbf{F}(oldsymbol{x}_k) + \mathbf{F}(oldsymbol{x}_{\star}) ig] \ &=
abla \mathbf{F}(oldsymbol{x}_k)^{-1} ig[
abla \mathbf{F}(oldsymbol{x}_k) (oldsymbol{x}_k - oldsymbol{x}_{\star}) - \mathbf{F}(oldsymbol{x}_k) + \mathbf{F}(oldsymbol{x}_{\star}) ig] \end{aligned}$$

taking the norm and using Taylor like lemma

$$\|\boldsymbol{x}_{k+1} - \boldsymbol{x}_{\star}\| \leq 2^{-1} \gamma \|\boldsymbol{x}_k - \boldsymbol{x}_{\star}\|^2 \|\nabla \mathbf{F}(\boldsymbol{x}_k)^{-1}\|$$

from Jacobian norm control lemma (slide 12) there exist a δ such that $2\|\nabla \mathbf{F}(\boldsymbol{x}_k)^{-1}\| \ge \|\nabla \mathbf{F}(\boldsymbol{x}_\star)^{-1}\|$ for all $\|\boldsymbol{x}_k - \boldsymbol{x}_\star\| \le \delta$. Reducing eventually δ such that $\gamma\delta \|\nabla \mathbf{F}(\boldsymbol{x}_\star)^{-1}\| \le 1$ we have

$$\|\boldsymbol{x}_{k+1} - \boldsymbol{x}_{\star}\| \le \gamma \|\nabla \mathbf{F}(\boldsymbol{x}_{\star})^{-1}\| \delta \|\boldsymbol{x}_{k} - \boldsymbol{x}_{\star}\|^{2} \le \|\boldsymbol{x}_{k} - \boldsymbol{x}_{\star}\|,$$

So that by induction we prove point 1. Point 2 and 3 follows trivially.

Non-linear problems in n variable

17 / 78

The Newton Raphson

The Newton-Kantorovich Theorem

Theorem (Newton-Kantorovich)

Let $\mathbf{F}: D \subset \mathbb{R}^n \mapsto \mathbb{R}^n$ be a differentiable mapping and let $\mathbf{x}_0 \in D$ be such that $\nabla \mathbf{F}(\mathbf{x}_0)$ is nonsingular. Let be

$$B(\mathbf{x}_0, \rho) = \{ \mathbf{y} \mid ||\mathbf{x}_0 - \mathbf{y}|| < \rho \},$$

$$\alpha = ||\nabla \mathbf{F}(\mathbf{x}_0)^{-1} \mathbf{F}(\mathbf{x}_0)||,$$

Moreover

- \bullet $\overline{B(x_0,\rho)}\subset D$;
- $\bullet \ \left\| \nabla \mathbf{F}(\boldsymbol{x}_0)^{-1} (\mathbf{F}(\boldsymbol{x}) \mathbf{F}(\boldsymbol{x}_0)) \right\| \leq \omega \left\| \boldsymbol{x} \boldsymbol{x}_0 \right\| \quad \textit{for all} \quad \boldsymbol{x} \in D;$
- $\kappa := \alpha \omega \leq 2^{-1}$;

If the radius ρ is large enough, i.e.

$$\hat{\rho} := \frac{1 - \sqrt{1 - 2\kappa}}{\omega} \le \rho$$

Then:

Theorem (cont.)

- $\mathbf{F}(\mathbf{x})$ has a zero $\mathbf{x}_{\star} \in B(\mathbf{x}_0, \hat{\rho})$;
- The open ball $B(x_0, \hat{\rho})$ does not contain any zero of $\mathbf{F}(x)$ different from x_{\star} ;
- The Newton iterative procedure produce sequences belonging to $B(x_0, \hat{\rho})$ that converge to x_{\star} ;
- If $\kappa < 2^{-1}$ then for Newton's method, we have

$$\|oldsymbol{x}_k - oldsymbol{x}_\star\| \leq rac{2eta\lambda^{2^k}}{1-\lambda^{2^k}}$$

where

$$\beta = \frac{\sqrt{1 - 2\kappa}}{\omega}, \qquad \lambda = \frac{1 - \kappa - \sqrt{1 - 2\kappa}}{\kappa}$$

Non-linear problems in n variable

The Newton Raphson

The Newton-Kantorovich Theorem

Proof.

P. Deuflhard and G. Heindl

Affine Invariant Convergence Theorems for Newton's Method and Extensions to Related Methods

SIAM Journal on Numerical Analysis, 16, 1979.

Florian A. Potra

The Kantorovich Theorem and interior point methods Math. Program., Ser. A 102, 2005.

J.M. Ortega

The Newton-Kantorovich theorem

Amer. Math. Monthly 75, 1968.

- Newton method converge normally only when x_0 is near x_{\star} a root of the nonlinear system.
- A way to make a more robust non linear solver is to use the techniques developed for minimization to make a globally convergent nonlinear solver.
- In particular if we consider the merit function

$$f(\boldsymbol{x}) = \frac{1}{2} \| \mathbf{F}(\boldsymbol{x}) \|^2$$

we have that $f(x) \geq 0$ and if x_{\star} is such that $f(x_{\star}) = 0$ than we have that

- $lacktriangledown_{\star}$ is a global minimum of f(x);
- ② $\mathbf{F}(x_{\star}) = \mathbf{0}$, i.e. is a solution of the nonlinear system $\mathbf{F}(x)$.
- So that finding a global minimum of the merit function f(x) is the same of finding a solution of the nonlinear system F(x).

Non-linear problems in n variable

21 / 78

The Newton Raphson

Globalizing the Newton procedure

- We can apply for example the gradient method to the merit function f(x). This produce a slow method.
- Instead, we can use the Newton method to produce a search direction. The resulting method is the following
 - ① Compute the search direction by solving $\nabla \mathbf{F}(x_k)d_k + \mathbf{F}(x_k) = \mathbf{0}$;
 - 2 Find an approximate solution of the problem $\alpha_k = \arg\min_{\alpha>0} \|\mathbf{F}(\boldsymbol{x}_k + \alpha \boldsymbol{d}_k)\|^2$;
 - **3** Update the solution $x_{k+1} = x_k + \alpha_k d_k$.
- The previous algorithm work if the direction d_k is a descent direction.

Is d_k a descent direction?

(1/2)

Lemma

The direction d computed as a solution of the problem

$$\nabla \mathbf{F}(\boldsymbol{x})\boldsymbol{d} + \mathbf{F}(\boldsymbol{x}) = \mathbf{0}$$

is a descent direction.

Proof.

Consider the gradient of $f(x) = (1/2) \|\mathbf{F}(x)\|^2$:

$$\frac{\partial f(\boldsymbol{x})}{\partial x_k} = \frac{1}{2} \frac{\partial \|\mathbf{F}(\boldsymbol{x})\|^2}{\partial x_k} = \frac{1}{2} \frac{\partial}{\partial x_k} \sum_{i=1}^n F_i(\boldsymbol{x})^2 = \sum_{i=1}^n \frac{\partial F_i(\boldsymbol{x})}{\partial x_k} F_i(\boldsymbol{x})$$

this can be written as $\nabla f(x) = \mathbf{F}(x)^T \nabla \mathbf{F}(x)$

(cont.)

Non-linear problems in n variable

23 / 78

The Newton Raphson

Globalizing the Newton procedure

Is d_k a descent direction?

(2/2)

Proof.

Now we check $\nabla f(x)d$:

$$\nabla f(\boldsymbol{x})\boldsymbol{d} = \mathbf{F}(\boldsymbol{x})^T \nabla \mathbf{F}(\boldsymbol{x}) \boldsymbol{d}$$

$$= -\mathbf{F}(\boldsymbol{x})^T \nabla \mathbf{F}(\boldsymbol{x}) \nabla \mathbf{F}(\boldsymbol{x})^{-1} \mathbf{F}(\boldsymbol{x})$$

$$= -\mathbf{F}(\boldsymbol{x})^T \mathbf{F}(\boldsymbol{x})$$

$$= -\|\mathbf{F}(\boldsymbol{x})\|^2 < 0$$

This lemma prove that Newton direction is a descent direction.

Is the angle between d_k and $\nabla f(x_k)$ bounded from $\pi/2$?

Let θ_k the angle between $\nabla f(\boldsymbol{x}_k)$ and \boldsymbol{d}_k , then we have

$$\cos \theta_k = -\frac{\nabla f(\boldsymbol{x}_k) \boldsymbol{d}_k}{\|\mathbf{F}(\boldsymbol{x}_k)\| \|\nabla \mathbf{F}(\boldsymbol{x}_k)^{-1} \mathbf{F}(\boldsymbol{x}_k)\|}$$

$$= \frac{\|\mathbf{F}(\boldsymbol{x}_k)\|}{\|\nabla \mathbf{F}(\boldsymbol{x}_k)^{-1} \mathbf{F}(\boldsymbol{x}_k)\|}$$

$$\geq \frac{\|\mathbf{F}(\boldsymbol{x}_k)\|}{\|\nabla \mathbf{F}(\boldsymbol{x}_k)^{-1}\| \|\mathbf{F}(\boldsymbol{x}_k)\|}$$

$$\geq \|\nabla \mathbf{F}(\boldsymbol{x}_k)^{-1}\|^{-1}$$

so that, if for example $\|\nabla \mathbf{F}(x)^{-1}\|$ is bounded from below then the angle θ_k is strictly less then $\pi/2$ radiants. By the Zoutendijk theorem then the globalized Newton scheme is globally convergent.

Non-linear problems in n variable

25 / 78

The Newton Raphson

Globalizing the Newton procedure

Algorithm (The globalized Newton method)

```
k \leftarrow 0; \ x \ assigned; \\ f \leftarrow \mathbf{F}(x); \\ \textbf{while} \ \|f\| > \epsilon \ \textbf{do} \\ \qquad \qquad - Evaluate \ search \ direction \\ Solve \qquad \nabla \mathbf{F}(x)d + \mathbf{F}(x) = \mathbf{0}; \\ \qquad - Evaluate \ dumping \ factor \ \lambda \\ \lambda \approx \arg\min_{\alpha > 0} \|\mathbf{F}(x + \alpha d_k)\|^2 \qquad by \ line-search; \\ \qquad - perform \ step \\ \qquad x \leftarrow x + \lambda d; \\ \qquad f \leftarrow \mathbf{F}(x); \\ \qquad k \leftarrow k + 1; \\ \mathbf{end \ while}
```


Outline

- 1 The Newton Raphson
- 2 The Frobenius matrix norm
- 3 The Broyden method
- 4 The dumped Broyden method
- 5 Stopping criteria and q-order estimation

27 / 78

Non-linear problems in $\,n\,$ variable

The Frobenius matrix norm

The Frobenius matrix norm

Definition

The Frobenius norm $\|\cdot\|_F$ of a matrix $A \in \mathbb{R}^{n \times m}$ is defined as follows:

$$\|\mathbf{A}\|_F = \left(\sum_{i=1}^n \sum_{j=1}^m A_{ij}^2\right)^{1/2}$$

is a matrix norm, i.e. it satisfy:

- $||AB||_F \le ||A||_F ||B||_F;$

The Frobenius norm is the length of the vector A if we consider A as a vector in \mathbb{R}^{n^2} .

(2/4)

The Frobenius matrix norm

The first two point of the Frobenius norm $\|\cdot\|_F$ are trivial, to prove point 3 and 4 we need two classical inequality:

Cauchy-Schwartz inequality

$$\sum_{i=1}^{n} a_i b_i \le \left(\sum_{i=1}^{n} a_i^2\right)^{1/2} \left(\sum_{i=1}^{n} b_i^2\right)^{1/2}$$

The inequality is strict unless $a_i = \lambda b_i$ for $i = 1, 2, \dots, n$.

Triangular inequality

$$\left(\sum_{i=1}^{n} (a_i + b_i)^2\right)^{1/2} \le \left(\sum_{i=1}^{n} a_i^2\right)^{1/2} + \left(\sum_{i=1}^{n} b_i^2\right)^{1/2}$$

The inequality is strict unless $a_i = \lambda b_i$ for $i = 1, 2, \dots, n$.

Non-linear problems in $\,n\,$ variable

29 / 78

The Frobenius matrix norm

The Frobenius matrix norm

(3/4)

Proof of $\|\boldsymbol{A} + \boldsymbol{B}\|_F \leq \|\boldsymbol{A}\|_F + \|\boldsymbol{B}\|_F$. By using triangular inequality

$$\|\mathbf{A} + \mathbf{B}\|_{F} = \left(\sum_{i,j=1}^{n} (A_{ij} + B_{ij})^{2}\right)^{1/2}$$

$$\leq \left(\sum_{i,j=1}^{n} A_{ij}^{2}\right)^{1/2} + \left(\sum_{i,j=1}^{n} B_{ij}^{2}\right)^{1/2}$$

$$= \|\mathbf{A}\|_{F} + \|\mathbf{B}\|_{F}.$$

(4/4)

The Frobenius matrix norm

Proof of $\|\boldsymbol{A}\boldsymbol{B}\|_F \leq \|\boldsymbol{A}\|_F \, \|\boldsymbol{B}\|_F.$ By using Cauchy–Schwartz inequality with

$$\|\mathbf{A}\mathbf{B}\|_{F} = \left(\sum_{i,j=1}^{n} \left(\sum_{k=1}^{n} A_{ik} B_{kj}\right)^{2}\right)^{1/2}$$

$$\leq \left(\sum_{i,j=1}^{n} \left(\sum_{k=1}^{n} A_{ik}^{2}\right) \left(\sum_{k'=1}^{n} B_{k'j}^{2}\right)\right)^{1/2}$$

$$= \left(\left(\sum_{i=1}^{n} \sum_{k=1}^{n} A_{ik}^{2}\right) \left(\sum_{j=1}^{n} \sum_{k'=1}^{n} B_{k'j}^{2}\right)\right)^{1/2}$$

$$= \|\mathbf{A}\|_{F} \|\mathbf{B}\|_{F}.$$

4□ > 4ⓓ > 4혈 > 4혈 > 혈

Non-linear problems in n variable

31 / 78

The Frobenius matrix norm

Lemma

Let $u, w \in \mathbb{R}^m$ column vector then the following equality is true:

$$\left\|\boldsymbol{u}\boldsymbol{w}^T\right\|_F \leq \left\|\boldsymbol{u}\right\|_2 \left\|\boldsymbol{w}\right\|_2$$

Proof.

$$\|\boldsymbol{u}\boldsymbol{w}^T\|_F^2 = \sum_{i,j=1}^n u_i^2 w_j^2$$
$$= \left(\sum_{i=1}^n u_i^2\right) \left(\sum_{j=1}^n w_j^2\right)$$

Lemma

Let $A \in \mathbb{R}^{n \times m}$ and $x \in \mathbb{R}^m$ column vector then the following inequality is true:

$$\|\boldsymbol{A}\boldsymbol{x}\|_2 \leq \|\boldsymbol{A}\|_F \|\boldsymbol{x}\|_2$$

Proof.

By using Cauchy-Schwarz inequality

$$\|Ax\|_{2}^{2} = \sum_{i=1}^{n} \left(\sum_{j=1}^{m} A_{ij}x_{j}\right)^{2} \leq \sum_{i=1}^{n} \left(\sum_{j=1}^{m} A_{ij}^{2}\right) \left(\sum_{k} x_{k}^{2}\right)$$

$$= \|A\|_{F}^{2} \|x\|_{2}^{2}$$

Non-linear problems in n variable

33 / 78

The Frobenius matrix norm

Lemma

Let $a, b \in \mathbb{R}^n$ and $x, y \in \mathbb{R}^m$ orthonormal vector. i.e. $x^Ty = 0$ and $\|x\|_2 = \|y\|_2 = 1$, then the following equality is true

$$\|\boldsymbol{a}\boldsymbol{x}^T + \boldsymbol{b}\boldsymbol{y}^T\|_F^2 = \|\boldsymbol{a}\|_2^2 + \|\boldsymbol{b}\|_2^2$$

Proof.

$$\begin{aligned} \left\| \boldsymbol{a} \boldsymbol{x}^{T} + \boldsymbol{b} \boldsymbol{y}^{T} \right\|_{F}^{2} &= \sum_{i=1}^{n} \sum_{j=1}^{m} (a_{i} x_{j} + b_{i} y_{j})^{2} \\ &= \sum_{i=1}^{n} \sum_{j=1}^{m} (a_{i}^{2} x_{j}^{2} + b_{i}^{2} y_{j}^{2} + 2 a_{i} x_{j} b_{i} y_{j}) \\ &= \left\| \boldsymbol{a} \right\|_{2}^{2} \left\| \boldsymbol{x} \right\|_{2}^{2} + \left\| \boldsymbol{b} \right\|_{2}^{2} \left\| \boldsymbol{y} \right\|_{2}^{2} + 2 (\boldsymbol{a}^{T} \boldsymbol{b}) \underbrace{(\boldsymbol{x}^{T} \boldsymbol{y})}_{=0} \end{aligned}$$

Lemma

Let $A \in \mathbb{R}^{n \times m}$ and v_1 , v_2 , ..., $v_n \in \mathbb{R}^m$ a base of orthonormal vector for \mathbb{R}^m , then

$$\|m{A}\|_F^2 = \sum_{k=1}^n \|m{A}m{v}_k\|_2^2$$

Proof.

consider a generic vector $\boldsymbol{u} = \alpha_1 \boldsymbol{v}_1 + \cdots + \alpha_m \boldsymbol{v}_m$ and notice that

$$\left(\sum_{k=1}^{m} \boldsymbol{v}_{k} \boldsymbol{v}_{k}^{T}\right) \boldsymbol{u} = \left(\sum_{k=1}^{m} \boldsymbol{v}_{k} \boldsymbol{v}_{k}^{T}\right) \left(\sum_{j=1}^{m} \alpha_{j} \boldsymbol{v}_{j}\right) = \sum_{k=1}^{m} \sum_{j=1}^{m} \boldsymbol{v}_{k} \boldsymbol{v}_{k}^{T} \boldsymbol{v}_{j} \alpha_{j}$$

$$= \sum_{k=1}^{m} \alpha_{k} \boldsymbol{v}_{k} = \boldsymbol{u}$$

(cont.)

Non-linear problems in n variable

35 / 78

The Frobenius matrix norm

Proof.

Thus

$$oldsymbol{I} = \sum_{k=1}^m oldsymbol{v}_k oldsymbol{v}_k^T$$

Using this relation we can write

$$\|oldsymbol{A}\|_F^2 = \|oldsymbol{A}oldsymbol{I}\|_F^2 = \left\|oldsymbol{A}\left(\sum_{k=1}^m oldsymbol{v}_k oldsymbol{v}_k^T
ight)
ight\|_F^2 = \left\|\sum_{k=1}^m oldsymbol{w}_k oldsymbol{v}_k^T
ight\|_F^2 = \left\|oldsymbol{A}oldsymbol{I}_F^T oldsymbol{v}_k^T
ight\|_F^2$$

where $oldsymbol{w}_k = oldsymbol{A} oldsymbol{v}_k$. Using the previous lemma we have

$$\|m{A}\|_F^2 = \sum_{k=1}^m \|m{w}_k\|_2^2 = \sum_{k=1}^m \|m{A}m{v}_k\|_2^2$$

Outline

- 1 The Newton Raphson
- 2 The Frobenius matrix norm
- 3 The Broyden method
- 4 The dumped Broyden method
- 5 Stopping criteria and q-order estimation

37 / 78

Non-linear problems in $\,n\,$ variable

The Broyden method

The Broyden method

(1/5)

- Newton method is a fast (q-order 2) numerical scheme to approximate the root of a function $\mathbf{F}(x)$ but needs the knowledge of the Jacobian $\nabla \mathbf{F}(x)$.
- Sometimes Jacobian is not available or too expensive to compute, in this case a numerical procedure to approximate the root which does not use derivative is mandatory.
- The Newton scheme find successively the root of the affine approximation

$$L_k(\boldsymbol{x}) \doteq \nabla \mathbf{F}(\boldsymbol{x}_k)(\boldsymbol{x} - \boldsymbol{x}_k) + \mathbf{F}(\boldsymbol{x}_k) = \mathbf{0}$$

ullet Substituting the Jacobian in the affine approximation by $oldsymbol{A}_k$

$$M_k(\boldsymbol{x}) \doteq \boldsymbol{A}_k(\boldsymbol{x} - \boldsymbol{x}_k) + \mathbf{F}(\boldsymbol{x}_k) = \mathbf{0}$$

and solving successively this affine model produces the family of different methods:

Algorithm (Generic Secant iterative scheme)

Let x_0 and A_0 assigned, then for k = 0, 1, 2, ...

• Solve for p_k :

$$M_k(\boldsymbol{p}_k + \boldsymbol{x}_k) = \boldsymbol{A}_k \boldsymbol{p}_k + \mathbf{F}(\boldsymbol{x}_k) = \mathbf{0}$$

Update the root approximation

$$\boldsymbol{x}_{k+1} = \boldsymbol{x}_k + \boldsymbol{p}_k$$

3 Update the affine model and produce A_{k+1} .

39 / 78

Non-linear problems in n variable

The Broyden method

The Broyden method

(3/5)

- The update of $M_k \to M_{k+1}$ determine the algorithm.
- A simple update is the forcing of a number of the secant relation:

$$M_{k+1}(\boldsymbol{x}_{k+1-\ell}) = \mathbf{F}(\boldsymbol{x}_{k+1-\ell}), \qquad \ell = 1, 2, \dots, m$$

notice that $M_{k+1}(\boldsymbol{x}_{k+1}) = \mathbf{F}(\boldsymbol{x}_{k+1})$ for all \boldsymbol{A}_{k+1} .

- 3 If $A_{k+1} \in \mathbb{R}^{n \times n}$ and m = n and $d_{\ell} = x_{k+1-\ell} x_{k+1}$ are linearly independent then we have enough linear relation to determine A_{k+1} .
- ullet Unfortunately vectors $oldsymbol{d}_\ell$ tends to become linearly dependent so that this approach is very ill conditioned.
- **5** A more feasible approach uses less secant relation and other conditions to determine M_{k+1} .

The Broyden method

(4/5)

- 1 The update of $M_k \to M_{k+1}$ in Broyden scheme is the following:
 - $M_{k+1}(x_k) = \mathbf{F}(x_k);$
 - 2 $M_{k+1}(\boldsymbol{x}) M_k(\boldsymbol{x})$ is small in some sense;
- 2 The first condition imply

$$\boldsymbol{A}_{k+1}(\boldsymbol{x}_k - \boldsymbol{x}_{k+1}) + \mathbf{F}(\boldsymbol{x}_{k+1}) = \mathbf{F}(\boldsymbol{x}_k)$$

which set n linear equation that do not determine the n^2 coefficients of \boldsymbol{A}_{k+1} .

The second condition become

$$M_{k+1}(x) - M_k(x) = (A_{k+1} - A_k)(x - x_k)$$

$$|||M_{k+1}(\boldsymbol{x}) - M_k(\boldsymbol{x})|| \le |||\boldsymbol{A}_{k+1} - \boldsymbol{A}_k|| |||\boldsymbol{x} - \boldsymbol{x}_k||$$

where $\|\cdot\|$ is some norm. The term $\|x-x_k\|$ is not controllable, so a condition should be $\|A_{k+1}-A_k\|$ is minimum.

Non-linear problems in n variable

41 / 78

The Broyden method

The Broyden method

(5/5)

Defining

$$m{y}_k = \mathbf{F}(m{x}_{k+1}) - \mathbf{F}(m{x}_k), \qquad m{s}_k = m{x}_{k+1} - m{x}_k$$

the Broyden scheme find the update A_{k+1} which satisfy:

- $\mathbf{0} \ A_{k+1}s_k = y_k;$
- ② $\|m{A}_{k+1} m{A}_k\| \le \|m{B} m{A}_k\|$ for all $m{B}$ such that $m{B}m{s}_k = m{y}_k$.
- 2 If we choose for the norm $\|\!|\!|\cdot|\!|\!|$ the Frobenius norm $\|\cdot\|_F$

$$\|\mathbf{A}\|_F = \left(\sum_{i,j=1}^n A_{ij}^2\right)^{1/2}$$

then the problem admits a unique solution.

With the Frobenius matrix norm it is possible to solve the following problem

Lemma

Let $A \in \mathbb{R}^{n \times n}$ and $s, y \in \mathbb{R}^n$ with $s \neq 0$ and $As \neq y$. Consider the set

$$\mathcal{B} = \left\{ oldsymbol{B} \in \mathbb{R}^{n imes n} \, | \, oldsymbol{B} oldsymbol{s} = oldsymbol{y}
ight\}$$

then there exists a unique matrix $B \in \mathcal{B}$ such that

$$\|oldsymbol{A} - oldsymbol{B}\|_F \leq \|oldsymbol{A} - oldsymbol{C}\|_F$$
 for all $oldsymbol{C} \in \mathcal{B}$

moreover $oldsymbol{B}$ has the following form

$$oldsymbol{B} = oldsymbol{A} + rac{(oldsymbol{y} - oldsymbol{A} oldsymbol{s}) oldsymbol{s}^T}{oldsymbol{s}^T oldsymbol{s}}$$

i.e. B is a rank one perturbation of the matrix A.

Non-linear problems in n variable

45 / 70

The Broyden method

The solution of Broyden problem

Proof.

(1/4).

First of all notice that

$$egin{aligned} rac{1}{oldsymbol{s}^Toldsymbol{s}}oldsymbol{y}oldsymbol{s}^Toldsymbol{s} & oldsymbol{\left\lceilrac{1}{oldsymbol{s}^Toldsymbol{s}}oldsymbol{y}oldsymbol{s}^Toldsymbol{s} & oldsymbol{s} \end{aligned}$$

so that set \mathcal{B} is not empty. Next we reformulate the problem as a constrained minimum problem:

$$\underset{\boldsymbol{B} \in \mathbb{R}^{n \times n}}{\operatorname{arg \, min}} \quad \frac{1}{2} \sum_{i,j=1}^{n} (A_{ij} - B_{ij})^{2} \quad \text{subject to } \boldsymbol{Bs} = \boldsymbol{y}.$$

The solution is a stationary point of the Lagrangian:

$$g(\mathbf{B}, \lambda) = \frac{1}{2} \sum_{i,j=1}^{n} (A_{ij} - B_{ij})^2 + \sum_{i=1} \lambda_i \left(\sum_{j=1}^{n} B_{ij} s_j - y_i \right)$$

Proof.

(2/4).

taking the gradient we have

$$\frac{\partial}{\partial B_{ij}}g(\boldsymbol{B},\boldsymbol{\lambda}) = A_{ij} - B_{ij} + \lambda_i s_j = 0$$

$$\frac{\partial}{\partial \lambda_i} g(\boldsymbol{B}, \boldsymbol{\lambda}) = \sum_{j=1}^n B_{ij} s_j - y_j = 0$$

The previous equality can be written in matrix form

$$oldsymbol{B} = oldsymbol{A} + oldsymbol{\lambda} oldsymbol{s}^T \qquad oldsymbol{B} oldsymbol{s} = oldsymbol{y}$$

so that we can solve for λ

$$Bs = As + \lambda s^T s = y \qquad \lambda = rac{y - As}{s^T s}$$

next we prove that B is the unique minimum.

Non-linear problems in n variable

45 / 78

The Broyden method

The solution of Broyden problem

Proof.

(3/4).

The matrix $oldsymbol{B}$ is at minimum distance, in fact

$$\left\|oldsymbol{B} - oldsymbol{A}
ight\|_F = \left\|oldsymbol{A} + rac{(oldsymbol{y} - oldsymbol{A} oldsymbol{s})oldsymbol{s}^T}{oldsymbol{s}^Toldsymbol{s}} - oldsymbol{A}
ight\|_F = \left\|rac{(oldsymbol{y} - oldsymbol{A} oldsymbol{s})oldsymbol{s}^T}{oldsymbol{s}^Toldsymbol{s}}
ight\|_F$$

for all $C \in \mathcal{B}$ we have Cs = y so that

$$egin{aligned} \|oldsymbol{B} - oldsymbol{A}\|_F &= \left\| (oldsymbol{C} s - oldsymbol{A} s) oldsymbol{s}^T
ight\|_F = \left\| (oldsymbol{C} - oldsymbol{A}) rac{oldsymbol{s} oldsymbol{s}^T }{oldsymbol{s}^T oldsymbol{s}}
ight\|_F &= \left\| oldsymbol{C} - oldsymbol{A}
ight\|_F \ &\leq \left\| oldsymbol{C} - oldsymbol{A}
ight\|_F \left\| rac{oldsymbol{s} oldsymbol{s}^T }{oldsymbol{s}^T oldsymbol{s}}
ight\|_F &= \left\| oldsymbol{C} - oldsymbol{A}
ight\|_F \end{aligned}$$

because in general

$$\left\| oldsymbol{u} oldsymbol{v}^T
ight\|_F = \left(\sum_{i,j=1}^n u_i^2 v_j^2
ight)^{rac{1}{2}} = \left(\sum_{i=1}^n u_i^2 \sum_{j=1}^n v_j^2
ight)^{rac{1}{2}} = \left\| oldsymbol{u}
ight\| \left\| oldsymbol{v}
ight\|_F$$

Proof.

(4/4).

Let ${m B}'$ and ${m B}''$ two different minimum. Then $\frac{1}{2}({m B}'+{m B}'')\in {\mathcal B}$ moreover

$$\left\| \boldsymbol{A} - \frac{1}{2} (\boldsymbol{B}' + \boldsymbol{B}'') \right\|_F \le \frac{1}{2} \left\| \boldsymbol{A} - \boldsymbol{B}' \right\|_F + \frac{1}{2} \left\| \boldsymbol{A} - \boldsymbol{B}'' \right\|_F$$

If the inequality is strict we have a contradiction. From the Cauchy–Schwartz inequality we have an equality only when ${m A}-{m B}'=\lambda({m A}-{m B}'')$ so that

$$\mathbf{B}' - \lambda \mathbf{B}'' = (1 - \lambda)\mathbf{A}$$

and

$$B's - \lambda B''s = (1 - \lambda)As \Rightarrow (1 - \lambda)y = (1 - \lambda)As$$

due to $As \neq y$ this is true only when $\lambda = 1$, i.e. B' = B''.

47 / 78

Non-linear problems in $\,n\,$ variable

The Broyden method

The solution of Broyden problem

Corollary

The update

$$oldsymbol{A}_{k+1} = oldsymbol{A}_k + rac{(oldsymbol{y}_k - oldsymbol{A}_k oldsymbol{s}_k^T) oldsymbol{s}_k^T}{oldsymbol{s}_k^T oldsymbol{s}_k}$$

satisfy the secant condition:

$$A_{k+1}s_k = y_k$$

moreover, A_{k+1} is the nearest matrix in the Frobenius norm that satisfy the secant condition.

Remark

Different the norm produce different results and in general you can loose uniqueness of the update.

The Broyden method

(1/2)

Algorithm (The Broyden method)

```
k\leftarrow 0; m{x}_0 and m{A}_0 assigned (for example m{A}_0=
abla m{F}(m{x}_0)); m{f}_0\leftarrow m{F}(m{x}_0); while \|m{f}_k\|>\epsilon do Solve for m{s}_k the linear system m{A}_km{s}_k+m{f}_k=m{0}; m{x}_{k+1}=m{x}_k+m{s}_k; m{f}_{k+1}=m{F}(m{x}_{k+1}); m{y}_k=m{f}_{k+1}-m{f}_k; Update: m{A}_{k+1}=m{A}_k+rac{(m{y}_k-m{A}_km{s}_k)m{s}_k^T}{m{s}_k^Tm{s}_k}; k\leftarrow k+1; end while
```


49 / 78

Non-linear problems in $\,n\,$ variable

The Broyden method

The solution of Broyden problem

The Broyden method

(2/2)

Notice that $y_k - A_k s_k = f_{k+1} - f_k + f_k$ so that the update can be written as $A_{k+1} \leftarrow A_k + f_{k+1} s_k^T / s_k^T s_k$ and y_k can be eliminated.

Algorithm (The Broyden method (alternative version))

```
k \leftarrow 0; m{x} and m{A} assigned (for example m{A} = 
abla \mathbf{F}(m{x})); m{f} \leftarrow \mathbf{F}(m{x}); while \|m{f}\| > \epsilon do Solve for m{s} the linear system m{A}m{s} + m{f} = m{0}; m{x} \leftarrow m{x} + m{s}; m{f} \leftarrow \mathbf{F}(m{x}); Update: m{A} \leftarrow m{A} + \frac{m{f}m{s}^T}{m{s}^Tm{s}}; m{k} \leftarrow m{k} + 1; end while
```


Broyden algorithm properties

(1/2)

Theorem

Let $\mathbf{F}(x)$ satisfy the standard regularity conditions with $\nabla \mathbf{F}(x_{\star})$ nonsingular. Then there exists positive constants ϵ , δ such that if $\|x_0 - x_\star\| \le \epsilon$ and $\|A_0 - \nabla \mathbf{F}(x_\star)\| \le \delta$, then the sequence $\{x_k\}$ generated by the Broyden method is well defined and converge q-superlinearly to x_{\star} , i.e.

$$\lim_{k \to \infty} \frac{\|\boldsymbol{x}_{k+1} - \boldsymbol{x}_k\|}{\|\boldsymbol{x}_k - \boldsymbol{x}_\star\|} = 0$$

C.G.Broyden, J.E.Dennis, J.J.Moré

On the local and super-linear convergence of quasi-Newton methods.

J. Inst. Math. Appl. **6** 222–236, 1973.

Non-linear problems in n variable

The Broyden method

The solution of Broyden problem

Broyden algorithm properties

(2/2)

Theorem

Let $\mathbf{F}(x) = Ax - b$ where $A \in \mathbb{R}^{n \times n}$. Then the Broyden method converge in at most 2n steps.

Theorem

Let $\mathbf{F}: \mathbb{R}^n \mapsto \mathbb{R}^n$ satisfy the standard regularity conditions with $\nabla \mathbf{F}(x_{\star})$ nonsingular. Then there exists positive constants ϵ , δ such that if $\|\mathbf{x}_0 - \mathbf{x}_{\star}\| \leq \epsilon$ and $\|\mathbf{A}_0 - \nabla \mathbf{F}(\mathbf{x}_{\star})\| \leq \delta$, then the sequence $\{x_k\}$ generated by the Broyden method satisfy

$$\|\boldsymbol{x}_{k+2n} - \boldsymbol{x}_{\star}\| \le C \|\boldsymbol{x}_k - \boldsymbol{x}_{\star}\|^2$$

D.M. Gay

Some convergence properties of Broyden's method. SIAM Journal of Numerical Analysis, 16 623–630, 1979.

Reorganizing Broyden update

- ullet Broyden method needs to solve a linear system for $oldsymbol{A}_k$ at each step
- This can be onerous in terms of CPU cost
- ullet it is possible to update directly the inverse of $m{A}_k$ i.e. it is possible to update $m{H}_k = m{A}_k^{-1}$.
- ullet The update of $oldsymbol{A}_k$ solve the problem of efficiency but do not alleviate the memory occupation
- The matrix A_k can be written as a product of simple matrix, this can save memory if the update are lesser respect to the system dimension.

Non-linear problems in n variable

53 / 78

The Broyden method

The solution of Broyden problem

Sherman-Morrison formula

Sherman-Morrison formula permit to explicity write the inverse of a matrix perturbed with a rank 1 matrix

Proposition (Sherman-Morrison formula)

$$(A + uv^T)^{-1} = A^{-1} - \frac{1}{\alpha}A^{-1}uv^TA^{-1}$$

where

$$\alpha = 1 + \boldsymbol{v}^T \boldsymbol{A}^{-1} \boldsymbol{u}$$

The Sherman–Morrison formula can be checked by a direct calculation.

Application of Sherman-Morrison formula

(1/2)

From the Broyden update formula

$$oldsymbol{A}_{k+1} = oldsymbol{A}_k + rac{oldsymbol{f}_{k+1} oldsymbol{s}_k^T}{oldsymbol{s}_k^T oldsymbol{s}_k}$$

By using Sherman–Morrison formula

$$egin{aligned} oldsymbol{A}_{k+1}^{-1} &=& oldsymbol{A}_k^{-1} - rac{1}{eta_k} oldsymbol{A}_k^{-1} oldsymbol{f}_{k+1} oldsymbol{s}_k^T oldsymbol{A}_k^{-1} \ eta_k &=& oldsymbol{s}_k^T oldsymbol{s}_k + oldsymbol{s}_k^T oldsymbol{A}_k^{-1} oldsymbol{f}_{k+1} \end{aligned}$$

• By setting $m{H}_k = m{A}_k^{-1}$ we have the update formula for $m{H}_k$:

$$egin{aligned} oldsymbol{H}_{k+1} &= oldsymbol{H}_k - rac{1}{eta_k} oldsymbol{H}_k oldsymbol{f}_{k+1} oldsymbol{s}_k^T oldsymbol{H}_k \end{aligned} egin{aligned} eta_k &= oldsymbol{s}_k^T oldsymbol{s}_k + oldsymbol{s}_k^T oldsymbol{H}_k oldsymbol{f}_{k+1} \end{aligned}$$

The Broyden method

The solution of Broyden problem

Application of Sherman-Morrison formula

(2/2)

• The update formula for H_k :

$$egin{aligned} oldsymbol{H}_{k+1} &= oldsymbol{H}_k - rac{1}{eta_k} oldsymbol{H}_k oldsymbol{f}_{k+1} oldsymbol{s}_k^T oldsymbol{H}_k oldsymbol{f}_{k+1} \ eta_k &= oldsymbol{s}_k^T oldsymbol{s}_k + oldsymbol{s}_k^T oldsymbol{H}_k oldsymbol{f}_{k+1} \end{aligned}$$

- Can be reorganized as follows

 - 2 Compute $\beta_k = s_k^T s_k + s_k^T z_{k+1}$; 3 Compute $\boldsymbol{H}_{k+1} = (\boldsymbol{I} \beta_k^{-1} z_{k+1} s_k^T) \boldsymbol{H}_k$;

The Broyden method with inverse updated

Algorithm (The Broyden method (updating inverse))

```
k \leftarrow 0; oldsymbol{x}_0 assigned; oldsymbol{f}_0 \leftarrow \mathbf{F}(oldsymbol{x}_0); oldsymbol{H}_0 \leftarrow oldsymbol{I} or better oldsymbol{H}_0 \leftarrow 
abla \mathbf{F}(oldsymbol{x}_0)^{-1}; while \|oldsymbol{f}_k\| > \epsilon do oldsymbol{-} perform step oldsymbol{s}_k = -oldsymbol{H}_k oldsymbol{f}_k; oldsymbol{x}_{k+1} = oldsymbol{x}_k + oldsymbol{s}_k + oldsymbol{s}_k; oldsymbol{f}_{k+1} = oldsymbol{F}(oldsymbol{x}_{k+1}); oldsymbol{-} update oldsymbol{H} oldsymbol{z}_{k+1} = oldsymbol{H}_k oldsymbol{f}_{k+1}; oldsymbol{g}_k = oldsymbol{s}_k^T oldsymbol{s}_k + oldsymbol{s}_k^T oldsymbol{z}_{k+1}; oldsymbol{H}_{k+1} = oldsymbol{I} - oldsymbol{\beta}_k^T oldsymbol{z}_{k+1} oldsymbol{s}_k^T oldsymbol{J}_k; oldsymbol{K}_k \leftarrow oldsymbol{k} + oldsymbol{1}; oldsymbol{k}_k \leftarrow oldsymbol{k} + oldsymbol{1}; oldsymbol{k}_k \leftarrow oldsymbol{k} + oldsymbol{1}; end while
```


Non-linear problems in n variable

57 / 78

The Broyden method

The solution of Broyden problem

- ullet If n is very large then the storing of $oldsymbol{H}_k$ can be very expensive.
- Moreover when n is very large we hope to find a good solution with a number m of iteration with $m \ll n$
- So that instead of storing H_k we can decide to store the vectors z_k and s_k plus the scalars β_k . With this vectors and scalars we can write

$$oldsymbol{H}_k = ig(oldsymbol{I} - eta_{k-1} oldsymbol{z}_k oldsymbol{s}_{k-1}^Tig) \cdots ig(oldsymbol{I} - eta_1 oldsymbol{z}_2 oldsymbol{s}_1^Tig) oldsymbol{I} - eta_0 oldsymbol{z}_1 oldsymbol{s}_0^Tig) oldsymbol{H}_0$$

- Assuming $H_0 = I$ or can be computed on the fly we must store only 2nm + m real number instead of n^2 saving a lot of memory.
- However we can do better. It is possible to eliminate z_k ad store only nm+m real numbers.

(1/3)

1 A step of the broyden iterative scheme can be rewritten as

$$egin{aligned} oldsymbol{d}_k &= -oldsymbol{H}_k oldsymbol{f}_k \ oldsymbol{x}_{k+1} &= oldsymbol{x}_k + oldsymbol{d}_k \ oldsymbol{f}_{k+1} &= oldsymbol{F}(oldsymbol{x}_{k+1}) \ oldsymbol{z}_{k+1} &= oldsymbol{H}_k oldsymbol{f}_{k+1} \ oldsymbol{H}_{k+1} &= igg(oldsymbol{I} - rac{oldsymbol{z}_{k+1} oldsymbol{d}_k^T}{oldsymbol{d}_k^T oldsymbol{d}_k + oldsymbol{d}_k^T oldsymbol{z}_{k+1}} igg) oldsymbol{H}_k \end{aligned}$$

- 2 you can notice that z_k and d_k are similar and contains a lot of common information.
- 3 It is possible exploring the iteration to eliminate z_k from the update formula of H_k so that we can store the whole sequence without the vectors z_k .

Non-linear problems in n variable

59 / 7

The Broyden method

The solution of Broyden problem

$\overline{\mathsf{Elimination}}$ of $oldsymbol{z}_k$

(2/3)

$$egin{aligned} -m{d}_{k+1} &= m{H}_{k+1}m{f}_{k+1} = m{igg(I - rac{m{z}_{k+1}m{d}_k^T}{m{d}_k^Tm{d}_k + m{d}_k^Tm{z}_{k+1}}m{igg)}m{H}_km{f}_{k+1} \ &= m{igg(I - rac{m{z}_{k+1}m{d}_k^T}{m{d}_k^Tm{d}_k + m{d}_k^Tm{z}_{k+1}}m{igg)}m{z}_{k+1} \ &= m{z}_{k+1} - rac{m{z}_{k+1}m{d}_k^Tm{z}_{k+1}}{m{d}_k^Tm{d}_k + m{d}_k^Tm{z}_{k+1}} \ &= rac{m{d}_k^Tm{d}_k}{m{d}_k^Tm{d}_k + m{d}_k^Tm{z}_{k+1}}m{z}_{k+1} \end{aligned}$$

substituting in the update formula for $oldsymbol{H}_{k+1}$ we obtain

$$oldsymbol{H}_{k+1} \leftarrow igg(oldsymbol{I} + rac{oldsymbol{d}_{k+1} oldsymbol{d}_k^T}{oldsymbol{d}_k^T oldsymbol{d}_k}igg) oldsymbol{H}_k$$

(3/3)

Substituting into the step of the broyden iterative scheme and assuming d_k known

$$egin{aligned} oldsymbol{x}_{k+1} &= oldsymbol{x}_k + oldsymbol{d}_k \ oldsymbol{f}_{k+1} &= oldsymbol{F}(oldsymbol{x}_{k+1}) \ oldsymbol{z}_{k+1} &= oldsymbol{H}_k oldsymbol{f}_{k+1} \ oldsymbol{d}_{k+1} &= -rac{oldsymbol{d}_k^T oldsymbol{d}_k}{oldsymbol{d}_k^T oldsymbol{d}_k} oldsymbol{z}_{k+1} oldsymbol{z}_{k+1} \ oldsymbol{H}_{k+1} &= igg(oldsymbol{I} + rac{oldsymbol{d}_k^T oldsymbol{d}_k}{oldsymbol{d}_k^T oldsymbol{d}_k} oldsymbol{H}_k \end{aligned}$$

notice that x_{k+1} , f_{k+1} and z_{k+1} are not used in H_{k+1} so that only d_k and its length need to be stored.

Non-linear problems in n variable

61 / 78

The Broyden method

The solution of Broyden problem

Algorithm (The Broyden method with low memory usage)

```
k \leftarrow 0; \boldsymbol{x} \text{ assigned};
\boldsymbol{f} \leftarrow \mathbf{F}(\boldsymbol{x}); \ \boldsymbol{H}_0 \leftarrow \nabla \mathbf{F}(\boldsymbol{x})^{-1}; \ \boldsymbol{d}_0 \leftarrow -\boldsymbol{H}_0 \boldsymbol{f}; \ \ell_0 \leftarrow \boldsymbol{d}_0^T \boldsymbol{d}_0;
\mathbf{while} \ \|\boldsymbol{f}\| > \epsilon \ \mathbf{do}
- perform \ step
\boldsymbol{x} \leftarrow \boldsymbol{x} + \boldsymbol{d}_k;
\boldsymbol{f} \leftarrow \mathbf{F}(\boldsymbol{x});
- evaluate \ \boldsymbol{H}_k \boldsymbol{f}
\boldsymbol{z} \leftarrow \boldsymbol{H}_0 \boldsymbol{f};
\mathbf{for} \ j = 0, 1, \dots, k-1 \ \mathbf{do}
\boldsymbol{z} \leftarrow \boldsymbol{z} + \left[ (\boldsymbol{d}_j^T \boldsymbol{z})/\ell_j \right] \boldsymbol{d}_{j+1};
\mathbf{end} \ \mathbf{for}
- update \ \boldsymbol{H}_{k+1}
\boldsymbol{d}_{k+1} = -\left[\ell_k/(\ell_k + \boldsymbol{d}_k^T \boldsymbol{z})\right] \boldsymbol{z};
\ell_{k+1} = \boldsymbol{d}_{k+1}^T \boldsymbol{d}_{k+1};
\boldsymbol{k} \leftarrow k+1;
\mathbf{end} \ \mathbf{while}
```


Outline

- The Newton Raphson
- 2 The Frobenius matrix norm
- 3 The Broyden method
- 4 The dumped Broyden method
- 5 Stopping criteria and q-order estimation

63 / 78

Non-linear problems in $\,n\,$ variable

The dumped Broyden method

Algorithm (The dumped Broyden method)

```
k \leftarrow 0; x_0 assigned;

f_0 \leftarrow \mathbf{F}(x_0); H_0 \leftarrow \nabla \mathbf{F}(x_0)^{-1};

while ||f_k|| > \epsilon do

— compute search direction

d_k = -H_k f_k;

Approximate \ \arg\min_{\lambda>0} ||\mathbf{F}(x_k + \lambda d_k)||^2 by line-search;

— perform step

s_k = \lambda_k d_k;

x_{k+1} = x_k + s_k;

f_{k+1} = \mathbf{F}(x_{k+1});

y_k = f_{k+1} - f_k;

— update H_{k+1}

H_{k+1} = H_k + \frac{(s_k - H_k y_k)s_k^T}{s_k^T H_k y_k} H_k;

k \leftarrow k+1;
```

end while

(1/5)

Notice that

$$oldsymbol{H}_k oldsymbol{y}_k = oldsymbol{H}_k oldsymbol{f}_{k+1} - oldsymbol{H}_k oldsymbol{f}_k = oldsymbol{z}_{k+1} + oldsymbol{d}_k, \quad ext{and} \quad oldsymbol{s}_k = \lambda_k oldsymbol{d}_k$$

and

$$egin{aligned} oldsymbol{H}_{k+1} &= oldsymbol{H}_k + rac{(oldsymbol{s}_k - oldsymbol{H}_k oldsymbol{y}_k) oldsymbol{s}_k^T oldsymbol{H}_k oldsymbol{y}_k}{oldsymbol{s}_k^T oldsymbol{H}_k oldsymbol{y}_k} oldsymbol{H}_k + rac{(\lambda_k oldsymbol{d}_k - oldsymbol{z}_{k+1} - oldsymbol{d}_k) \lambda_k oldsymbol{d}_k^T oldsymbol{H}_k}{\lambda_k oldsymbol{d}_k^T (oldsymbol{z}_{k+1} + oldsymbol{d}_k) oldsymbol{d}_k^T oldsymbol{d}_k} oldsymbol{H}_k \end{aligned} = igg(oldsymbol{I} - rac{(\lambda_k oldsymbol{d}_k - oldsymbol{z}_{k+1} - oldsymbol{d}_k) oldsymbol{d}_k^T }{oldsymbol{d}_k^T oldsymbol{d}_k + oldsymbol{d}_k^T oldsymbol{z}_{k+1}} igg) oldsymbol{H}_k \end{aligned}$$

Non-linear problems in n variable

65 / 78

The dumped Broyden method

Elimination of z_k

(2/5)

A step of the broyden iterative scheme can be rewritten as

$$egin{aligned} oldsymbol{d}_k &= -oldsymbol{H}_k oldsymbol{f}_k \ oldsymbol{x}_{k+1} &= oldsymbol{x}_k + \lambda_k oldsymbol{d}_k \ oldsymbol{f}_{k+1} &= oldsymbol{F}(oldsymbol{x}_{k+1}) \ oldsymbol{z}_{k+1} &= oldsymbol{H}_k oldsymbol{f}_{k+1} \ oldsymbol{H}_{k+1} &= igg(oldsymbol{I} - rac{(oldsymbol{z}_{k+1} + (1-\lambda_k)oldsymbol{d}_k)oldsymbol{d}_k^T}{oldsymbol{d}_k^T oldsymbol{d}_k + oldsymbol{d}_k^T oldsymbol{z}_{k+1}} igg) oldsymbol{H}_k \end{aligned}$$

$$egin{aligned} -m{d}_{k+1} &= m{H}_{k+1}m{f}_{k+1} \ &= \left(m{I} - rac{(m{z}_{k+1} + (1-\lambda_k)m{d}_k)m{d}_k^T}{m{d}_k^Tm{d}_k + m{d}_k^Tm{z}_{k+1}}
ight)m{H}_km{f}_{k+1} \ &= \left(m{I} - rac{(m{z}_{k+1} + (1-\lambda_k)m{d}_k)m{d}_k^T}{m{d}_k^Tm{d}_k + m{d}_k^Tm{z}_{k+1}}
ight)m{z}_{k+1} \ &= m{z}_{k+1} - rac{(m{z}_{k+1} + (1-\lambda_k)m{d}_k)m{d}_k^Tm{z}_{k+1}}{m{d}_k^Tm{d}_k + m{d}_k^Tm{z}_{k+1}} \ &= rac{(m{d}_k^Tm{d}_k)m{z}_{k+1} + (\lambda_k - 1)(m{d}_k^Tm{z}_{k+1})m{d}_k}{m{d}_k^Tm{d}_k + m{d}_k^Tm{z}_{k+1}} \end{aligned}$$

Non-linear problems in n variable

67 / 78

The dumped Broyden method

Elimination of z_k

(4/5)

Solving for z_{k+1}

$$oldsymbol{z}_{k+1} = -oldsymbol{d}_{k+1} - rac{(oldsymbol{d}_k^Toldsymbol{z}_{k+1})}{oldsymbol{d}_k^Toldsymbol{d}_k} (oldsymbol{d}_{k+1} + (\lambda_k - 1)oldsymbol{d}_k)$$

and adding on both side $(1 - \lambda_k)d_k$

$$egin{aligned} oldsymbol{z}_{k+1} + (1-\lambda_k) oldsymbol{d}_k &= -(oldsymbol{d}_{k+1} + (\lambda_k - 1) oldsymbol{d}_k) \left(1 + rac{(oldsymbol{d}_k^T oldsymbol{z}_{k+1})}{oldsymbol{d}_k^T oldsymbol{d}_k}
ight) \ &= -(oldsymbol{d}_{k+1} + (\lambda_k - 1) oldsymbol{d}_k) rac{oldsymbol{d}_k^T oldsymbol{d}_k + oldsymbol{d}_k^T oldsymbol{z}_{k+1}}{oldsymbol{d}_k^T oldsymbol{d}_k} \end{aligned}$$

and substituting in $oldsymbol{H}_{k+1}$ we have

$$oldsymbol{H}_{k+1} = igg(oldsymbol{I} + rac{(oldsymbol{d}_{k+1} + (\lambda_k - 1)oldsymbol{d}_k)oldsymbol{d}_k^T}{oldsymbol{d}_k^Toldsymbol{d}_k}igg)oldsymbol{H}_k$$

Substituting into the step of the broyden iterative scheme and assuming d_k known

$$egin{aligned} m{x}_{k+1} &= m{x}_k + \lambda_k m{d}_k \ m{f}_{k+1} &= m{F}(m{x}_{k+1}) \ m{z}_{k+1} &= m{H}_k m{f}_{k+1} \ m{d}_{k+1} &= -rac{(m{d}_k^T m{d}_k) m{z}_{k+1} + (\lambda_k - 1) (m{d}_k^T m{z}_{k+1}) m{d}_k}{m{d}_k^T m{d}_k + m{d}_k^T m{z}_{k+1}} \ m{H}_{k+1} &= m{igg(I + rac{(m{d}_{k+1} + (\lambda_k - 1) m{d}_k) m{d}_k^T}{m{d}_k^T m{d}_k} m{m{H}}_k} m{H}_k \end{aligned}$$

notice that x_{k+1} , f_{k+1} and z_{k+1} are not used in H_{k+1} so that only d_k and its length need to be stored.

Non-linear problems in n variable

69 / 78

The dumped Broyden method

Algorithm (The dumped Broyden method)

```
k \leftarrow 0; \boldsymbol{x} \text{ assigned};
\boldsymbol{f} \leftarrow \mathbf{F}(\boldsymbol{x}); \ \boldsymbol{H}_0 \leftarrow \nabla \mathbf{F}(\boldsymbol{x})^{-1}; \ \boldsymbol{d}_0 \leftarrow -\boldsymbol{H}_0 \boldsymbol{f}; \ \ell_0 \leftarrow \boldsymbol{d}_0^T \boldsymbol{d}_0;
\mathbf{while} \ \|\boldsymbol{f}_k\| > \epsilon \ \mathbf{do}
Approximate \ \underset{\boldsymbol{\alpha} \in \mathbf{min}_{\lambda>0}}{\operatorname{arg\,min}_{\lambda>0}} \ \|\mathbf{F}(\boldsymbol{x} + \lambda \boldsymbol{d}_k)\|^2 \ \ by \ line-search;
-- \operatorname{perform\ step}
\boldsymbol{x} \leftarrow \boldsymbol{x} + \lambda_k \boldsymbol{d}_k;
\boldsymbol{f} \leftarrow \mathbf{F}(\boldsymbol{x});
-- \operatorname{evaluate\ } \boldsymbol{H}_k \boldsymbol{f}
\boldsymbol{z} \leftarrow \boldsymbol{H}_0 \boldsymbol{f};
\mathbf{for\ } j = 0, 1, \dots, k-1 \ \mathbf{do}
\boldsymbol{z} \leftarrow \boldsymbol{z} + \left[ (\boldsymbol{d}_j^T \boldsymbol{z})/\ell_j \right] (\boldsymbol{d}_{j+1} + (\lambda_j - 1)\boldsymbol{d}_j);
-- \operatorname{update\ } \boldsymbol{H}_{k+1}
\boldsymbol{d}_{k+1} = -\left[\ell_k \boldsymbol{z} + (\lambda_k - 1)(\boldsymbol{d}_k^T \boldsymbol{z})\boldsymbol{d}_k\right]/(\ell_k + \boldsymbol{d}_k^T \boldsymbol{z});
\ell_{k+1} = \boldsymbol{d}_{k+1}^T \boldsymbol{d}_{k+1};
\boldsymbol{k} \leftarrow \boldsymbol{k} + 1;
\mathbf{end\ while}
```

Some additional reference

C. G. Broyden

A Class of Methods for Solving Nonlinear Simultaneous **Equations**

Mathematics of Computation, 19, No. 92, pp. 577-593

C.G. Broyden

On the discovery of the "good Broyden" method Mathematical Programming, 87, Number 2, 2000

E. Bertolazzi, F. Biral and M. Da Lio Symbolic-numeric efficient solution of optimal control problems for multibody systems

Journal of Computational and Applied Mathematics, 185, 2006

Non-linear problems in n variable

Outline

Stopping criteria for q-convergent sequences

- **1** Consider an iterative scheme that produce a sequence $\{x_k\}$ which converge to α with q-order p.
- $oldsymbol{2}$ This means that there exists a constant C such that

$$|x_{k+1} - \alpha| \le C |x_k - \alpha|^p$$
 for $k \ge m$

$$|x_{k+1} - \alpha| \approx C |x_k - \alpha|^p$$
 for large k

ullet We can use this last expression to obtain an error estimate for the error and the values of p if unknown using the only known values.

Non-linear problems in n variable

73 / 78

Stopping criteria and q-order estimation

Stopping criteria q-convergent sequences

(2/2)

1 If $|x_{k+1} - \alpha| \le C |x_k - \alpha|^p$ we can write:

$$|x_k - \alpha| \le |x_k - x_{k+1}| + |x_{k+1} - \alpha|$$

$$\le |x_k - x_{k+1}| + C|x_k - \alpha|^p$$

$$\downarrow \downarrow$$

$$|x_k - \alpha| \le \frac{|x_k - x_{k+1}|}{1 - C|x_k - \alpha|^{p-1}}$$

② If x_k is so near the solution such that $C|x_k - \alpha|^{p-1} \leq \frac{1}{2}$ then

$$|x_k - \alpha| \le 2|x_k - x_{k+1}|$$

This justify the stopping criteria

$$|x_{k+1} - x_k| \le \tau$$

Absolute tolerance

 $|x_{k+1} - x_k| \le \tau \max\{|x_k|, |x_{k+1}|\}$ Relative tolerance

Estimation of the q-order

- **1** Consider an iterative scheme that produce a sequence $\{x_k\}$ which converge to α with q-order p.
- 2 If $|x_{k+1} \alpha| \approx C |x_k \alpha|^p$ then the ratio:

$$\log \frac{|x_{k+1} - \alpha|}{|x_k - \alpha|} \approx \log \frac{C |x_k - \alpha|^p}{|x_k - \alpha|} = (p - 1) \log C^{\frac{1}{p-1}} |x_k - \alpha|$$

and analogously

$$\log \frac{|x_{k+2} - \alpha|}{|x_{k+1} - \alpha|} \approx \log \frac{C^{1+p} |x_k - \alpha|^{p^2}}{C |x_k - \alpha|^p} = p(p-1) \log C^{\frac{1}{p-1}} |x_k - \alpha|$$

 \odot From this two ratio we can deduce p as

$$\log \frac{|x_{k+2} - \alpha|}{|x_{k+1} - \alpha|} / \log \frac{|x_{k+1} - \alpha|}{|x_k - \alpha|} \approx p$$

Non-linear problems in n variable

75 / 78

Stopping criteria and $q\text{-}\mathrm{order}$ estimation

Estimation of the q-order

(2/3)

The ratio

$$\log \frac{|x_{k+2} - \alpha|}{|x_{k+1} - \alpha|} / \log \frac{|x_{k+1} - \alpha|}{|x_k - \alpha|} \approx p$$

uses the error which is not known.

② If we are near the solution we can use the estimation $|x_k - \alpha| \approx |x_{k+1} - x_k|$ so that

$$\log \frac{|x_{k+2} - x_{k+3}|}{|x_{k+1} - x_{k+2}|} / \log \frac{|x_{k+1} - x_{k+2}|}{|x_k - x_{k+1}|} \approx p$$

so that 3 iteration are enough to estimate the \emph{q} -order of a sequence.

Estimation of the q-order

① if the the step length is proportional to the value of f(x) as in Newton-Raphson scheme, i.e. $|x_k - \alpha| \approx M |f(x_k)|$ we can simplify the previous formula as:

$$\log \frac{|f(x_{k+2})|}{|f(x_{k+1})|} / \log \frac{|f(x_{k+1})|}{|f(x_k)|} \approx p$$

2 Such estimation are useful to check code implementation. In fact if we expect order p and we see order $r \neq p$ there is something wrong in the implementation or in the theory!

Non-linear problems in n variable

77 / 78

Stopping criteria and q-order estimation

References

- J. Stoer and R. Bulirsch Introduction to numerical analysis Springer-Verlag, Texts in Applied Mathematics, **12**, 2002.
- J. E. Dennis, Jr. and Robert B. Schnabel
 Numerical Methods for Unconstrained Optimization and
 Nonlinear Equations
 SIAM, Classics in Applied Mathematics, 16, 1996.
- Jorge Nocedal, and Stephen J. Wright Numerical optimization Springer, 2006

