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The problem to solve

Given F : D C R" — R"
Find . € D for which F(x,) = 0.

Example
Let

F(z) = 3:12+x23+7
C\m -+l

which has F(x,) = 0 for =, = (1,—-2)T.
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The Newton Raphson

Outline

€@ The Newton Raphson
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The Newton Raphson The Newton procedure

The Newton procedure e

@ Consider the following map

P(z) - a2+ 13+ 7
C\m -+l

we known an approximation of a root =y ~ (1.1, —1.9)7.

e Setting 1 = xo + p we obtain !

Pt = (1o )+ (5 1) (2) + 6

if ( is a good approximation of a root of F(z) then O(||p|?)
is a small vector.

'Here O(z) means (O(z),...,0(x))"

The Newton Raphson The Newton procedure

The Newton procedure (2/3)

o Neglecting O(||p||*) and solving

1.351\ | (22 10.83\ (p1\ _
(02) = (7 ) () =

we obtain p = (—0.094438, —0.105562)7 .

@ Now we set

1.005562 )

TL=%o+P= (—2.0055612

B
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The Newton Raphson The Newton procedure

The Newton procedure (3/3)

e Considering
~0.05576) | (2.0111 12.0668\ (¢1) . =
rra) = (o) + (CO ) (2) + Bua

o Neglecting O(||q||*) and solving

~0.05576) (20111 120668\ (@) _
8107 1 1 ©)

we obtain g = (—0.0055466, 0.0055458)7 .
o Now we set x3 = &1 + g = (1.000015, —2.000015)7

Be
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The Newton Raphson The Newton procedure

The Newton procedure: a modern point of view (1/2)

The previous procedure can be resumed as follows:

@ Consider the following function F(x). We known an
approximation of a root x.

@ Expand by Taylor series
F(z) = F(z0) + VF(20)(z — 20) + O(||z — o[
@ Drop the term O(||z — x0||?) and solve
0 =F(xp) + VF(xp)(x — xp)

Call 21 this solution.

©Q Repeat 1 — 3 with x1, x9, x3, ...

B
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The Newton Raphson The Newton procedure

The Newton procedure: a modern point of view (2/2)

Algorithm (Newton iterative scheme)
Let g assigned, then for k =0,1,2,...
Q@ Solve for py:

VF(x)pr + F(zr) =0

@ Update

Tyl = Tk + Pk

Be
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The Newton Raphson Standard Assumptions

Standard Assumptions

In the study of convergence of numerical scheme, some standard
regularity assumption are assumed for the function F(x).

Assumption (Standard Assumptions)

The function F : D C R"™ — IR" is continuous, differentiable with
Lipschitz derivative VF(x). i.e.

IVF(z) - VF(y)| <7vlle—yl| Vvz,ycDCR"

Lemma (Taylor like expansion)

Let F(x) satisfy the standard assumptions, then

|F(y) - F(z) - VF(@)(y — )| < 2l —y|* Va,yeDCR"

B
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The Newton Raphson Standard Assumptions

oo oo B i i

From basic Calculus:
1
F(y) — F(z) = /0 VF(z + t(y — 2))(y — @) dt

subtracting on both side VF(x)(y — x) we have

F(y) - F(z) - VF(z)(y — =) =

1
/0 [VF(z +t(y —z)) — VF(z)|(y — ) dt

and taking the norm

IF(y) - F(z) - VE(z)(y — )| < / vty — @) dt

D/§‘
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The Newton Raphson Standard Assumptions

Lemma (Jacobian norm control)

Let ¥ (x) satisfying standard assumptions, and VF (x,) non
singular. Then there exists 6 > 0 such that for all || — x,|| <
we have

27 |VE(z)|| < [ VF (2| < 2[|VF(2)]

and

271 | VF(@) Y| < V(@)Y < 2||VE() ™

B
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The Newton Raphson Standard Assumptions

Proof. (1/3).
From standard assumptions choosing 76 < 27! || VF (z,)||

IVE(z)|| < |[VF(z) — VF(z.)| + [[VF (x.)]
< vyl — x| + [[VF ()]
< (3/2) [[VF (z)| < 2|[VF(x.)||
again choosing vd < 271 |[VF(x,)||
IVE(z,)[| < |[VF(z.) — VF(z)|| + | VF ()]
< vl — x| 4 |[VF(z)|]
< 27H | VF(z)| + [I[VF ()|

so that 21 |[VF(z,)| < [|[VF(z)] .

A\

Be
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The Newton Raphson Standard Assumptions
Proof. (2/3).

From the continuity of the determinant there exists a neighbor
with VF(x) non singular for all || — .| <.

|VF(z)™" — VF ()|
< ||[VF(z) || |VF(z.) - VF ()| | VF(2.) '
<9 ll@ = .| |[VE@) | [[VE@) |
and choosing § such that 76 || VF(z,)7!|| < 27! we have
|VF(z)™! — VF(z,) || <271 ||VF(z) |
and using this last inequality
[VE )| < V(@) - V@) +[|VF@) |
< (3/2)||[VF(z) || < 2||VF(z) 7! | B
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The Newton Raphson Standard Assumptions

Proof. (3/3).
Using last inequality again
|[VE(z) || < ||[VF(z)™" = VF(z,) || + || VF(z) |
< 27! |VF(z) || + | VF(z.) |
so that
271 |[VE@) 7 < [[VF ()|

choosing § such that for all || — x| < § we have VF(x) non
singular and 76 < 271 |[VF(x,)|| and 76 ||VF(x,) || < 27! then
the inequality of the lemma are true. Il

v
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The Newton Raphson Local Convergence of Newton method

Theorem (Local Convergence of Newton method)

Let F(x) satisfying standard assumptions, and x, a simple root
(i.e. VF(x,) non singular). Then, if ||xg — .|| < with C§ <1
where

€= [|VF(@.) |

then, the sequence generated by Newton method satisfies:
Q ||z — .|| < fork=0,1,2,3,...
@ |1 — x| < C |y — 2i||® for k=0,1,2,3, ...

e ]-lmkp—>oo Ll — L.

@ The point 2 of the theorem is the second g-order of
convergence of Newton method.

B
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The Newton Raphson Local Convergence of Newton method

e i favson B L Conesece i Nevion mathod |

Consider a Newton step with ||z — x| < ¢ and
Ty — T = T, — T — VF(x) 7 [F(zg) — F(z)]
= VF(xz;) ! [VF (z1)(z — ) — F(zg) + F(zy)]
taking the norm and using Taylor like lemma
|21 — @l < 271 ok — @) || VF () 71|

from Jacobian norm control lemma (slide 12) there exist a § such
that 2 [|[VF(z;) Y| > ||VF (x.) || for all ||z — .|| < 6.
Reducing eventually & such that 0 ||VF(z,) || < 1 we have

ki1 — @] < 7 [|VE@) | 82k — 2.2 < o — 2.,

So that by induction we prove point 1. Point 2 and 3 follows

trivially. [ %
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4
The Newton Raphson The Newton-Kantorovich Theorem

Theorem (Newton-Kantorovich)

Let F : D C R" — R"™ be a differentiable mapping and let xo € D
be such that VF(xq) is nonsingular. Let be

B(zo,p) = {y | llzo —yll < p},
o = HVF(azo)_lF(azo)|

Y

Moreover
® B(zo,p) C D;
o ||VF(zo) " (F(x) — F(xo))|| < wll@ — x| forall e D,
0 k:i=aw< 271
If the radius p is large enough, i.e.
1—+v1-2k

pi= <p
w

Then: &

o
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The Newton Raphson The Newton-Kantorovich Theorem

Theorem (cont.)

o F(x) has a zero x, € B(xo, p);

@ The open ball B(xq, p) does not contain any zero of F(x)
different from x,;

@ The Newton iterative procedure produce sequences belonging
to B(xg, p) that converge to x;

o If k < 27! then for Newton’s method, we have

282"
o - 2l < s
where
5_\/1—2143 >\_1—K‘,—\/1—2KJ
W - K

Be
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The Newton Raphson The Newton-Kantorovich Theorem

Proof.

4 P. Deuflhard and G. Heindl
Affine Invariant Convergence Theorems for Newton's Method
and Extensions to Related Methods
SIAM Journal on Numerical Analysis, 16, 1979.

[3 Florian A. Potra
The Kantorovich Theorem and interior point methods
Math. Program., Ser. A 102, 2005.

W J.M. Ortega
The Newton-Kantorovich theorem
Amer. Math. Monthly 75, 1968.
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The Newton Raphson Globalizing the Newton procedure

@ Newton method converge normally only when x is near x, a
root of the nonlinear system.

@ A way to make a more robust non linear solver is to use the
techniques developed for minimization to make a globally
convergent nonlinear solver.

@ In particular if we consider the merit function
1 2
fl) = 5 [F(z)]]

we have that f(x) > 0 and if @, is such that f(x,) = 0 than
we have that

Q x, is a global minimum of f(x);
@ F(x,) =0, i.e. is a solution of the nonlinear system F(x).

@ So that finding a global minimum of the merit function f(x) is
the same of finding a solution of the nonlinear system F(x).

Be
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@ We can apply for example the gradient method to the merit
function f(x). This produce a slow method.

@ Instead, we can use the Newton method to produce a search
direction. The resulting method is the following

© Compute the search direction by solving
VF(a:k)dk + F(a:k) = 0;

@ Find an approximate solution of the problem
ay, = argmin s |F(zx + ady)||;

© Update the solution xy11 = x; + ady.

@ The previous algorithm work if the direction d is a descent
direction.

B
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The Newton Raphson Globalizing the Newton procedure

Is d;. a descent direction? (1/2)

The direction d computed as a solution of the problem
VF(xz)d+F(x) =0

is a descent direction.

v

Consider the gradient of f(z) = (1/2) ||F(z)|*:

of(x) 19|F(@)|* 1 0 — s~ OF;(x)

this can be written as  Vf(xz) = F(z)T VF ()

(cont.)) &
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The Newton Raphson Globalizing the Newton procedure

Is d;. a descent direction? (2/2)

Now we check Vf(x)d:
Vf(z)d = F(z) VF(z)d
= —F(a)"VF(x)VF(z) 'F(z)
= —F(z)"F(x)
= —||F(2)|” <0

This lemma prove that Newton direction is a descent direction.

B
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The Newton Raphson Globalizing the Newton procedure

Is the angle between dj. and Vf(x;) bounded from 7 /27

Let 0; the angle between Vf(xy) and dj, then we have

IF (i) | [ VE ()~ F ()

_ |F ()]
|VF (z) 1 F ()|

IF ()]
= VF (@) 1 IF @]

cos b =

> || VF ()7

so that, if for example || VF(x)~!|| is bounded from below then
the angle 0 is strictly less then /2 radiants. By the Zoutendijk
theorem then the globalized Newton scheme is globally convergent. §‘
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Algorithm (The globalized Newton method)

k < 0; x assigned;

f—F(x);

while || f|| > € do
— Evaluate search direction
Solve  VF(x)d+ F(x)=0;
— Evaluate dumping factor A
A~ argmin, g [|F(x + ady)
— perform step
xr<—x+ \d;
f—F(z);
k+—k+1;

end while

12 by line-search;

B
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The Frobenius matrix norm
Outline

© The Frobenius matrix norm

Be
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The Frobenius matrix norm

The Frobenius matrix norm

(Definition
The Frobenius norm ||-||p of a matrix A € R™™ is defined as
follows:

Al = (iiﬁj)m

i=1 j=1

Is @ matrix norm, i.e. it satisfy:
Q@ Al >0and Al =0 A=0;
@ (M| = M Allp;
Q@ [|A+ Blp < [|Allp + Bl
O [[AB|[p < [|Allz Bl
The Frobenius norm is the length of the vector A if we consider A

. 2
as a vector in R™ . &
[ on-lnearproblems in n-variable s




The Frobenius matrix norm

The Frobenius matrix norm

The first two point of the Frobenius norm ||-|| > are trivial, to prove
point 3 and 4 we need two classical inequality:

Cauchy-Schwartz inequality
n n 1/2 n 1/2
Sans(Ya) (%)
i=1 i=1

1=1

The inequality is strict unless a; = \b; for i =1,2,...,n.

v

Triangular inequality
n 1/2 n 1/2 n 1/2
() = (L) +(2%)
=1

The inequality is strict unless a; = A\b; for i = 1,2,...,n.

v

Be
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The Frobenius matrix norm

The Frobenius matrix norm

Proof of |A + Bl < || Al + || B||z-
By using triangular inequality

n 1/2
A+ B|p = ( > (A + Bij)2)

i,j=1
n 1/2 n 1/2
() +(Lm)
ij=1 ij=1
= [Allz +1Bllg-
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The Frobenius matrix norm

The Frobenius matrix norm

Proof of |AB|r < [[A| ¢ | Bl|p-
By using Cauchy—-Schwartz inequality with

n n 9\ 1/2
481, = (Y (X 4un))
1

ij=1 k=

(S () (Em)

<
ij=1 k=1 k'=1
n o n n n 1/2
- (T ) (XX 8)
i=1 k=1 j=1k'=1
= [ Al | Bllf-

Be
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The Frobenius matrix norm

Let u,w € R™ column vector then the following equality is true:

HuwTHF < [y [lw]l,

n
w7 = > wfw?
=i,
n n
- (Z uf) wa
L i
L]

B
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The

Frobenius matrix norm

Lemma

Let A € R"™™ and x € R™ column vector then the following
inequality is true:

|Az|[, < [|Allg =l

| \

Proof.
By using Cauchy-Schwarz inequality

||A33H§ = Zn: (iAijfl?j>2 < Zn: (iAZQJ) (leg)
=1 j=1 i=1 j=1 k
= ||l =3
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The

||| \D
Al

Frobenius matrix norm

Lemma

Let a,b € R™ and =,y € R™ orthonormal vector. i.e. xTy =0
and ||x||, = ||lyl|, = 1, then the following equality is true

laz” + by || = llal? + ||b]2

| \

Proof.
n m
Ja” +by" 2 = 323 (et + biay)?
i=1 j=1
n m
=) (a7z] + by + 203 biy;)
i=1 j=1

2 % 2 2
= llalz llzl3 + [1b]; lyl; + 2(a”®) (=" y)
——
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The Frobenius matrix norm

Lemma

Let A € R"™™ and vy, va, ..., v, € R™ a base of orthonormal
vector for R™, then

n
Al = Il Avkl3
k=1

Proof.

consider a generic vector 4 = ajv1 + - - - + @V, and notice that

m m m m m
E vvl | u = g vpvl E a;jv; | = g E vkvgvjaj
k=1 Pl j=1

k=1 j=1

| A

m
= E ALV = U
k=1

(cont.) &

v
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Thus

m
I = Z vkv,z
k=1

Using this relation we can write
2 m 2
k=1

|AlF = |AT|E = A | > vk
=l F

F
where wj;, = Awvj. Using the previous lemma we have

m

m
2 2 2
|AlF = llwkllz =) [ Avk]l3
k=1

k=1

DJ&
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The Broyden method
Outline

© The Broyden method

Be
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The Broyden method

The Broyden method

@ Newton method is a fast (g-order 2) numerical scheme to
approximate the root of a function F(x) but needs the
knowledge of the Jacobian VF(x).

@ Sometimes Jacobian is not available or too expensive to
compute, in this case a numerical procedure to approximate
the root which does not use derivative is mandatory.

@ The Newton scheme find successively the root of the affine
approximation

Li(x) = VF(xg)(x — xx) + F(xg) =0
@ Substituting the Jacobian in the affine approximation by Ay
Mk(a:) = Ak(az — :Bk;) + F(a:k) =0

and solving successively this affine model produces the family &
of different methods:
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The Broyden method

The Broyden method

Algorithm (Generic Secant iterative scheme)
Let xg and Ay assigned, then for k =0,1,2,...

Q Solve for py:
My (pr + x) = Appr + F(xg) =0
© Update the root approximation

Tyl = Tk + Pk

© Update the affine model and produce Ay .

Be
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The Broyden method

The Broyden method

© The update of My — M}, determine the algorithm.

@ A simple update is the forcing of a number of the secant
relation:

M1 (g y1-0) = F(Trt1-0), t=1,2,....m

notice that My 11 (xg+1) = F(xps1) for all Ag.

Q@ IfA, e R andm=nanddy =xp 1 ¢y — Ty are
linearly independent then we have enough linear relation to
determine Ay, 1.

@ Unfortunately vectors d; tends to become linearly dependent
so that this approach is very ill conditioned.

© A more feasible approach uses less secant relation and other
conditions to determine M, 1. &
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The Broyden method

The Broyden method

© The update of My — My, in Broyden scheme is the
following:

@ Mpti(zi) = F(ap);
@ Mjyi1(x) — My (x) is small in some sense;

@ The first condition imply

Apy1(xp — xpy1) + F(zpr1) = Fag)

which set n linear equation that do not determine the n
coefficients of Ag;.

2

© The second condition become
Mpy1 () — Mi(x) = (Ap41 — Ag) (@ — 1)

[ My11(2) = My ()] < [|Aks1 — Axll [l — 2]

where ||-|| is some norm. The term || — x| is not
controllable, so a condition should be ||Axi1 — Ag| is §‘
minimum.

The Broyden method

The Broyden method

@ Defining

yr = F(xr11) — F(xy), Sk = Tk4+1 — Tk

the Broyden scheme find the update Ay which satisfy:

Q@ A 18K = Ys;
@ ||Ari1 — Ar]| < || B — Ag| for all B such that Bs;, = yy.

@ If we choose for the norm ||-|| the Frobenius norm |-||
n 1/2
Al = (3 43)
ij=1

then the problem admits a unique solution.

B
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The Broyden method The solution of Broyden problem

With the Frobenius matrix norm it is possible to solve the following
problem

Lemma

Let A € R™"™ and s,y € R"™ with s # 0 and As # y. Consider
the set

B={BeR""|Bs=y}
then there exists a unique matrix B € B such that
|A—B|p<||[A-C|z for all C € B

moreover B has the following form

— As)sT
B_asW TS)S
s's
i.e. B is a rank one perturbation of the matrix A. g
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The Broyden method The solution of Broyden problem

Proof. (1/4).

First of all notice that
1 P 1 9P
—ys' €B ——yYS |8 =
sTs” LTsy ] Y

so that set B is not empty. Next we reformulate the problem as a
constrained minimum problem:

1 n
argmin = — E (Aij — B )2 subject to Bs = y.
BeRnxn 2 5=
1,7=1

The solution is a stationary point of the Lagrangian:

g(B,A) = % 'Zl(Aij — Bij)2 + 2&(2:1 Bijs; — yz)
1,)= 1= =

A\

B
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The Broyden method The solution of Broyden problem

Proof. (2/4).
taking the gradient we have

0
8Bij

g(B,)\) = Aij - Bij -|—)\@'8j =0

a n
E3y 9(B,A) = ZBiij -y =0
1 jzl

The previous equality can be written in matrix form
B =A+ s Bs=1y

so that we can solve for A

Ao y=4s

Bs=As+Asls=y =
s's

next we prove that B is the unique minimum. @

v
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The Broyden method The solution of Broyden problem

Proof. (3/4).
The matrix B is at minimum distance, in fact
(y — As)s? (y — As)s”
R I
F F
for all C € B we have C's = y so that
(Cs — As)sT ssT
15 - Al = |[E5295 ) —lo- a2
F F
T
ss
<C-Alp ||| =1C-Alg
F

because in general

n n n
o= (X wed) = (L@ ) = ulel

1,7=1
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The Broyden method The solution of Broyden problem

Proof. (4/4).
Let B’ and B” two different minimum. Then 1(B’ + B") € B
moreover
A_1<B’+B~> <lja-B|,+1)a-B
) 2 F2 F

If the inequality is strict we have a contradiction. From the
Cauchy—Schwartz inequality we have an equality only when
A — B = \A — B”) so that

B —AB'=(1-)\)A
and
B's—AB"s=(1-))As = (1-MNy=(1-))As

due to As # y this is true only when A\ =1, i.e. B'= B”. O

) B
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The Broyden method The solution of Broyden problem

Corollary
The update
Y — AgSi)s),
Apyp1 = Ag + ( T )si
Sk Sk

satisfy the secant condition:

Ax18k = Yk

moreover, Ay is the nearest matrix in the Frobenius norm that
satisfy the secant condition.

Different the norm produce different results and in general you can
loose uniqueness of the update.

B
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The Broyden method The solution of Broyden problem

The Broyden method (1/2)

Algorithm (The Broyden method)

k «— 0; g and Ay assigned (for example Ay = VF(xy));
Jo — F(xo),
while || fi|| > € do

Solve for s;. the linear system Apsy + fr = 0;

Tkr1 = Tk + Sk,

fir1 = F(Tpqr),

Yo = Je+1— Tk

— A T
Update: Ay = Ag + (Y kSk)S)

T ’
Sk Sk

k—k+1;
end while

Be
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The Broyden method The solution of Broyden problem

The Broyden method (2/2)

Notice that yx — Axsr = fri1 — fr + fr so that the update can be
written as Ay, «— Ag + fk“sg/s;‘gsk and y; can be eliminated.

Algorithm (The Broyden method (alternative version))

k «— 0; x and A assigned (for example A = VF(x));
f—F(z),
while || f|| > € do

Solve for s the linear system As + f = 0;

xr «— X+ 8,
f — F(z),
fs"
Update: A — A+ ~——;
s's
k—k+1;
end while

B
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The Broyden method The solution of Broyden problem

Broyden algorithm properties (1/2)

Theorem

Let F(x) satisfy the standard regularity conditions with VF(x,)
nonsingular. Then there exists positive constants €, § such that if
|0 — x| < € and ||Ag — VF(z,)|| < 9, then the sequence {x}}
generated by the Broyden method is well defined and converge
q-superlinearly to x,, i.e.

i N®er1 — 2wl _
k—o0 HCBk = :13*||

@ C.G.Broyden, J.E.Dennis, J.J.Moré
On the local and super-linear convergence of quasi-Newton

methods.
J. Inst. Math. Appl, 6 222-236, 1973. §
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The Broyden method The solution of Broyden problem

Broyden algorithm properties (2/2)

Let F(x) = Ax — b where A € R™*"™. Then the Broyden method
converge in at most 2n steps.

Theorem

Let F : R" — IR" satisfy the standard regularity conditions with
VF(x,) nonsingular. Then there exists positive constants €, o
such that if |xg — || < € and ||Ag — VF(x,)|| <6, then the
sequence {xy} generated by the Broyden method satisfy

|Zkr2n — &4l| < Cllay — 2|

W D.M. Gay
Some convergence properties of Broyden's method.
SIAM Journal of Numerical Analysis, 16 623-630, 1979. &
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The Broyden method The solution of Broyden problem

Reorganizing Broyden update

@ Broyden method needs to solve a linear system for Aj at each
step

@ This can be onerous in terms of CPU cost

@ it is possible to update directly the inverse of Ay i.e. it is
possible to update Hy = A;l.

@ The update of A solve the problem of efficiency but do not
alleviate the memory occupation

@ The matrix A can be written as a product of simple matrix,
this can save memory if the update are lesser respect to the
system dimension.

Be
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Sherman-Morrison formula

Sherman-Morrison formula permit to explicity write the inverse of
a matrix perturbed with a rank 1 matrix

Proposition (Sherman—Morrison formula)

1
(A+ur!)t=A"1-—AlupT A1
o
where

a=1+vlA

The Sherman—Morrison formula can be checked by a direct
calculation.

B
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Application of Sherman-Morrison formula (1/2)

@ From the Broyden update formula

fk+18£

T
sksk

Apy1 = Ap +
@ By using Sherman—Morrison formula

_ _ I _ _
Akil - Akl - EAklkarlSzAkl

Br = spsk+ sL AL fes
e By setting Hy, = A,;l we have the update formula for Hy:

1
Hy., = Hj, — EkakJHSsz

Br = si sk + 8 Hy frin 5
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Application of Sherman-Morrison formula (2/2)

@ The update formula for Hy:

1
Hy., = H;, — EkakJHSsz

T T
Br = 8p. Sk + s, Hi fir1

@ Can be reorganized as follows

© Compute zp41 = Hy fiq1;
Q Compute g, = sgsk + f£Zk+1;
© Compute Hy 1= (I— By zk+1s£)Hk;

B
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The Broyden method with inverse updated

Algorithm (The Broyden method (updating inverse))

k «— 0; xy assigned;
fo « F(xo);
Hy « I or better Hy «+ VF(xq)~!;
while || fx|| > € do
— perform step
sy = —Hyfy;
Tpt1 = Tk + Sk,
frr1 = F(xpga),
— update H
zk+1 = Hifrt,
Be = 8§kt 8j zkt1;
Hyp= (I -6, 218y Hy
k — k+1;
end while &

o
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@ If n is very large then the storing of Hj, can be very expensive.

@ Moreover when n is very large we hope to find a good
solution with a number m of iteration with m <& n

@ So that instead of storing Hj, we can decide to store the
vectors z; and s; plus the scalars 5. With this vectors and
scalars we can write

Hy= (I - Br-1218t_1) - (I = Brzasi) (I — Boz1s} ) Hy

@ Assuming Hy = I or can be computed on the fly we must
store only 2 7.1 + m real number instead of n? saving a lot of
memory.

@ However we can do better. It is possible to eliminate z; ad
store only nm + m real numbers.

B
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Elimination of z; (1/3)

O A step of the broyden iterative scheme can be rewritten as
dp, = —Hp fy
Tyl = T +dyg
Jrt1 = F(xp41)

zp+1 = Hifr+

Hy, 1 = <I T uas Tk )Hk
— .

@ you can notice that z; and d;. are similar and contains a lot
of common information.

© It is possible exploring the iteration to eliminate z; from the
update formula of H}. so that we can store the whole
sequence without the vectors zy. &
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Elimination of z; (2/3)

T
Zk1d),
—dpy1 = Hyp1 fr1 = (I— )Hk:fk: 1
+ + + dgdk+d£zk+1 +
Zk:+1dg )
= (1—- Zk+1
( dgdk + d%Zk+1
o Zir1d] Zi
T dldy + dL
d’d;

Zk+1
T T

substituting in the update formula for Hy; we obtain

H, | — I+M H,
* d7d, 5.
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Elimination of z; (3/3)

Substituting into the step of the broyden iterative scheme and
assuming dj known

LTk+1 — Tk + dk
Jrr1 = F(Try1)
Zp+1 = Hifr41

- dld,
d%dk + d%Z}c_i_l

dj1dl
= (14 )
k

di+1 = Zi+1

notice that @x11, fryr1 and ziyq are not used in Hy ;1 so that

only di and its length need to be stored. &

The Broyden method The solution of Broyden problem

Algorithm (The Broyden method with low memory usage)

k «— 0; x assigned;
[~ F(ac), Hy — VF(ZIB)_l; do — —Hyf,; ly«— dgdo,'
while || f|| > € do

— perform step

T «— x+d;

f < F(x),

— evaluate Hy f

z Hof,'

for j =0,1,...,k—1do

Z<—z+ [(d?z)/ﬁj]djﬂ;

end for

— update Hy,

dir1 = —[bn/ (b + df2))z;

lha = diydipy;

k — k+1;
end while &

v
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The dumped Broyden method
Outline

@ The dumped Broyden method

Be
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Algorithm (The dumped Broyden method)

k «— 0; oy assigned;
fo — F(ZB()),' Hy — VF(Q?0>_1,'
while || fi|| > € do
— compute search direction
di, = —Hpfx,
Approximate argmin, . ||F(zx + Ady)||> by line-search;
— perform step
Sk = Apdg;
Tk4+1 = Tk + Sk,
i1 = F(zp),
Y = Sfrv1— Jr
— update Hy,
T
Hj 1= Hj+ (s _TfIkyk)Sk
k — k+1; K
end while &

v
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The dumped Broyden method

Elimination of z; (1/5)
Notice that
Hyy, = Hyfiv1 — Hifi, = zp4+1 +di,, and s, = A\idy

and

(s — Hiryx)

st Hyyy

()\kdk — Rk+1 — dk))\kd% Hk
)\kzd%(zkﬂrl -+ dk)

Ady — —dj,)d!
(rs Ot i
dk<zk+1+dk)

s).
Hp, ., = H,+ H,,

H, +

_ (I C (Ee+ (- Ak)dk)dif)Hk
d%dk + d%zkﬂ

Be
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Elimination of z; (2/5

)

A step of the broyden iterative scheme can be rewritten as
dp = —Hy fr
Tp11 = T + A\pdy
frv1 = F(xp4)

Zpr1 = Hi fri

Zk+1 (1 — )\k:)dk:)dz:
T T H;,
dk dk + dk Zk+1

Hyq = (I— (

B
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Elimination of z; (3/5)

—di11 = Hpy1 frv1

_ (I (B + (1= Ap)dy)dy
Clz:dk + dgzk_H

)Hk:fk:-l—l

I N T el U Ae)di)di
- dldy, +dz et
Lk Yk k ~k+1

(ze1 + (1 — Mp)dp)d] zippa
d%dk + d%Zk_i_l

(df dy)zr1 + (A — 1)(d} zpq1)dy
dzdk -+ d{zkﬂ

= Zk4+1 —

Be
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Elimination of z;

Solving for zx11

(d;épzkﬂ)

d A — 1)d
dTd; (dry1 + (A — 1)dy)

Zkt1 = —dy1 —
and adding on both side (1 — \;)dx
zZkr1 + (1= Ap)dy = —(dgy1 + (A — 1)dy) (1 +

d%dk + dZ:Zk_i_l
dTd,

= —(dg+1+ (Mg — 1)dk)

and substituting in Hy, 1 we have

(i1 + (Mg — 1)dk:)d£>H
dZdy, "

Hy = (I+

B

Non-linear problems in n variable 68 / 78




The dumped Broyden method

Elimination of z; (5/5)

Substituting into the step of the broyden iterative scheme and
assuming dj known

Tpi1 = Tk + Apdy

frt1 = F(@pi)

zZkr1 = Hi fri

(df di)zie1 + (M — 1)(d}, zps1)di

d%dk + d{zkﬂ

d e — 1)dy)dE

dit1 = —

d%dk
notice that @x,1, fryr1 and ziyq are not used in Hy; so that
only dj and its length need to be stored. &

Algorithm (The dumped Broyden method)

k «— 0; x assigned;
f — F(ac), Ho — VF(ZIB)_l; do — —Hof,' fo — dgdo,'
while || fi|| > € do

Approximate argmin, . |F(z + \dy)||*> by line-search;

— perform step

T — x+ \pdyg;

f < F(z),

—- evaluate Hy f

z «— Huf;

for j=0,1,...,k—1do

z — z+ [(dj 2)/4] (dj1 + (A — 1)d;);
— update Hy,

di1 = —[lez + (N — 1)(d] 2)di] /(b + df 2);
lhp1 = di diya;

k — k+1;
end while &

v
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The dumped Broyden method
Some additional reference

1 C. G. Broyden
A Class of Methods for Solving Nonlinear Simultaneous
Equations
Mathematics of Computation, 19, No. 92, pp. 577-593

4 C.G. Broyden

On the discovery of the “good Broyden” method
Mathematical Programming, 87, Number 2, 2000

[3 E. Bertolazzi, F. Biral and M. Da Lio
Symbolic-numeric efficient solution of optimal control
problems for multibody systems

Journal of Computational and Applied Mathematics, 185,
2006
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Outline

© Stopping criteria and g-order estimation

B
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Stopping criteria for g-convergent sequences

@ Consider an iterative scheme that produce a sequence {xy}
which converge to a with g-order p.

@ This means that there exists a constant C' such that

|z 1 — ol <Ol — aff for k > m
Q If limy, . M exists and is say C we have

|7 — @

|z — o = C |z — aff for large k

@ We can use this last expression to obtain an error estimate for
the error and the values of p if unknown using the only known
values.
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Stopping criteria g-convergent sequences

Q If |21 — ol < Clzx — aff we can write:

|7k — af < |ap — Tpga| + [Te41 — o
< |z — Tpt1| + C'lag, — af”
U

\xk—Oé| < |3Uk—$k;+1|

1—C | —aff™
@ If 2, is so near the solution such that C' |z, — afP ™! < < then
|7k — af <2 [z — B4
© This justify the stopping criteria
| tp1 — x| < 7T Absolute tolerance

|Zer1 — o] < 7 max{|xg|, |2x+1|} Relative tolerance &
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Estimation of the g-order

@ Consider an iterative scheme that produce a sequence {x}
which converge to a with g-order p.

Q If |21 — a| = C' |z — aff then the ratio:
T 11 — -

log —— =~ log
|7 — «f |7 —

Clz, — «aff 1

and analogously

CHP |z, — a|p2 B

Tk — 1
lo |24z =~ ol Clap —aff =p(p—1)logCr1 |z — «

|Tpq1 —

~ log

© From this two ratio we can deduce p as

|Zht2 — o 1 |1 — o

1
®laes —al/ %z — B
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Estimation of the g-order

@ The ratio

|22 — @ 1 Tk —af

log
|Tp+1 — |7 —

uses the error which is not known.

@ If we are near the solution we can use the estimation
|7 — af & |7pa1 — 2% so that

\l’k+2 - $k+3| 1 |5Uk—|—1 - 56’k:+2| ~p
‘xkz—i—l — a:k+2| |33k; - xk—i—l‘

log

so that 3 iteration are enough to estimate the g-order of a
sequence.

B
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Estimation of the g-order

© if the the step length is proportional to the value of f(x) as in
Newton-Raphson scheme, i.e. |z — a| ~ M | f(a)| we can
simplify the previous formula as:

\f Thoy-2 | |f $k+1
\f Tt 1) |f )|

@ Such estimation are useful to check code implementation. In
fact if we expect order p and we see order r # p there is
something wrong in the implementation or in the theory!

Be
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